首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three lines of Lycopersicon esculentum (RDD, UPV 1 and UPV 32) with resistance to TSWV introgressed from L. peruvianum have been tested. RDD is a carrier of the SW5 gene and the other two lines have been developed at the Universidad Politécnica de Valencia (UPV) from accessions collected in the Andean region. Two methods of artificial inoculation, mechanical and by Frankliniella occidentalis populations, and three highly virulent Spanish isolates of TSWV have been used. Inoculation by populations of thrips proved to be more efficient than mechanical transmission independently of the considered isolate. The three lines were completely resistant when mechanical transmission was used. Also RDD and UPV 1 showed high resistance levels by thrips inoculation method; the isolates had the same effect on these two genotypes. Nevertheless, UPV 32 shows a partial resistance depending on the isolate utilized. The inoculation of virulent isolates by thrips under a high pressure of inoculum caused infection in a few plants of the three genotypes tested. In spite of being the most efficient at present for their unspecificity to isolates (and so the most used by breeders), resistance conferred by SW5 does not guarantee the absence of infection depending on the prevailing crop conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
S. Roselló    S. Soler    M. J. Díez    J. L. Rambla    C. Richarte  F. Nuez 《Plant Breeding》1999,118(5):425-429
Mechanical inoculation and transmission by thrips in a growth chamber were used in order to screen Lycopersicon peruvianumand Lycopersicon chilense germplasm for tomato spotted wilt virus (TSWV) resistance. Two highly aggressive Spanish TSWV isolates (HA-931100 and T-941117), having different restrictotypes were used. L. peruvianum accessions PI-126935, PI-126944, CIAPAN 16, PE-18 and CIAPAN 17 showed high resistance to both isolates in mechanical and thrips transmission. Their resistance appears useful in breeding programmes.  相似文献   

3.
Summary Tomato spotted wilt virus (TSWV) causes significant economic losses in the commercial culture of tomato (Lycopersicon esculentum Mill.). Culture practices and introgression of natural sources of resistance to TSWV have only been marginally effective in controlling the TSWV disease. Recently however, high levels of protection against TSWV have been obtained by transforming tobacco with a chimaeric gene cassette comprising the TSWV nucleoprotein gene. This report demonstrates the successful application of this newly-created TSWV resistance gene in cultivated tomato. Transformation of an inbred tomato line with the TSWV nucleoprotein gene cassette resulted in high levels of resistance to TSWV that were maintained in hybrids derived from the parental tomato line. Therefore, transformant lines carrying the synthetic TSWV resistance gene make suitable progenitors for TSWV resistance to be incorporated into the breeding programmes of tomato.  相似文献   

4.
Tomato spotted wilt virus (TSWV) resistance wasidentified in Y118 (Fla 925-2), an F1BC1S6 tomato line(Lycopersicon esculentum Mill.), derived from a crosswith L. chilense Dun. (LA 1938). This line waspreviously selected for tomato mottle virus (ToMoV)resistance in Florida. Progeny from crosses betweenFla 925-2 and three different TSWV susceptible L.esculentum parents were used in TSWV resistancestudies. A total of 75 F1 and 596 F2 plants from allthree crosses were screened for TSWV resistance. ForF2 plants free of TSWV symptoms, evaluations were madeusing enzyme-linked immunosorbent assay (ELISA). TenF3 populations used for further greenhouse and fieldscreenings were selected from F2 plants found to befree of the virus using visual and ELISA criteria ateach evaluation. One F1 and four F3 lines werestudied under field conditions (Stellenbosch, SouthAfrica) in which 100% of the `Flora-Dade' susceptiblecontrols were severely infected with TSWV. Theresults of the field study clearly establish that TSWVfield resistance is present in the Fla 925-2 (Y118)derived lines. Studies conducted on these linesrevealed that this resistance has the distinctcharacteristic of often `recovering' from initiallyhigh levels of virus titer in the tissue to levelsbelow detection with ELISA.  相似文献   

5.
Thrips are damaging pests in pepper worldwide. They can cause damage directly by feeding on leaves, fruits or flowers, and also indirectly by transferring viruses, especially tomato spotted wilt virus (TSWV). Although thrips are among the most damaging pests in pepper, until now there is no commercial variety with a useful level of resistance to thrips. This is at least partly due to the lack of knowledge on resistance levels in pepper germplasm of QTLs and/or genes for resistance, and of information about resistance mechanisms to thrips in pepper. This paper describes our research aimed at developing practical and reliable screening methods for thrips resistance in pepper and at identifying pepper accessions showing a strong resistance to thrips. Thirty-two pepper accessions from four species of pepper (Capsicum annuum, C. baccatum, C. chinense and C. frutescens) and two species of thrips (Frankliniella occidentalis and Thrips parvispinus) were used in this study. Our results indicate that the laboratory based leaf disc test and the detached leaf test can be used as reliable screening methods for thrips resistance in pepper. We observed a large variation for resistance to thrips in Capsicum that can be exploited in breeding programs.  相似文献   

