首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Low temperature is a major abiotic stress for rice cultivation, causing serious yield loss in many countries. To identify QTL controlling low temperature induced spikelet sterility in rice, the progeny of F2, BC1F1 and BC2F1 populations derived from a Reiziq × Lijiangheigu cross were exposed to 21/15°C for 15 days at the booting stage, and spikelet sterility was assessed. For genotyping, 92 polymorphic markers from 373 SSR and 325 STS primer pairs were used. A major QTL was initially indentified on the short arm of chromosome 10 by selective genotyping using highly tolerant and susceptible progeny from F2 and BC1F1 populations. The QTL (qLTSPKST10.1) was validated and mapped by genotyping the entire F2 (282 progeny) and BC1F1 (84 progeny) populations. The results from the F2 population showed that qLTSPKST10.1 could explain 20.5% of the variation in spikelet sterility caused by low temperature treatment with additive (a = 14.4) and dominant effect (d = −7.5). From the analysis of 98 selected BC2F1 progeny, the QTL located in the 3.5 cM interval between S10010.9 and S10014.4 was further confirmed. Based on the studies of 3 generations in 2 years, it was clear that the QTL on chromosome 10 is a major determinant of the control of low temperature induced spikelet sterility at booting stage.  相似文献   

2.
High temperature-induced spikelet sterility is expected to become a major factor reducing rice yield under the future climate conditions. To examine the responses of spikelet sterility to air temperature, humidity, and temperatures of panicle and spikelet, two japonica rice cultivars in different maturity groups were exposed to four sets of different temperature conditions from initial heading stage in 2013 and 2014. The temperature conditions included ambient temperature (AT), AT + 1.5°C, AT + 3.0°C, and AT + 5.0°C. Spikelet fertility showed a wide range of variation from 100 to 4.6% depending on temperature treatments. The ridge regression revealed that not only air temperature but also vapor pressure deficit (VPD) was negatively associated with spikelet fertility. The spikelet fertility was well fitted to logistic equations not only of air temperature, spikelet internal temperature, and panicle surface temperature but also of VPD. No clear difference in the accuracy of sterility estimation was observed for models that use air temperature, panicle or spikelet temperature as inputs. In contrast, the logistic equation model that uses both air temperature and VPD as independent variables had better accuracy in predicting spikelet sterility. These results suggested that spikelet or panicle temperature would be no better predictor for high temperature-induced spikelet sterility than air temperature. Therefore, further study is merited to verify the VPD effects on spikelet sterility under high temperature conditions.  相似文献   

3.
Response of thermosensitive genic male sterility in rice to varying temperature situations was studied by using four TGMS lines. In three sets of maximum, minimum and their combined temperatures, it was observed that maximum temperature played a predominant role in influencing sterility/fertility of TGMS lines under the combined regimes. Expression of a TGMS gene was found to be influenced by the genetic background of the recipient lines. Exposure for more than 8 hours of 32 °C was found necessary to induce complete male sterility in indica TGMS lines: IR68945-4-33-4-14 and IR68949-11-5-31 while, more than 4 hours of such exposure was enough to induce sterility in case of their japonica donor Norin PL 12. Sudden interruption with 27 °C even for 2 hours under the sterility inducing regime of 32/24 °C could induce partial fertility in the line IR68945-4-33-4-14. However, the line ID 24 remained completely sterile even with 10 hours of interruption with 27 °C. An interruption with lower temperature of 27 °C for 4 hours for even one day induced partial fertility in IR68945-4-33-4-14. The period of four to eight days after panicle initiation was the stage most sensitive to temperature variations. Hybrid rice breeders need to develop numerous genetically diverse TGMS lines, which possess critical sterility inducing temperature of 28 °C and are not affected by sudden interruptions with a lower temperature for few hours daily for a couple of days. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Climate change may lead to an increase in both day and night time temperatures in rice (Oryza sativa L) growing regions, but the impact of such temperature increases on yields of Australian rice varieties is not known. We evaluated the biomass and grain yield response of eleven Australian rice varieties including long, medium and short grain types, and the Californian cultivar M205, to heat stress during the reproductive phase and grain filling stages. Heat stress (day/night = 35/25°C) was applied at one of three stages: from panicle exertion to anthesis (PE), from anthesis to 10 days after anthesis (EGF) and from 10–20 days after anthesis (LGF) periods after which the effect on biomass and grain yield was compared to control plants. When heat stress was applied at PE and early grain filling stages, mean grain yield losses across rice varieties were 83% and 53%, respectively, though significant genotype × heat stress treatment interactions were observed. Notably, three varieties—YRM 67, Koshihikari and Opus—appeared to possess greater tolerance to heat stress at these growth stages. A significant genotype × heat stress treatment interaction was also observed in the LGF treatment, where significant yield reductions were only observed in Opus (21% loss) and YRM 67 (25% loss). A lack of effect of heat stress on total grain yield in most varieties at late grain filling appeared to be due to late tiller grain yields which were either unaffected by the heat stress or increased significantly compared to control plants. While genetic variation for tolerance to heat stress across the three growth stages was observed, there was no rice genotype that was consistently tolerant (in terms of yield under stress) across all three heat stress treatments. In the absence of a genotype that showed broad heat stress tolerance during reproductive growth, we suggest screening of a wider pool of more diverse rice germplasm is warranted.  相似文献   

