首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereford x Angus cows (n = 36; initial wt 568+/-59 kg) were used to evaluate the effects of undegradable intake protein (UIP) supplementation on plasma hormone and metabolite concentrations. Treatments were control (unsupplemented) or one of three protein supplements. Supplements were fed at 1.3 kg DM/d and included UIP at low, medium, or high levels (53, 223, or 412 g UIP/kg supplement DM, respectively). Supplements were formulated to be isocaloric (1.77 Mcal NEm/kg) and to contain equal amounts of degradable intake protein (DIP; 211 g DIP/kg supplement DM). Prairie hay (5.8% CP) was offered for ad libitum consumption. Jugular blood samples were collected daily from each cow during six 7-d collection periods (corresponding to mo 7, 8, and 9 of gestation and to mo 1, 2, and 3 of lactation). Plasma glucose concentrations were similar between control and supplemented cows during mo 2 and 3 of lactation; however, the low UIP treatment group had consistently higher plasma glucose (P< or =.02) than cows fed medium or high UIP supplements during gestation and the last month of lactation. During gestation, cows fed the high UIP supplement had higher (P< or =.08) plasma glucose than cows fed the medium UIP supplement. During gestation, plasma insulin concentration was increased (P = .01) by supplementation; insulin also increased (P<.01; mo 8 and 9) as supplemental UIP increased. During lactation, plasma insulin was greater (P = .01) in supplemented than in control cows. During mo 2 and 3 of lactation, insulin was lower (P< or =.04) in cows fed low UIP supplement compared with cows fed medium or high UIP supplements. Growth hormone concentration was higher (P< or =.03) in control cows than in supplemented cows in all periods measured except mo 7 of gestation. Plasma nonesterified fatty acid concentrations were higher (P< or =.03) in control cows than in supplemented cows in all periods measured except the 1st mo of lactation. These data are interpreted to suggest that protein supplementation and level of UIP can alter plasma concentrations of hormones and metabolites in gestating and lactating beef cows consuming low-quality hay.  相似文献   

2.
Two experiments were conducted to determine the effects of supplementing ruminally degradable intake protein (DIP) or ruminally undegradable intake protein (UIP) on N balance (Exp. 1; n = 6 wethers; initial BW = 48.7 +/- 4.6 kg) and site and extent of digestion (Exp. 2; n = 5 wethers; initial BW = 36.9 +/- 3.1 kg) in whiteface wethers consuming (as-fed basis) 69% blue grama and 31% love grass hay (mixture = 7.5% CP, 73.0% NDF, 36.0% ADF [DM basis]). Treatments were 1) no supplement (Control), 2) a supplement (219 g/d, as-fed basis) low in UIP (70 g/d of CP; 24.8 g/d of UIP), and 3) a supplement (219 g/d, as-fed basis) high in UIP (70 g/d of CP; 37.1 g/d of UIP). Both experiments were replicated 3 x 3 Latin square designs, with identical feeding and supplementation. Wethers had ad libitum access to the forage mixture and fresh water, and received supplement once daily. In Exp.1, forage intake (percentage of BW) was greatest (P = 0.04) for control, but total DMI (g/d) was greatest (P = 0.05) for lambs consuming supplement. Apparent total-tract OM digestibility was numerically greater (P = 0.11) for supplemented wethers than for controls, whereas total-tract ADF digestibility tended (P = 0.08) to be greater for control wethers. Lambs fed supplements consumed and retained more (P < or = 0.01) N (% of N intake) compared with controls, but no difference (P = 0.22) was observed between low and high UIP treatments. Similar to Exp. 1, forage intake (percentage of BW) tended (P = 0.06) to be greater for control than for supplemented wethers in Exp. 2. Ruminal NDF digestibility was 16.3% greater (P = 0.02) for supplemented wethers than for controls. Postruminal NDF and N digestibilities were greatest (P < or = 0.03) for controls, but apparent OM digestibility did not differ among treatments at all sites. Duodenal N flow was greatest (P = 0.05) for high UIP and least for control wethers. Nonmicrobial N flow was greater (P = 0.02) for high UIP compared with low UIP or controls. Control wethers had greater (P = 0.05) microbial efficiency. Ruminal ammonia concentration tended (P = 0.08) to be greatest for wethers fed low UIP and least for controls, with high-UIP wethers having intermediate ammonia concentrations. Results from these experiments suggest that in lambs fed low-quality forage there was no difference in apparent total-tract digestion or N balance (percentage of N intake) between lambs fed supplements that had the same CP but differed in the proportion of UIP and DIP; however, supplementing protein (regardless of UIP:DIP ratio) to wethers consuming low-quality forage increased N balance.  相似文献   