6.
The wheat-Aegilops speltoides translocation line L501 exhibits a disease response pattern distinctive from that of documented powdery mildew genes after inoculation with differential Blumeria graminis tritici isolates. Results based on cytological C-bandings and monosomic analyses reveal that a dominant resistance gene derived from Ae. speltoides is located on a T1BL·1SS chromosome translocation in this line. The new gene is designated Pm32. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The F2 progeny of a third backcross(BC3) line, BC line 240, derived from a Turkish accession of wild barley (Hordeum vulgare ssp. spontaneum),segregated for resistance to scald (Rhynchosporium secalis) in a manner indicating the presence of a single dominant resistance gene. Two SCAR marker slinked to this resistance were developed from AFLP markers. Screens of disomic and ditelosomic wheat-barley addition lines with the SCAR markers demonstrated that the scald resistance gene is located in the centromeric region of barley chromosome 3H,a region previously reported to contain a major scald resistance locus, Rrs1. Markers that flank the Rrs1 locus were used to screen the wild barley-derivedBC3F2 population. These markers also flank the wild barley-derived scald resistance, indicating that it maps to the same locus as Rrs1; it may beallelic, or a separate gene within a complex locus. However, BC line 240 does not respond to treatment with the Rhynchosporium secalis avirulence factorNIP1 in the same way as the Rrs1-carrying cultivar Atlas46. This suggests that the scald resistance gene derived from wild barley confers a different specificity of response to theRrs1 allele in Atlas46.In order to increase the durability of scald resistance in the field, we suggest that at least two scald resistances should be combined into barley cultivars before release. The scald resistance gene described here will be of value in the Australian environment, and the several markers linked to it will facilitate pyramiding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Inheritance of resistance to rice stripe virus in rice line `BL 1'   总被引:9,自引:0,他引:9  
Rice stripe is the most serious virus disease in temperate rice-growing countries. The most economical and environmentally safe practice for controlling this disease is virus-resistant cultivars. ‘BL 1’ is an elite germplasm line with the blast resistance gene Pib, and has been used as a differential line for testing the pathogenicity of the blast fungus. We found that certain progenies from BL 1 showed resistance to both blast and rice stripe virus (RSV). The objectives of this study were to evaluate the RSV resistance in the field and under artificial conditions, to assess the reaction to the insect vector(small brown plant hopper, SBPH), and to examine its inheritance and its relationship to blast resistance in BL 1.BL 1 was susceptible to SBPH, but resistant to RSV in field and artificial inoculation tests. The inheritance of RSV resistance in F3 lines from the cross Nipponbare (NPB)/BL 1 was studied using artificial inoculation with a population of viruliferous SBPH. A serological assay for RSV infection using an enzyme-linked immunosorbent assay (ELISA) was used. RSV resistance in BL 1 was controlled by a single major gene with incomplete dominance. The locus responsible for RSV resistance was genetically independent of the blast resistance gene Pib. The resistance gene for RSV infection in BL 1 was also independent of Stvb-i, a gene widely distributed in resistant Japanese cultivars. Resistance to RSV must be diversified in rice cultivars considering the potential for future emergence of new RSV strains. The new resistance gene identified in BL 1, which has improved plant type and blast resistance, is considered useful for breeding RSV-resistant cultivars in japonica rice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Black root rot (BRR) caused by Thielaviopsis basicola as well as Tomato spotted wilt virus (TSWV) are the most serious problems in tobacco growing regions. We crossed the breeding line WGL 3 carrying BRR resistance derived from N.glauca with the line PW-834 the resistance of which to TSWV was transferred from cultivar Polalta. Anthers obtained from F1 hybrid plants were cultured to induce haploids combining resistance to Th. basicola and TSWV. Flow cytometry analysis revealed 242 haploids and 2 spontaneous doubled haploids among regenerants. All haploids were cloned and then evaluated for BRR as well as TSWV resistance. The presence of pathogens was detected by microscopic evaluation of roots or using DAS-ELISA test. Microscopic assessment showed that, 132 haploids had no symptoms of Th. basicola which, together with the absence of symptoms in the F1 hybrids, indicated a dominant monogenic mode of inheritance. At the same time only 30 haploids demonstrated resistance to TSWV. SCAR markers associated with TSWV resistance gene detection was applied. The results indicate that small proportion of TSWV-resistant haploids is probably due to the influence of deleterious genes flanking the resistance factor that reduced vitality of gametophytes. Altogether, 24 haploids showed multiple resistance to Th. basicola and TSWV.  相似文献   