5.
Extreme temperatures cause spikelet sterility in rice and thus yield losses. Predicting sterility is difficult because organ temperature may differ from air temperature. Four rice genotypes were planted under irrigated flooded conditions in a similar replicated design in four environments: the relatively humid dry season in the Philippines, the summer season in southern France and the cold-dry and hot-dry seasons in northern Senegal. Panicle temperature was measured by IR photography on ca. 4000 images, complemented with simultaneous monitoring of micro-climatic variables on the floodwater-canopy-air continuum. Spikelet sterility was observed at the population scale at grain maturity, and canopy morphology was also characterized (plant height, leaf area index, panicle position within the canopy and panicle exertion). The period and time of day of anthesis (TOA) was estimated using a model developed on the same experiments as described in a previous paper. Panicle temperature varied between 9.5 °C below and 2 °C above air temperature at 2 m. During TOA it was on average slightly warmer than the air in the Philippines and significantly colder in Senegal. Spikelet sterility was disaggregated into three components caused by chilling at microspore stage, incomplete panicle exertion at anthesis and high panicle temperature at anthesis. Chilling caused up to 100% and heat up to 40% sterility, the former mainly in the Senegal cool-dry season and the latter in the Philippines. All genotypes avoided heat sterility in the hot-dry season in Senegal despite air temperatures up to 40 °C, by a combination of escape (early TOA) and avoidance (transpiration cooling). Only one genotype had no chilling induced sterility due to physiological tolerance. It is concluded that heat stress causing sterility is more likely to occur in warm-humid than hot-arid environments due to humidity effects on transpiration cooling. Models predicting global warming effects on sterility losses need to consider microclimate and organ temperature, and research is now needed on the genetic control of panicle transpiration cooling  相似文献   

6.
Forty resistant rice cultivars were studied for theinheritance of resistance to bacterial blight usingPhilippine races of Xanthomonas oryzae pv.oryzae (Xoo). Results showed that all thevarieties have at least two recessive genes forresistance. One of these genes governs resistance torace 1 (PXO61) while the other gene confers resistanceto race 6 (PXO99). In addition to the recessivegenes, nine of the varieties possess another dominantgene which also confers resistance to race 1.Allelism tests revealed that the recessive genesgoverning resistance to race 1 in 39 varieties areallelic to xa5 while the dominant genes in thenine varieties are allelic to Xa4. Therecessive gene conferring resistance to race 1 incultivar Sada Diga is inherited independently of xa5. Similarly, the recessive genes governingresistance to race 6 in all the varieties arenon-allelic to xa13. The allelic relationshipsof these genes with xa-24(t), a new recessivegene identified in cultivar DV86 which conveysresistance to race 6 are now being investigated.  相似文献   