3.
Brangus cows (n = 29) were used in three experiments to evaluate the effects of parity (multiparous vs. primiparous) and potential genetic merit for milk production (high vs. low) on forage intake during late gestation, early lactation, and late lactation. Cows were selected for milk production based on their sire's EPD for milk production (MEPD). Cows had ad libitum access to (130% of previous 2-d average intake) low-quality hay (5.3% CP and 76% NDF), and cottonseed meal was supplemented to ensure adequate degradable intake protein. All females were adapted to diets for at least 7 d, and individual intake data were collected for 9 d. During the lactation trials, actual milk production was determined using a portable milking machine following a 12-h separation from calves. During late gestation, multiparous cows consumed 24% more (P = 0.01) forage DM (kg/d) than primiparous cows; however, parity class did not influence forage intake when intake was expressed relative to BW. Furthermore, MEPD did not influence forage intake during late gestation. During early lactation, multiparous cows produced 66% more (P < 0.001) milk than primiparous cows, and high MEPD tended (P = 0.10) to produce more milk than low MEPD. Multiparous cows consumed 19% more (P < 0.0001) forage DM than did primiparous cows when expressed on an absolute basis, but not when expressed on a BW basis. High-MEPD cows consumed 8% more (P < 0.05) forage DM than did low-MEPD cows. During late lactation, multiparous cows produced 84% more milk than primiparous cows, although MEPD did not influence (P = 0.40) milk yield. In addition, multiparous cows consumed 17% more (P < 0.01) forage DM per day than primiparous cows, but when intake was expressed relative to BW, neither parity nor MEPD influenced forage DMI during late lactation. Milk yield and BW explained significant proportions of the variation in forage DMI during early and late lactation. Each kilogram increase in milk yield was associated with a 0.33- and 0.37-kg increase in forage DMI for early and late lactation, respectively. Results suggest that multiand primiparous cows consume similar amounts of low-quality forage DM, expressed per unit of BW, during late gestation and lactation. Selecting beef cows for increased genetic merit for milk production increases forage DMI during early lactation.  相似文献   

4.
Seventy-two (36 in each of two consecutive years) lactating, British-crossbred cows (609 +/- 19 kg) were used to evaluate effects of feeding a feather meal-blood meal combination on performance by beef cows fed grass hay. Bromegrass hay (9.6% CP, DM basis) was offered ad libitum and intake was measured daily in individual Calan electronic headgates. Acclimation to Calan gates began approximately 20 d after parturition, and treatments were initiated 21 d later. Cows were assigned randomly to one of four treatments (DM basis) for 60 d: 1) nonsupplemented control (CON), 2) energy control (ENG; 790 g/d; 100% beet pulp), 3) degradable intake protein (DIP; 870 g/d; 22% beet pulp and 78% sunflower meal), or 4) undegradable intake protein (UIP; 800 g/d; 62.5% sunflower meal, 30% hydrolyzed feather meal, and 7.5% blood meal). Net energy concentrations of supplements were formulated to provide similar NE(m) intakes (1.36 Mcal/d). The DIP and UIP supplements were calculated to supply similar amounts of DIP (168 g/d) and to supply 64 and 224 g/d of UIP, respectively. Forage DMI (kg/d) decreased in supplemented vs. nonsupplemented (P = 0.03) and DIP vs. UIP (P = 0.001); however, when expressed as a percentage of BW, forage DMI was not different (P = 0.23). Supplemented cows tended (P = 0.17) to lose less BW than CON. Body condition change was not affected (P = 0.60) by postpartum supplementation. No differences were noted in milk production (P = 0.29) or in calf gain during the supplementation period (P = 0.74). Circulating insulin concentrations were not affected by treatment (P = 0.42). In addition, supplementation did not affect circulating concentrations of NEFA (P = 0.18) or plasma urea nitrogen (P = 0.38). Results of the current study indicate that supplementation had little effect on BW, BCS, milk production, or calf BW when a moderate-quality forage (9.6% CP) was fed to postpartum, winter-calving cows in optimal body condition (BCS > 5). Supplemental UIP did not enhance cow performance during lactation. Forage UIP and microbial protein supply were adequate to meet the metabolizable protein requirements of lactating beef cows under the conditions of this study.  相似文献   

5.
Two experiments were conducted to determine the effects of whole soybean supplementation on intake, digestion, and performance of beef cows of varying age. Treatments were arranged in a 2 x 3 factorial with 2 supplements and 3 age classes of cows (2-yr-old, 3-yr-old, and mature cows). Supplements (DM basis) included 1) 1.36 kg/d of whole raw soybeans, and 2) 1.56 kg/d of a soybean meal/hulls supplement. Supplements were formulated to provide similar amounts of protein and energy, but a greater fat content with the whole soybeans. Supplements were individually fed on Monday, Tuesday, Thursday, and Saturday mornings. During the treatment period, cows had free choice access to bermudagrass hay [Cynodon dactylon (L.) Pers.; 8.4% CP; 72% NDF; DM basis]. In Exp. 1, 166 spring-calving Angus and Angus x Hereford crossbred beef cows were individually fed supplements for an average of 80 d during mid to late gestation. During the first 50 d of supplementation, cows fed soybean meal/hulls gained more BW (10 kg; P < 0.001) and body condition (0.18 BCS units; P = 0.004) than cows fed whole soybeans. However, BW change (P = 0.87) and BCS change (P = 0.25) during the 296-d experiment were not different between supplements. Although calves from cows fed soybean meal/hulls were 2 kg heavier at birth, there was no difference in calf BW at weaning between supplements. Additionally, first service conception rate (68%; P = 0.24) and pregnancy rate (73%; P = 0.21) were not different between supplements. In Exp. 2, 24 cows from Exp. 1 were used to determine the effect of supplement composition on forage intake and digestion; cows remained on the same supplements, hay, and feeding schedule as Exp. 1. Crude fat digestibility was the only intake or digestibility measurement influenced by supplement composition; fat digestibility was higher for cows fed whole soybeans compared with cows fed the soybean meal/hulls supplement (58.1 vs. 48.8%). Hay intake and DMI averaged 1.63 and 1.92% of BW daily, respectively. Dry matter, NDF, and CP digestibility averaged 54.1, 55.1, and 63.2%, respectively. Compared with supplementation with soybean meal/ hulls, whole soybean supplementation during mid to late gestation resulted in reduced BW weight gain during supplementation, inconsistent effects on reproduction, no effect on calf weaning weight, and no effect on forage intake or digestion.  相似文献   