10.
In order to determine the effects of bunt inoculation on frost resistance and winter hardiness in lines containing resistance genes, the bunt [Tilletia foetida (Wallroth) Liro, T. caries (DC.) Tulasne] susceptibility of wheat lines containing bunt resistance genesBt1 to Bt10 and the effect of the year on the degree of infection were studied over six years from 1991 to 1997 in an artificial inoculation nursery. Uninoculated and artificially inoculated wheat plants were tested for frost resistance in the phytotron in 1995 and in the field in boxes in three years from 1994/95 to 1996/97. The line withBt10 was very resistant, lines with Bt5, Bt6, Bt8 and Bt9 were resistant, the line with Bt4 was moderately resistant, those with Bt2 and Bt3 were moderately susceptible, the line with Bt1 was susceptible and the line with Bt7 was very susceptible to the local bunt population in Hungary. Bunt incidence also varied over years. The frost resistance of the Bt lines was generally lower after bunt inoculation than that of uninoculated plants. The increased frost kill in inoculated plants was not correlated with the extent of varietal susceptibility to bunt. Some lines with resistance, namely those with Bt5 (1.6% infection), Bt8 (0.6%) and Bt10 (0.0%), suffered significantly greater frost kill in the young plant stage as the result of bunt inoculation. By contrast, the Bt7line had excellent frost resistance and winter hardiness but suffered the greatest extent of bunt infection, whereas the Bt6 line had good frost resistance and good bunt resistance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Summary Inheritance studies were conducted to determine the genetic basis of resistance in pepper against one Tospovirus isolate classified as tomato spotted wilt virus (TSWV). F1, backcrosses and F2 populations were developed using the resistant parent Capsicum chinense PI 159236 (CNPH 679) and the susceptible parent C. annuum Magda (CNPH 192). Segregation ratios strongly indicated that the resistant response (a localization, hypersensitive-like reaction) to TSWV fits a single-dominant gene model. Under our experimental conditions, the penetrance of this gene was very high. This gene (tentatively named Tsw) is highly effective only against TSWV isolates. The resistance governed by the Tsw gene was not effective against isolates belonging to tomato chlorotic spot virus (TCSV) and groundnut ring spot virus (GRSV), two other previously described Tospovirus species.  相似文献   

12.
Thielaviopsis basicola and Tomato spotted wilt virus (TSWV) are the most important problems in a moderate climate zone. Previously obtained doubled haploids (DH) of F1 hybrids of the flue-cured line WGL3 resistant to Th. basicola and the dark-cured line PW-834 carrying RTSW-al gene provided the research material. Biological tests and SCAR markers linked with TSWV were applied to confirm resistance of DH. Lines combining resistance to TSWV and Th. basicola were evaluated for morphological and chemical characteristics. Most of DH were significantly shorter than parents but two lines, 31/A/2 and 31/B/3, were close to the flue-cured WGL3. Usually DH possessed fewer leaves while one of them 31/B/3, exceeded parental forms. The doubled haploids flowered later than their parents. The most negative effect was reduced area of mid-position leaves of DH. It might be explained by a recombination during microsporogenesis in F1, however the influence of ‘Polalta’-derived RTSW-al gene cannot be excluded. Extensive line to line variation for nicotine and sugars content was not associated with the genes for TSWV and Th. basicola resistance. Biological tests and field performance of DH revealed potential to overcome the negative effect of coupling between the RSTV-al gene and genes responsible for the morphological deformations.  相似文献   

13.
Summary A preliminary evaluation for resistance to chili thrips, Scirtothrips dorsalis Hood of 41 and 194 pepper (Capsicum annuum L.) germplasms during 1987 and 1988, respectively, indicated chili accessions may be a promising source of resistance. In contrast, all sweet pepper accessions tested were highly susceptible. A number of chili accessions produced a moderate yield, in spite of a high thrips infestation indicating tolerance to S. dorsalis. Rating for thrips damage was more reliable and efficient than estimating thrips numbers in screening pepper accessions for resistance to thrips. Highly significant, positive correlation between ratings at the seedling stage and final rating for thrips damage indicated the feasibility of screening pepper accessions at the seedling stage. Comparing the similarities in rating among accessions resulted in 40 distinct groups. The variance-covariance matrix of the data from these 40 groups was subjected to principal component analysis. This accounted for 56 and 18 per cent of the variation across the two principal axes, respectively. Projection of chili and sweet pepper accessions along these two axes revealed three distinct clusters. About 80 per cent of chili accessions formed the first cluster, 58 per cent of the sweet pepper accessions formed the second cluster and a third cluster exhibited intermediate ratings for thrips damage. The significance of these findings in relation to geographical divergence and resistance to thrips among pepper accessions is discussed.  相似文献   