7.
M. Wissuwa  N. Ae 《Plant Breeding》2001,120(1):43-48
Deficiency in phosphorus (P) can severely limit rice yields. Developing cultivars with tolerance to P deficiency may represent a more sustainable solution than sole reliance on fertilizer application. To assess genotypic variation for tolerance to P deficiency the P uptake of 30 genotypes was measured on P‐deficient soil. Variation for P uptake was high, ranging from 0.6 to 12.9 mg P/plant. Traditional varieties were superior to modern varieties. A major quantitative trait locus for P uptake had previously been identified in a population developed by crossing the modern variety ‘Nipponbare’ with the P deficiency‐tolerant landrace ‘Kasalath’. This quantitative trait locus was transferred to ‘Nipponbare’ by three backcrosses. Under P deficiency this improved line surpassed ‘Nipponbare’ in P uptake by 170% and in grain yield by 250%. These results show that the genotypic variation for tolerance to P deficiency in rice can be used successfully in rice improvement. By combining high P uptake of the donor variety ‘Kasalath’ with a high harvest‐index characteristic of modern varieties it was possible to more than triple the grain yield of ‘Nipponbare’ under P deficiency.  相似文献   

8.
Genetics of thermosensitive genic male sterility in rice   总被引:4,自引:0,他引:4  
Summary Inheritance of thermosensitive genic male sterility (TGMS) in Norin PL12 and IR32364TGMS and their allelic relationship were studied from F1, F2 testcross (TC) and F3 generations of the crosses made with the two mutants and several fertile tester parents. F2, TC and F3 segregation behavior for pollen and spikelet fertility indicated that the TGMS trait in the two mutants was controlled by a single recessive gene. Allelic relationship studies indicated that TGMS genes of the two mutants were different. Since TGMS gene in Norin PL12 has been designated as tms 2 , the TGMS gene present in IR32364TGMS is tentatively designated as tms 3 (t) until allelic test is done with another TGMS gene (tms 1 ) reported from China in a line 5460S seeds of which were not available.  相似文献   

9.
为探明油菜素甾醇(brassinosteroids,BRs)是否介导氮肥对水稻颖花退化的影响。水稻品种扬稻6号和甬优2640种植于盆钵,全生育期设置3种施氮水平,观察了不同氮肥处理下水稻减数分裂期幼穗中氮含量、BRs、过氧化氢(H2O2)和总抗氧化能力(totalantioxidantcapacity,T-AOC)水平及其与颖花退化的关系。结果表明,颖花退化率的降低与稻穗中增加的24-表油菜素甾酮(24-epicastasterone,24-epiCS)和28-高油菜素内酯(28-homobrassinolide,28-homBL)含量密切相关。当稻穗的氮含量为1.25%时,幼穗中BRs(24-epiCS和28-homBL)含量显著增加,颖花退化率显著降低。稻穗中T-AOC水平与BRs含量变化趋势相同,且均与水稻颖花退化率显著负相关,而H_2O_2含量与BRs含量和T-AOC变化趋势相反。施用外源BRs(24-epiCS或28-homBL)可显著提高稻穗中内源BRs(24-epiCS和28-homBL)含量与T-AOC水平,并显著降低稻穗中H_2O_2含量和颖花退化率,施用BRs合成抑制剂则效果相反。表明BRs可以介导氮肥对水稻颖花退化的调控,在减数分裂期适宜的稻穗含氮量(1.25%)可有效提高幼穗中的BRs含量,并通过提高抗氧化能力来抑制颖花退化。  相似文献   

10.
Genotypic variation of cadmium accumulation and distribution in rice   总被引:2,自引:0,他引:2  
Cadmium (Cd) is absorbed by rice root and transferred into the other rice organs including grain. A solution-culture experiment was conducted to investigate the absorption and distribution of Cd supplied at different growth stages of rice. Two rice cultivars, a japonica ‘Chucheong’ and a tongil-type ‘Milyang23’ that exhibit high and low ability of Cd absorption by root and accumulation in grain were grown in culture solution and subjected to 2 ppm CdCl2 treatment for 2 weeks at four different growth stages: before panicle initiation stage (BPI), after panicle initiation stage (API), early ripening stage (ER), and mid-ripening stage (MR). Cd concentration and accumulation in rice organs were measured at harvest. The two rice cultivars accumulated two to three times greater amounts of Cd in grain in the two Cd treatments before heading (BPI and API treatments) than in the Cd treatment after heading (ER and MR treatment). The higher grain Cd accumulation in BPI and API treatments was not attributed to the higher Cd uptake but to the higher translocation from root to shoot and the higher redistribution from shoot to grain than ER and MR treatments These results imply that the remobilization of Cd through phloem during leaf senescence is the major process for Cd accumulation in rice grain rather than direct transport of absorbed Cd through the xylem-phloem transfer to grain. ‘Milyang23’ absorbed significantly smaller amount of Cd than ‘Chucheong’. However, ‘Milyang23’ accumulated more than a three times larger amount of Cd in grain compared to ‘Chucheong’ as the former exhibited the higher root-shoot translocation and shoot-grain remobilization as well. It indicates that the greater Cd translocation from root to shoot and subsequent higher Cd remobilization from shoot to grain, not the higher absorption ability, have led to the higher Cd accumulation and concentration in grain of ‘Milyang23’.  相似文献   