6.
A digestion study with 28 yearling heifers (428 +/- 9.9 kg; Exp. 1) and a 2-yr winter grazing trial with 60 crossbred cows (552 +/- 6.9 kg; Exp. 2) were used to determine the effects of level of nonstructural carbohydrate (NSC) supplementation on intake and digestibility of low-quality forage. Treatments were as follows: 1) control, no supplement; 2) 0.32 kg of NSC (1.8 kg/d of soybean hulls and soybean meal; DM basis); 3) 0.64 kg of NSC (1.7 kg/d of wheat middlings; DM basis); and 4) 0.96 kg of NSC (1.7 kg/d of barley and soybean meal; DM basis). Supplements provided 0.34 kg of CP/d and 5.1 Mcal of ME/d. In Exp. 1, heifers were individually fed hay (5.5% CP, DM basis) and their respective supplements in Calan gates for 28 d. Data were analyzed as a completely randomized design. In Exp. 2, cows were individually fed supplement on alternate days, and grazed a single rangeland pasture stocked at 1.8 ha/ animal unit month. Two ruminally cannulated cows were used per treatment to obtain forage extrusa and to measure in situ DM disappearance (DMD) and carboxymethylcellulase (CMCase) activity of particle-associated ruminal microbes. Data were analyzed as a completely randomized design with the effects of treatment, year, and their interaction. In both experiments, Cr2O3 boluses were used to determine fecal output, individual animal was the experimental unit, and contrasts were used to test linear and quadratic effects of NSC level and control vs. supplemented treatments. In Exp. 1, hay and diet DM, NDF, and CP intakes and digestibilities were increased (P < 0.01) by NSC supplementation compared with the control. In Exp. 2, 72-h in situ DMD and CMCase were decreased linearly (P < 0.08) with increasing NSC supplementation. Intake of forage DM, NDF, and CP was decreased linearly (P < 0.01) with increasing NSC supplementation during both years. Supplementation with NSC decreased (P = 0.01) cow BW loss compared with the control in yr 1, whereas in yr 2, cow BW loss was linearly increased (P = 0.03) by increasing NSC supplementation. Supplements containing NSC improved forage digestion and intake when heifers consumed forage deficient in CP relative to energy (digestible OM:CP > 7), but decreased forage digestion and intake when cows grazed forage with adequate CP relative to energy (digestible OM:CP < 7). Forage and supplement digestible OM:CP seemed to be superior predictors of response to supplementation with NSC compared with forage CP levels alone.  相似文献   

7.
Experiments were conducted to determine the effects of increasing supplement protein concentration on performance and forage intake of beef cows and forage utilization of steers consuming stockpiled bermudagrass forage. Bermudagrass pastures were fertilized with 56 kg of N/ha in late August. Grazing was initiated during early November and continued through the end of January each year. Treatments for the cow performance trials were: no supplement or daily equivalents of 0.2, 0.4, and 0.6 g of supplemental protein per kilogram of BW. Supplements were formulated to be isocaloric, fed at the equivalent of 0.91 kg/d, and prorated for 4 d/wk feeding. Varying the concentration of soybean hulls and soybean meal in the supplements created incremental increases in protein. During yr 1, supplemented cows lost less weight and condition compared to unsupplemented animals (P < 0.05). During yr 2, supplemented cows gained more weight (P = 0.06) and lost less condition (P < 0.05) compared to unsupplemented cows. Increasing supplement protein concentration had no affect on cumulative cow weight change or cumulative body condition score change. Forage intake tended to increase (P = 0.13, yr 1 and P = 0.07, yr 2) in supplemented cows. Supplement protein concentration did not alter forage intake. In a digestion trial, four crossbred steers were used in a Latin square design to determine the effects of supplement protein concentration on intake and digestibility of hay harvested from stockpiled bermudagrass pasture. Treatments were no supplement; or 0.23, 0.46, and 0.69 g of supplemental protein per kilogram of BW. Forage intake increased (P < 0.05) 16% and OM intake increased (P < 0.01) 30% in supplemented compared to unsupplemented steers. Diet OM digestibility increased (P = 0.08) 14.5% and total digestible OM intake increased (P < 0.05) 49% in supplemented compared to unsupplemented steers. Supplement protein concentration did not alter forage intake, total digestible OM intake, or apparent digestibility of OM or NDF. During the initial 30 d after first killing frost, beef cows did not respond to supplementation. However, later in the winter, supplementation improved utilization of stockpiled bermudagrass forage.  相似文献   