14.
Summary C. annuum L. ‘Serrano Criollo de Morelos-334’ (SCM-334) is a well-known source of resistance against pepper diseases, including Potato Virus Y (PVY). In this work, inheritance studies involving ‘SCM-334’ and related to PVY resistance were described. For this purpose, ‘SCM-334’ derived lines were used, and plant material from the cross between ‘SCM-334’ and ‘Yolo Wonder’ (YW) was employed as well. Five PVY isolates were used for the inoculations. The first resistance described is a monogenic and recessive gene, controlling a specific-isolate resistance, and provisionally named as pvr1 4. The second one is related to the inheritance of systemic necrotic symptoms after PVY inoculation. In this case a codominant gene is proposed and expressed only when the Pvr4 gene is not present.  相似文献   

15.
N. Rewal  J. S. Grewal 《Euphytica》1989,44(1-2):61-63
Summary Chickpea (Cicer arietinum L.) line ICC 1069 was selected as resistant parent after screening for resistance to grey mould (Botrytis cinerea Pers.) under artificial inoculation conditions. It was crossed with four high yielding susceptible varieties of chickpea. Crosses ICC 1069 × BGM 413 and ICC 1069 × BG 256 showed monogenic dominant resistance in ratio of 3R (resistant): 1S (susceptible). However, in crosses, ICC 1069 × BGM 419 and ICC 1069 × BGM 408, a ratio of 13S (susceptible) : 3R (resistant) was obtained indicating the presence of epistatic interaction. The results pointed towards the presence of a type of major gene resistance to grey mould in chickpea.  相似文献   

16.
Ascochyta blight caused by the fungus Ascochyta lentis Vassilievsky and anthracnose caused by Colletotrichum truncatum [(Schwein.) Andrus & W.D. Moore] are the most destructive diseases of lentil in Canada. The diseases reduce both seed yield and seed quality. Previous studies demonstrated that two genes, ral1 and AbR1, confer resistance toA. lentis and a major gene controls the resistance to 95B36 isolate of C. truncatum. Molecular markers linked to each gene have been identified. The current study was conducted to pyramid the two genes for resistance to ascochyta blight and the gene for resistance to anthracnose into lentil breeding lines. A population (F6:7) consisting of 156 recombinant inbred lines (RILs) was developed from across between ‘CDC Robin’ and a breeding line ‘964a-46’. The RILs were screened for reaction to two isolates (A1 and 3D2) ofA. lentis and one isolate (95B36) ofC. truncatum. χ2 analysis of disease reactions demonstrated that the observed segregation ratios of resistant versus susceptible fit the two gene model for resistance to ascochyta blight and a single gene model for resistance to anthracnose. Using markers linked to ral1 (UBC 2271290), to AbR1(RB18680) and to the major gene for resistance to anthracnose (OPO61250),respectively, we confirmed that 11 RILs retained all the three resistance genes. More than 82% of the lines that had either or both RB18680 and UBC2271290markers were resistant to 3D2 isolate and had a mean disease score lower than 2.5. By contrast, 80% of the lines that had none of the RAPD markers were susceptible and had a mean disease score of 5.8. For the case of A1 isolate of A. lentis, more than 74% of the lines that carriedUBC2271290 were resistant, whereas more than 79% of the lines that do not have the marker were susceptible. The analysis of the RILs usingOPO61250 marker demonstrated that 11out of 72 resistant lines carried the marker, whereas 66 out of 84 susceptible lines had the marker present. Therefore, selecting materials with both markers for resistance to ascochyta blight and a marker for resistance to anthracnose can clearly make progress toward resistance in the population. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Summary A comparative test of six inoculation methods was conducted using 2 halo blight race 2 virulent strains, Nebr. HB 16 and HB 21 (Pseudomonas syringae pv. phaseolicola), on five dry bean cultivars/lines (Phaseolus vulgaris L.) of known resistance and susceptibility. The water-soaking of leaves method caused the most severe reaction among the leaf inoculation methods, followed by the carborundum, spraying and multiple needle methods, respectively. The seed soaking method was considered too severe to be useful, since entries identified as resistant by the other methods, were susceptible with the former method. Great Northern Nebraska # 1 sel. 27 and PI 150414 had the highest level of leaf resistance, but the former developed systemic chlorosis with the stem stabbing method, but not the latter line. No systemic chlorosis was seen in either line with the other methods of inoculation. This suggests that there may be a different genetic mechanism conferring resistance/susceptibility to the toxin in these two lines when the stabbing method is used. No interaction occurred between method by genotype and isolate by method but significant interactions occurred between genotype by isolate and method by isolate by genotype. The leaf and pod reaction of forty cultivars/lines to the new halo blight Nebr. Charlevoix strain was also determined. Different combinations of degrees of resistance and susceptibility of leaves and pods were observed. GN Tara, GN Harris, and PI 150414 had the highest combination of leaf and pod resistance.Published as paper No. 7094, Journal Series, Nebraska Agricultural Experiment Station. Research was conducted under Project No. 20-036.  相似文献   