11.
对3种不同自燃倾向性煤样进行低温氧化实验,利用CO体积分数与煤体温度间变化的计算模型,求解出活化能和煤氧化过程发生转变的特征温度,同时结合热重-差示扫描量热(TG-DSC,theremogravimetric analysis-differential scanning calorimetry)实验结果,分析了不同自燃性煤氧化特性和活化能的低温表征规律。结果表明:1)低温氧化阶段,CO生成量、耗氧量和耗氧速率随着煤自燃倾向性增强而增大;不同煤样在实验过程中出现同样的CO生成量和耗氧速率急剧上升的温度拐点,且煤的自燃性越强,该拐点温度越低,同时CO体积分数的变化具有明显的阶段性。2)不同自燃性煤氧化阶段活化能变化规律存在显著差异,当各煤样的温度到达活性温度时,活化能快速减少,且活化能变化点对应于煤氧化过程发生转变的特征温度点。3)根据煤特征温度和活化能的变化规律,把煤低温氧化进程分为4个阶段,分别为表面氧化、氧化自热、加速氧化和深度氧化。  相似文献   

12.
Rising global mean temperatures open opportunities in high-altitude production systems for temperature-sensitive crops such as lowland rice. Currently, the cropping window for rice in higher altitudes is still narrow, and thus, genotypes that tolerate a certain degree of chilling are needed to achieve their potential yield. Final yield depends on the interaction between genotype and environmental conditions. Exposing the genotype to a wide range of environments is a way to evaluate its adaptability into an expanding cropping calendar. Over a 2-year period, an experiment was conducted in lowland rice systems in Madagascar at two locations differing in altitude. Twenty genotypes with contrasting levels of tolerance to low temperature were sown monthly in a non-replicated rice garden trial. Plant development was monitored and yield and yield components were determined. Yield stability across the different growing environments was investigated. While crop duration was affected by sowing dates and altitude, yield was mainly determined by sowing date. Panicle number per m2 and number of spikelets per panicle were the most limiting factors for yield potential in mid-altitude, while in high altitude, yield was mainly limited by spikelet fertility. Resulting cropping calendar and genotype recommendations are discussed.  相似文献   

13.
A. Zougari    S. Guy  C. Planchon 《Plant Breeding》1995,114(4):313-316
Decreasing the lipoxygenase content of soybean (Glycine max (L.) Merr.) seed is a prerequisite for its increased use in human foods. These investigations aim to analyse the variation of lipoxygenase contents in relation to the genotype or the nitrogen nutrition of the plant. Four genotypes from a divergent selection for N2 fixation and the recurrent parent, Weber, were grown in pots, and two Bradyrhizobium japonicum strains (G.49 and SMGS1) were used. Dinitrogen fixation was estimated in situ using the acetylene–reduction assay. The lipoxygenase activity was determined polarographically on seeds taken from plants grown under controlled conditions in the presence or absence of symbiotic N2 fixation. The large genotypic variation observed for the lipoxygenase contents was enhanced by high N2 fixation. The variation range of lipoxygenase contents, which was obtained through the combination of the genotypic variation and the N2 fixation activity, was relatively large with a ratio of 2 on a seed dry–weight basis and a ratio of 2.6 when the total proteins were considered. Decreased lipoxygenase content and increased total protein content can thus be considered in parallel in a genetic context, together with more efficient N2 fixation.  相似文献   