8.
Effect of supplementation frequency and supplemental urea level on forage use (Exp. 1) and performance (Exp. 2 and 3) of beef cattle consuming low-quality tallgrass-prairie were evaluated. For Exp. 1 and 2, a 2 x 2 factorial treatment structure was used, such that two supplements (30% CP) containing 0 or 30% of supplemental degradable intake protein (DIP) from urea were fed daily or on alternate days. In Exp. 1 and 2, supplement was fed at 0.41% BW daily or at 0.83% BW (DM basis) on alternate days. For Exp. 3, a 2 x 4 factorial treatment structure was used, such that four supplements (40% CP) containing 0, 15, 30, or 45% of supplemental DIP from urea were fed daily or 3 d/wk. Supplements were group-fed at 0.32% BW daily or at 0.73% BW (DM basis) 3 d/wk. In Exp. 1, 16 Angus x Hereford steers (initial BW = 252 kg) were blocked by BW and assigned to treatment. Urea level x supplementation frequency interactions were not evident for forage intake, digestion, or rate of passage. Forage OM intake (OMI) and total digestible OMI (TDOMI) were not significantly affected by treatment. Total-tract digestion of OM (P = 0.03) and NDF (P = 0.06) were greater for steers supplemented daily. In Exp. 2, 48 Angus x Hereford cows (initial BW = 490 kg) grazing winter tallgrass prairie were used. Significant frequency x urea interactions were not evident for BW and body condition (BC) change; similarly, the main effects were not substantive for these variables. In Exp. 3, 160 Angus x Hereford cows (initial BW = 525 kg) grazing dormant, tallgrass prairie were used. Supplement refusal occurred for cows fed the highest urea levels, particularly for cows fed the supplement with 45% of the DIP from urea 3 d/wk, and supplement refusal increased closer to calving. A frequency x urea interaction (P = 0.02) was observed for prepartum BW changes. As supplemental urea level increased, prepartum BW loss increased quadratically (P = 0.02); however, a greater magnitude of loss occurred when feeding supplements containing > or = 30% of DIP from urea 3 d/ wk. Cumulative BC change followed a similar trend. In conclusion, moderate protein (< or = 30% CP) supplements with < or = 30% of supplemental DIP from urea can be fed on alternate days without a substantive performance penalty. However, infrequent feeding of higher protein (> 30% CP) supplements with significant urea levels (> 15% of DIP from urea) may result in decreased performance compared with lower urea levels.  相似文献   

9.
Seven cannulated (rumen and duodenal) Angus x Hereford steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on DMI and nutrient digestion. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Forage DMI was not affected by treatment. Total DM and N intake, duodenal N flow, and intestinal N disappearance increased (P < 0.01) with supplementation. Dry matter intake and duodenal N flow responded quadratically (P < 0.04; greatest values on the every-third-day treatments) as SF decreased. However, no differences in N intake or intestinal N disappearance were observed because of CP degradability or SF. Duodenal bacterial N flow and true bacterial N synthesis (g bacterial N/kg of OM truly digested in the rumen) were increased (P < 0.05) with supplementation. Also, duodenal bacterial N flow was greater (P < 0.05) for DIP compared with UIP. Duodenal nonbacterial N flow was increased (P = 0.02) with CP supplementation and for UIP compared with DIP (P < 0.01). Supplemental CP increased (P < 0.01) total tract DM and N digestibility with no difference due to CP degradability or SF. Results suggest CP supplements consisting of 20 to 60% UIP can be effectively used by steers consuming low-quality forage without adversely affecting DMI, nutrient digestibility, or bacterial CP synthesis, even when provided as infrequently as once every 6 d.  相似文献   

10.
Three experiments were conducted to evaluate supplementation of dried distillers grains with solubles (DGS) to spring-calving beef cows (n = 120; 541 kg of initial BW; 5.1 initial BCS) consuming low-quality forage during late gestation and early lactation. Supplemental treatments included (DM basis) 1) 0.77 kg/d DGS (DGSL); 2) 1.54 kg/d DGS (DGSI); 3) 2.31 kg/d DGS (DGSH); 4) 1.54 kg/d of a blend of 49% wheat middlings and 51% cottonseed meal (POS); and 5) 0.23 kg/d of a cottonseed hull-based pellet (NEG). Feeding rate and CP intake were similar for DGSI and POS. In Exp. 1, cows were individually fed 3 d/wk until calving and 4 d/wk during lactation; total supplementation period was 119 d, encompassing 106 d of gestation and 13 d of lactation. Tall-grass prairie hay (5.6% CP, 50% TDN, 73% NDF; DM basis) was fed for ad libitum intake throughout the supplementation period. Change in cow BW and BCS during gestation was similar for DGSI and POS (-5.0 kg, P = 0.61 and -0.13, P = 0.25, respectively) and linearly increased with increasing DGS level (P < 0.01). Likewise, during the 119-d supplementation period, BW and BCS change were similar for DGSI and POS (-72 kg, P = 0.22 and -0.60, P = 0.10) and increased linearly with respect to increasing DGS (P < 0.01). The percentage of cows exhibiting luteal activity at the beginning of breeding season (56%, P = 0.31), AI conception rate (57%, P = 0.62), or pregnancy rate at weaning (88%, P = 0.74) were not influenced by supplementation. In Exp. 2, 30 cows from a separate herd were used to evaluate the effect of DGS on hay intake and digestion. Supplementation improved all digestibility measures compared with NEG. Hay intake was not influenced by DGS (P > 0.10); digestibility of NDF, ADF, CP, and fat linearly increased with increasing DGS. In Exp. 3, milk production and composition were determined for cows (n = 16/treatment) of similar days postpartum from Exp. 1. Daily milk production was not influenced by supplementation (6.3 kg/d, P = 0.25). Milk fat (2.1%) and lactose (5.0%) were not different (P > 0.10). Milk protein linearly increased as DGS increased (P < 0.05) and was greater for DGSI compared with POS. Similar cow performance was achieved when cows were fed DGS at the same rate and level of CP as a traditional cottonseed meal-based supplement. Increasing amounts of DGS did not negatively influence forage intake or diet digestibility.  相似文献   