14.
田间开放式增温对东北水稻氮素利用的影响   总被引:1,自引:0,他引:1  
东北地区是全球气候变暖趋势最为显著的地区之一,研究预期增温对东北水稻氮素吸收利用的影响,可为区域水稻可持续生产与氮肥优化管理提供借鉴。本研究于2019—2020年在黑龙江省哈尔滨市设置田间开放式增温(free air temperature increase,FATI)系统,大田与盆栽试验相结合,采用15N同位素示踪技术,模拟预期增温(+1.5℃)对水稻产量、氮素利用以及氮肥去向的影响。结果表明,增温促进了水稻地上部干物质积累,与对照相比,大田与盆栽的水稻产量2年平均分别提高10.4%和10.8%;增温显著提高了水稻氮素吸收总量,与对照相比,2年平均增幅达21.3%,但增温处理的氮素籽粒利用效率呈降低趋势;增温处理下水稻从肥料中吸收的氮素显著下降,但从土壤中吸收的氮素显著增加31.1%,导致氮肥回收率降低12.5%,而氮肥损失率增加14.2%。总体来看,增温有增加水稻籽粒产量的趋势,但降低了水稻对肥料氮的吸收比例,导致氮素利用效率降低,氮肥损失率显著增加。在气候变暖背景下,建议合理增加水稻移栽密度,以充分利用温度升高对水稻产量的正向效应,适当减少氮肥施用量、优化氮肥运筹管理,提高水稻氮...  相似文献   

15.
灌浆温度和氮肥及其互作效应对稻米贮藏蛋白组分的影响   总被引:1,自引:0,他引:1  
灌浆结实期温度与氮肥施用量是影响稻米品质的两个重要生态因子,尤其是与稻米蛋白含量及米饭食味关系密切。本文以多个水稻主栽品种为材料,通迆灌浆结实期的人工控温试验、大田长期定位点的施氮处理试验和盆栽条件下的温氮两因素复合处理试验,探讨了水稻灌浆结实期温度对稻米贮藏蛋白含量与组分影响及其有别于氮肥处理效应的差异觃律,幵分析了温度与氮肥两个因素对稻米贮藏蛋白及其组分影响的交互作用特点。结果表明,高温胁迫和增施氮肥均引起水稻籽粒总蛋白及其谷蛋白组分含量(%)的显著增加,但两者对稻米醇溶蛋白影响却存在明显差别。其中,高温处理引起醇溶蛋白含量显著下降,提高稻米谷蛋白/醇溶蛋白比值,而增施氮肥引起稻米谷蛋白和醇溶蛋白含量明显增加,但对谷蛋白/醇溶蛋白比值与贮藏蛋白各亚基的组成比例影响相对较小。在高温处理下,谷蛋白的57kD前体亚基组分含量有所提高,而37kD酸性亚基和22kD碱性亚基随温度处理的差异变化却因品种而异,且高温处理对水稻籽粒蛋白绝对含量(mg grain–1)的影响程度也进没有其对蛋白相对含量(%)的影响明显。高氮×高温处理组合对稻米总蛋白与谷蛋白含量的影响程度显著大...  相似文献   

16.
H. B. Li    Q. Zhang    A. M. Liu    J. S. Zou  Z. M. Chen 《Plant Breeding》1996,115(5):305-309
Low-temperature-sensitive sterility has become one of the major obstacles in indica–japonica hybrid rice breeding. The objectives of this paper were to evaluate the extent of the fertility reduction and to determine the genetic basis of low-temperature-sensitive sterility. Seventeen varieties were crossed in various ways to produce 21 F1s including 16 indica-japonica hybrids. Fertility of the F1s and their parents was examined under both high and low temperature conditions. Considerable reduction in spikelet fertility was observed under low-temperature conditions in the majority of the indica–japonica hybrids having at least one wide compatibility parent. However, the extent of fertility reduction varied greatly, depending on the parental genotypes. Data from five pairs of reciprocal crosses indicated that the cytoplasm had no effect on fertility reduction. The more-or-less bimodal distribution of the fertility segregation of one BC1F1 and two F2: populations under low-temperature conditions suggested that the low-temperature-sensitive sterility was controlled by only one or a few genes. It was also shown that the low-temperature-sensitivity is not related to wide compatibility. We conclude that it is possible to develop indica-japonica hybrids with wide compatibility and also insensitivity to the low-temperature conditions.  相似文献   