11.
Two experiments were conducted to determine the effects of sunflower seed supplements with varying fatty acid profiles on performance, reproduction, intake, and digestion in beef cattle. In Exp. 1, 127 multiparous spring-calving beef cows with free-choice access to bermudagrass hay were individually fed 1 of 3 supplements for an average of 83 d during mid to late gestation. Supplements (DM basis) included 1) 1.23 kg/d of a soybean hull-based supplement (control treatment); 2) 0.68 kg/d of linoleic sunflower seed plus 0.23 kg/d of the control supplement (linoleic treatment); and 3) 0.64 kg/d of mid-oleic sunflower seed plus 0.23 kg/d of the control supplement (oleic treatment). During the first 62 d of supplementation, the BW change was 11, 3, and -3 kg for cows fed the control, linoleic, and oleic supplements, respectively (P < 0.001). No difference in BW change was observed during the subsequent period (-65 kg, P = 0.83) or during the entire 303-d experiment (-31 kg, P = 0.49). During the first 62 d of supplementation, cows fed sunflower supplements tended (P = 0.08) to lose more body condition than cows fed the control diet, but BCS was not different (P > 0.22) for any subsequent measurement. At the beginning of the breeding season, the percentage of cows exhibiting luteal activity was greater for cows fed the control diet (43%; P = 0.02) than for cows fed either linoleic (20%) or oleic (16%) supplementation; however, first-service conception rate (67%; P = 0.22) and pregnancy rate at weaning (92%; P = 0.18) were not different among supplements. No differences were detected in calf birth (P = 0.46) or weaning BW (P = 0.74). In Exp. 2, 8 ruminally cannulated steers were used to determine the effects of sunflower seed supplementation on forage intake and digestion. Treatments (DM basis) included 1) no supplement; 2) a soybean hull-based supplement fed at 0.29% of BW/d; 3) whole linoleic sunflower seed fed at 0.16% of BW/d; and 4) whole high-oleic sunflower seed fed at 0.16% of BW/d. Hay intake was not influenced (P = 0.25) by supplement (1.51% of BW/d); however, DMI was greatest (P < 0.01) for steers fed the soybean hull-based supplement (1.93% of BW/d). Sunflower seed supplementation reduced (P < 0.01) NDF and ADF digestibility while increasing (P < 0.01) apparent CP and apparent lipid digestibility. In conclusion, whole sunflower seed supplementation resulted in reduced cow BW gain during mid to late gestation, but this reduction did not influence subsequent cow BW change, pregnancy rate, or calf performance.  相似文献   

12.
Effects of supplemental degradable (DIP) and undegradable (UIP) intake protein on forage intake, BW change, body condition score (BCS), postpartum interval to first estrus, conception rate, milk production and composition, serum metabolites and metabolic hormones, and calf gain were determined using 36 primiparous Gelbvieh x Angus rotationally crossed beef cows. On d 3 postpartum, cows (average initial BW = 495 +/- 10 kg and BCS = 5.5 +/- 0.1) were randomly assigned to one of three dietary supplements (12 cows/treatment). Date of parturition was evenly distributed across treatment (average span of calving date among treatments = 2.4 +/- 2.5 d). Individually fed (d 3 through 120 postpartum) dietary supplements were 0.82 kg of corn and 0.23 kg of soybean meal per day (DIP), the DIP + 0.12 kg of blood meal and 0.13 kg of corn gluten meal per day (DIP + UIP), and 0.82 kg of corn, 0.07 kg of blood meal, and 0.08 kg of corn gluten meal per day in an isonitrogenous replacement of soybean meal (UIP IsoN). Cows had ad libitum access to native grass hay (8.5% CP) and trace-mineralized salt. Total OM intake was greater (P = 0.06) for DIP + UIP than UIP IsoN cows. At 30 d postpartum, DIP + UIP cows produced more milk than UIP IsoN, with DIP being intermediate; however, at 60 d postpartum, DIP + UIP and DIP cows were not different, but both had greater milk production than UIP IsoN (treatment x day interaction; P = 0.08). A treatment x day interaction (P = 0.06) for BCS resulted from DIP + UIP cows having the greatest BCS at 60, 90, and 120 d d postpartum and DIP having greater BCS than UIP IsoN cows only on d 60 postpartum. Serum insulin concentrations were highest (treatment x day interaction; P = 0.09) for DIP + UIP cows at 30 d postpartum but did not differ among treatment thereafter. Serum insulin-like growth factor-binding protein (IGFBP)-2 (34 kDa) and -3 (40 and 44 kDa) were greatest (P < 0.0003) for DIP cows. Serum urea-N concentrations were greater (P < 0.01) in DIP + UIP cows than in either DIP or UIP IsoN cows. However, postpartum interval to first estrus, conception rate, and calf weaning weights were unaffected (P = 0.35, 0.42, and 0.64, respectively) by treatment. Although UIP in addition to or in replacement of DIP affected milk production and blood metabolites, the productivity of these primiparous beef cows was not altered. Thus, the type of supplemental protein does not seem to influence productivity of primiparous beef cows in production systems with conditions similar to our experimental conditions.  相似文献   

13.
Six ruminally fistulated steers (550 kg) and 24 heifers (315 kg) were used to determine the effect of source and amount of ruminal-escape lipid in a supplement on forage intake and digestion. Steers were used in a 6 x 6 Latin square digestion study to evaluate six supplementation treatments: 1) negative control (NC), no supplement; 2) positive control (PC), soybean meal:grain sorghum supplement; 3) low-Megalac (calcium salts of fatty acids; LM) supplement; 4) high-Megalac (HM) supplement; 5) low-Alifet (crystallized natural animal fat, LA) supplement; and 6) high-Alifet (HA) supplement. Supplements were fed at .30% of BW on a DM basis and were isoenergetic within fat levels (high vs low). Steers were fed mature brome hay (7.2% CP) at 1.5% of BW on a DM basis. In the forage intake trial, heifers were assigned randomly to the same supplement treatments. Prairie hay (4.4% CP) was offered at 130% of ad libitum intake. Dry matter and NDF digestibility, ruminal DM fill, indigestible ADF passage rate, and fluid dilution and flow rates were not different (P greater than .10) among treatments. Total VFA concentrations were greater (P less than .01) and acetate-to-propionate ratio (Ac:Pr) was less (P less than .01) in supplemented groups; however, neither source nor level of escape lipid influenced either total VFA or Ac:Pr. Forage intake was greater (P less than .01) for supplemented groups than for the NC. At the high level of fat inclusion, heifers supplemented with Alifet ate slightly more (P less than .05) forage than those supplemented with Megalac.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Four experiments were conducted to evaluate the influence of changing the proportion of supplemental degradable intake protein (DIP) from urea on forage intake, digestion, and performance by beef cattle consuming either low-quality, tallgrass prairie forage (Exp. 1, 2, and 4) or forage sorghum hay (Exp. 3). Experiments 1, 2, and 3 were intended to have four levels of supplemental DIP from urea: 0, 20, 40, and 60%. However, refusal to consume the 60% supplement by cows grazing tallgrass prairie resulted in elimination of this treatment from Exp. 1 and 2. Levels of supplemental DIP from urea in Exp. 4 were 0, 15, 30, and 45%. Supplements contained approximately 30% CP, provided sufficient DIP to maximize digestible OM intake (DOMI) of low-quality forage diets, and were fed to cows during the prepartum period. In Exp. 1, 12 Angus x Hereford steers (average initial BW = 379) were assigned to the 0, 20, and 40% treatments. Forage OM intake, DOMI, OM, and NDF digestion were not affected by urea level. In Exp. 2, 90 pregnant, Angus x Hereford cows (average initial BW = 504 kg and body condition [BC] = 5.0) were assigned to the 0, 20, and 40% treatments. Treatment had little effect on cow BW and BC changes and calf birth weight, ADG, or weaning weight. However, pregnancy rate tended to be lowest (P = 0.13) for the greatest level of urea. In Exp. 3, 120 pregnant, crossbred beef cows (average initial BW = 498 kg and BC = 4.6) were assigned to the 0, 20, 40, and 60% treatments. Prepartum BC change tended (P = 0.08) to be quadratic (least increase for 60% treatment), although BW change was not statistically significant. Treatment effect on calf birth weight was inconsistent (cubic; P = 0.03), but calf ADG and weaning weight were not affected by treatment. Pregnancy rate was not affected by prepartum treatment. In Exp. 4, 132 pregnant, Angus x Hereford cows (average initial BW = 533 and BC = 5.3) were assigned to the 0, 15, 30, and 45% treatments. Prepartum BC loss was greatest (quadratic; P = 0.04) for the high-urea (45%) treatment, although BW loss during this period declined linearly (P < 0.01). Prepartum treatment did not affect pregnancy rate, calf birth weight, or ADG. In conclusion, when sufficient DIP was offered to prepartum cows to maximize low-quality forage DOMI, urea could replace between 20 and 40% of the DIP in a high-protein (30%) supplement without significantly altering supplement palatability or cow and calf performance.  相似文献   

15.
Seven ruminally and duodenally cannulated steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on ruminal fermentation characteristics. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Ruminal NH3-N was increased on the day all supplements were provided with supplemental CP (P = 0.04) and for DIP compared with UIP (P < 0.01). Also, because ruminal NH3-N increased at a greater rate with DIP compared with UIP as SF decreased, a linear effect of SF x CP degradability interaction (P = 0.02) was observed. In addition, NH3-N was greater on the day only daily supplements were provided for supplemented treatments (P = 0.04), and decreased linearly (P < 0.01) as SF decreased. Concentration of total VFA increased linearly (P = 0.02) as SF decreased on the day all supplements were provided, whereas on the day only daily supplements were provided, total VFA were greater for UIP compared with DIP (P = 0.01), and decreased linearly (P < 0.01) as SF decreased. An interaction concerning the linear effect of SF and CP degradability (P = 0.02) was observed for ruminal liquid volume on the day all supplements were provided. This was the result of an increase in liquid volume with DIP as SF decreased compared with a minimal effect with UIP. In contrast, there was no influence of supplementation on liquid volume the day only daily supplements were provided. Ruminal liquid dilution rate was greater (P = 0.02) with CP supplementation on the day all supplements were provided. We did observe a quadratic effect of SF x CP degradability interaction (P = 0.01) for dilution rate because of a quadratic response with DIP (greatest value with the every-third-day treatment) compared with a decrease as SF decreased for UIP. On the day only daily supplements were provided, ruminal liquid dilution rate decreased linearly (P = 0.02) as SF decreased. These results suggest that DIP and UIP elicit different effects on ruminal fermentation when supplemented infrequently to ruminants consuming low-quality forage while not adversely affecting nutrient intake and digestibility.  相似文献   