17.
Deepwater rice possesses internode elongation ability to avoid drowning under deepwater conditions. Previous studies identified three QTLs regulating internode elongation ability on chromosomes 1, 3 and 12 using different populations. However, these QTLs only induce internode elongation in response to deepwater conditions from the 7-leaf stage and not during the early leaf stage. In this study, we detected two novel QTLs, qTIL2 and qTIL4 regulating deepwater response at the early leaf stage using an F2 population derived from the cross between NIL1-3-12 carrying the three QTLs regulating deepwater response in T65 (O. sativa ssp. japonica) genetic background and C9285 (O. sativa ssp. indica, deepwater rice). Plants of the BC2F2 population derived from NIL1-3-12/C9285 and the RILs of T65/Bhadua (O. sativa ssp. indica, deepwater rice) possessing these QTLs as well as the three QTLs previously identified also showed internode elongation during the early leaf stage. These results indicate that qTIL2 and qTIL4 regulate early internode elongation and function in coordination with the three major QTLs under deepwater conditions. The results presented here would not only help define the mechanism of deepwater response in rice but also contribute in the breeding of deepwater tolerant rice that is adapted to various water depths.  相似文献   

18.
C. G. Lu    J. S. Zou  H. Ikehashi 《Plant Breeding》2004,123(1):98-100
To improve the width of compatibility for overcoming various sterilities in inter‐subspecific hybrid rice, some elite lines combining several sterility‐neutral genes were developed and the effects on mitigating various hybrid sterilities were tested. From Akihikari// IR36/Dular, neutral genes at ga11 and six sterility loci, S5, S7, S8, S9, S15 and S16, were combined and elite lines were obtained in their successive progeny. Four of the lines tested were confirmed to combine the neutral alleles S5‐n, S7‐n, S8‐n, S9‐n, S15‐n and S16‐n at the sterility loci and, among them, two harboured an additional gamete abortion‐neutral allele, ga11‐n. F1s, which used the lines and various testers as parents, mitigated the spikelet sterilities by six sterility loci and gamete abortion by a gametophyte gene, ga11. These lines could be selectively used as parents or donors to increase the width of compatibility of rice varieties for improving fertility in inter‐subspecific hybrid rice breeding.  相似文献   

19.
Panicle enclosure is a typical phenotype of almost all male-sterile rice lines. An elongated uppermost internode (eui) mutant exhibited notably rapid elongation of the uppermost internode at the heading stage; this is considered as a potential mechanism to eliminate panicle enclosure. We developed thermo-sensitive genic male-sterile (TGMS) eui mutants that were characterized by notably elongated uppermost internodes. The elongation of the uppermost internode in the TGMS eui mutant Changxuan 3S (CX) is mainly attributed to an increase in cell number and cell elongation, the latter being the more significant process. Temperature treatments revealed that the effects of temperature on panicle exsertion were similar to those on fertility and that the most temperature-sensitive stage coincides with the period from the formation of the pollen mother cell to meiosis during panicle initiation. These results indicate that elongation increases as temperature decreases and that the expression of the eui gene is more efficient at low temperatures than at high temperatures. In hybrid rice seed production using the TGMS eui mutant, the temperature range should be optimized at 24–28°C in order to preserve the development of completely male-sterile pollen and to eliminate panicle enclosure. Consequently, by using TGMS eui rice lines, gibberellin application can be avoided, thereby reducing the cost of hybrid seed production. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Summary Inheritance of time-to-flowering, plant height, tiller number, spikelet number and flag leaf area was studied under day lengths of 10 and 14 hours in a diallel cross of six rice varieties. Early flowering was dominant to late in both environments but the varieties flowering early in one environment were late flowering in the other. Analysis of F1 and F2 data from the cross of Heenati-310 x IR-8 suggested a digenic control of early flowering in short days with complementary interaction. It is considered that while relatively few genes control time-to-flowering in rice a previous proposal that separate genes for time-to-flowering and photoperiod sensitivity exist is unnecessary on present evidence. Whereas culm length, tiller number and flag leaf area were increased by longer days, the number of spikelets per panicle was reduced. The length of the panicle was little affected by changing environment, and throughout certain characters and varieties, such as tiller number in I-geo-tze, were more stable than others. Varietal crosses of Heenati-310 x IR-8 and Tainan x MI-273(m) appeared to give high yield potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号