16.
Two studies were conducted to determine the influence of CP degradability and supplementation frequency (SF) on ruminant performance and N efficiency. Treatments included an unsupplemented control (CON) and degradable intake protein (DIP; 82% of CP) or undegradable intake protein (UIP; 60% of CP) provided daily, every 3 d, or every 6 d. Seven wethers (36+/-1 kg BW) were used in the digestibility study with DIP and UIP treatments formulated to meet CP requirements. Eighty-four Angus x Hereford cows (512+/-42 kg BW) in the last third of gestation were used for the performance study. The DIP treatments were calculated to provide 100% of the DIP requirement and UIP treatments were provided on an isonitrogenous basis compared with DIP. Basal diets consisted of low-quality (5% CP) meadow hay. Forage DMI and N intake by lambs decreased (P < 0.05) linearly as SF decreased. Additionally, DMI, OM intake, N retention, N digestibility, and digested N retained were greater (P < 0.01) for supplemented wethers than for controls with no difference due to crude protein degradability. Nitrogen balance, DMI, and OM intake decreased linearly (P < 0.05) as SF decreased. Plasma urea (PU; mM) was measured over a 6-d period and supplemented lambs had increased (P < 0.01) PU compared with CON. Plasma urea linearly decreased (P < 0.01) as SF decreased. Pre- and postcalving (within 14 d and 24 h of calving, respectively) cow weight and body condition score change were more positive (P < 0.05) for supplemented groups than for controls. Results suggest CP supplements consisting of 20 to 60% UIP can be effectively used by ruminants consuming low-quality forage without adversely affecting N efficiency and animal performance, even when provided as infrequently as once every 6 d.  相似文献   

17.
Two 60-d experiments were conducted to evaluate the effects of supplementing degradable (DIP) and(or) undegradable (UIP) intake protein on the performance of lactating first-calf heifers. Diets were formulated to meet the requirements for either DIP, metabolizable protein (MP), or both when diets contained low-quality grass hay and an efficiency of microbial protein synthesis estimate of 10%. In Exp. 1, 32 individually fed first-calf heifers (avg 395 kg) were allotted to a 2 x 2 factorial arrangement of treatments (main effects of DIP, MP, and DIP x MP interaction) 1 d after calving. Cows consumed a basal diet of chopped crested wheat grass hay (4.3% CP, 67% DIP) ad libitum. Supplemental DIP and UIP were supplied by varying the ratios of soybean meal (75% DIP) and a heat-treated, protected soybean meal (70% UIP). Cow weight gain was better (P < 0.01) when adequate DIP was supplied than when DIP was deficient. However, calf weight gain was not increased by supplementing the cow with DIP. Supplemental UIP did not (P > 0.40) improve cow or calf weight gain. Blood urea N levels were higher (P < 0.01) for cows receiving supplemental DIP and UIP. However, milk production estimates were similar among treatments, as were digestibilities of OM and ADF. Nitrogen digestibility was greater when supplemental DIP was fed, but providing additional UIP did not (P = 0.15) change N digestibilities. Experiment 2 evaluated similar supplements using the same experimental design to determine changes in cow and calf weight gain, body condition score, and pregnancy rate. Seventy-two first-calf heifers (avg 441 kg) were allotted to supplement treatments 1 d after calving and were fed grass hay (5% CP, 53% DIP, 10% microbial efficiency) for ad libitum consumption for 60 d. Supplements were individually fed three times/week. Varying the ratios of soybean meal, heat-treated soybean meal, and corn gluten meal provided additional DIP and UIP. Unlike in Exp. 1, supplemental UIP improved (P < 0.05) cow weight gain. Calves from dams supplemented with DIP gained 5 kg more weight after 60 d than calves from dams deficient in DIP. Pregnancy rates in the fall were similar (P = 0.90) among treatments. These data suggest that DIP was more limiting in Exp. 1 than was UIP. Supplementing UIP in Exp. 2 improved cow weight gains but did not improve calf gains. Data suggest that the efficiency of microbial protein synthesis for this forage-based diet was probably less than 10%.  相似文献   

18.
Two experiments were conducted to evaluate the impacts on forage use and beef cattle performance of incorporating divergent wheat milling by-products in a 30% CP supplement. The by-products were wheat bran (high fiber) and second clears (high starch). The by-products were added as 1) 100% wheat bran; 2) 67% wheat bran, 33% second clears; or 3) 33% wheat bran, 67% second clears to constitute approximately 47 to 49% of the supplement. In Exp. 1, 90 Hereford x Angus cows (BW = 554 kg) grazing winter, tallgrass-prairie range were fed the supplement treatments (2.27 kg/cow daily) from early December 1997 until calving (average calving date = 3/11/98). Cumulative BW and condition changes from trial initiation through calving were not significantly different among treatments. Similarly, significant treatment effects on cow pregnancy rates as well as calf birth weights, ADG, and ending weights were not evident. In Exp. 2, 16 ruminally fistulated Hereford x Angus steers (BW = 484 kg) were blocked by weight and assigned to one of the same three supplement treatments or to a negative control (forage only). Steers had ad libitum access to tallgrass-prairie hay (76.4% NDF, 3.1% CP) and were fed supplement at the same rate (relative to BW) as the cows in Exp. 1. Forage OM, NDF, and digestible OM intakes were lower (P < 0.01) for the negative control than for supplemented steers but were not significantly different among the supplemented steers. Digestion of OM was lower (P = 0.03) for the negative control than for supplemented steers, although significant treatment differences were not evident among the supplemented groups. Digestion of NDF was not affected (P = 0.49) by treatment. Within the context of the amount of supplemental protein offered, changes in the combination of wheat milling by-products in the supplement did not affect cow performance or intake and digestion of low-quality forage.  相似文献   

19.
Three experiments were conducted to evaluate the response of supplementing primiparous heifers based on the metabolizable protein (MP) system during pregnancy and lactation. In Exp. 1, 12 pregnant, March-calving heifers (432 +/- 10 kg) grazing Sandhills range were randomly allotted to one of two treatments: supplementation based on either the MP system (MPR) or the CP system (CPR). Supplements were fed to individual heifers from October to February and no hay was offered. Grazed forage organic matter intake (FOMI) was measured in November, January, and February. In Exp. 2, 18 heifers (424 +/- 8 kg) were randomly allotted to one of three treatments: 1) supplementation based on the MP system with hay fed in January and February (average 2.0 kg/d; MPR/hay), 2) supplementation based on the CP system, with hay fed in January and February (CPR/hay), or 3) supplementation based on the MP system, with no hay fed (MPR/no hay). Supplements were fed from October to February, and FOMI was measured in December and February. In Exp. 3, lactating 2-yr-old cows (394 +/- 7 kg) maintained on meadow hay were supplemented to meet either 1) MP requirements (LMPR) or 2) degradable intake protein requirements (LDIPR). Body weight (BW) and body condition score change, hay intake, and milk production were measured. In Exp. 1, grazed FOMI decreased (P = 0.0001) from 1.9% of BW in November to 1.2% in February, but no differences among treatments were detected for FOMI or BW change. In Exp. 2, grazed FOMI declined (P = 0.0001) from 1.7% of BW in December to 1.1% in February, with no differences among treatments. Heifers on the MPR/hay and CPR/hay treatments had higher (P = 0.0018) total intake (grazed forage + hay intake) in February (1.7% BW) than the MPR/no hay heifers (1.1% BW). Heifers on the MPR/no hay treatment had a lower weight (P = 0.02) and tended (P = 0.11) to have a lower BCS than heifers on other treatments. In Exp. 3, the LMPR cows had higher (P = 0.02) ADG than LDIPR cows (0.41 and 0.14, respectively), but treatment did not affect milk production. Organic matter hay intake averaged 2.4% of BW. We conclude that supplementation to meet MP requirements had little benefit to heifer performance during gestation, but increased weight change during lactation. Because grazed forage intake decreased from 1.9 to 1.1% of BW with advancing gestation, supplemental energy is necessary to reduce weight and condition loss of gestating hefiers grazing dormant Sandhills range.  相似文献   

20.
A 2-yr study was conducted to determine the first limiting nutrient for gain in nursing calves grazing native range in southeastern North Dakota. Thirty-two calves (20 steers, 12 heifers) in Trial 1 (169 +/- 5 kg initial BW) and 31 (16 steers, 15 heifers) in Trial 2 (214 +/- 5 kg initial BW) grazed common pastures. Calves were blocked by sex and stratified by weight. Calves were stratified by age of dam in Trial 1 and by pretrial milk intake (MI) in Trial 2. Treatments were nonsupplemented control (CON); energy supplement (ENERGY; 100% soyhulls); degradable intake protein supplement (DIP; 68% soyhulls, 32% SBM); and degradable with undegradable intake protein supplement (DIP+UIP; 80% sulfite-liquor treated SBM, 16% feather meal, 4% blood meal). In Trial 2, 5% molasses was added to all supplements with the ratios of other ingredients held constant. Supplements were formulated to be similar in NE. The DIP and DIP+UIP supplements supplied equal amounts of degradable protein. Supplemented calves were fed individually, with similar supplement DMI. Weight and MI were measured in July, August, and September. Forage intake (FI) was measured in July, August, and September of Trial 1 and July and August of Trial 2. Gain data were analyzed as a randomized complete block and MI and FI as a split-plot in time. Orthogonal contrasts were used to separate means and included CON vs supplemented, ENERGY vs protein, and DIP vs DIP+UIP. No trial effect or trial x treatment interactions (minimum P-value = 0.30) were detected for ADG. Supplemented calves gained faster than CON (P = 0.06). No other contrast differences were observed (minimum P-value = 0.50). Treatment did not affect FI (P > or = 0.55). Forage intake was lower (P < 0.001) in Trial 1 than in Trial 2. A linear increase (P = 0.0001) in FI (kg OM/d and percentage BW) occurred over time. Calves in Trial 2 consumed more (P = 0.004) fluid milk than calves in Trial 1, though no difference (P = 0.28) was observed relative to BW. No treatment or period differences were detected for fluid MI (minimum P-value = 0.23). Relative to BW, MI declined linearly (P = 0.0001) with successive periods. Energy may be limiting weight gain of nursing calves grazing native range in southeastern North Dakota.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号