18.
M.W. Farnham  M. Wang  C.E. Thomas 《Euphytica》2002,128(3):405-407
Downy mildew, incited by Peronospora parasitica (Pers.: Fr.) Fr., is a destructive disease of broccoli (Brassica oleraceaL., Italica Group). Resistant cultivars represent a desirable control method to provide a practical, environmentally benign, and long-term means of limiting damage from this disease. Doubled-haploid (DH) lines developed by us exhibit a high level of downy mildew resistance at the cotyledon stage. To determine the mode of inheritance for this resistance, a resistant DH line was crossed to a susceptible DH line to make an F1, from which F2 and backcross (BC) populations were developed. All populations were evaluated for response to artificial inoculation with P. parasitica at the cotyledon stage. All F1 plants (including reciprocals) were as resistant as the resistant parent, indicating no maternal effect for this trait. F2 populations segregated approximately 3resistant to 1 susceptible, BC populations using the resistant parent as the recurrent parent contained all resistant plants, and the BC to the susceptible parent segregated 1 resistant to 1 susceptible. These results indicate that resistance is controlled by a single dominant gene. This gene should be easily incorporated into F1 hybrids and used commercially to prevent downy mildew at the cotyledon stage. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Snap bean (Phaseolus vulgaris L.) cultivar, Widusa, was crossed to Michigan Dark Red Kidney (MDRK), Michelite, BAT 93, Mexico 222, Cornell 49–242, and TO cultivars to study the inheritance of resistance to anthracnose in Widusa. The segregation patterns observed in six F2 populations supported an expected 3R:1S ratio suggesting that Widusa carries a single dominant gene conditioning resistance to races 7, 65, 73, and 453 of Colletotrichum lindemuthianum, the causal organism of bean anthracnose. Allelism tests conducted with F2 populations derived from crosses between Widusa and Cornell 49–242 (Co-2), Mexico 222 (Co-3), TO (Co-4), TU (Co-5), AB 136 (Co-6), BAT 93 (Co-9), and Ouro Negro (Co-10), inoculated with races 7, 9, 65 and 73, showed a segregation ratio of 15R:1S. These results suggest that the anthracnose resistance gene in Widusa is independent from the Co-2, Co-3, Co-4,Co-5, Co-6, Co-9, and Co-10 genes. A lack of segregation was observed among 200 F2 individuals from the cross Widusa/MDRK, and among 138 F2 individuals from the cross Widusa/Kaboon inoculated with race 65, suggesting that Widusa carries an allele at the Co-1 locus. We propose that the anthracnose resistance allele in Widusa be named Co-1 5 as Widusa exhibits a unique reaction to race 89 compared to other alleles at the Co-1 locus. RAPD marker A181500 co-segregated in repulsion-phase linkage with the Co-1 5 gene at a distance of 1.2 cM and will provide bean breeders with a ready tool to enhance the use of the Co-1 5 gene in future bean cultivars.  相似文献   

20.
A set of T. aestivum-L. elongatum chromosome substitution lines was tested for yellow rust resistance at the seedling stage. Inheritance of the resistance and esterase-5 (Est-5) variation were studied. The results demonstrated that L.elongatum carried a new gene(s) conferring yellow rust resistance. This gene was dominant and located on chromosome 3E of L. elongatum. The biochemical locus encoding Est-5was also located on chromosome 3E, and co-segregated with theYr gene(s) in the wheat background. The transmission frequencies of chromosome 3E in 3E(3A) × CS, 3E(3B) × CS and 3E(3D) × CS hybrids were scored.None of the hybrids transmitted the alien chromosome at thetheoretical maximum rate, but the transmission frequencies ofchromosome 3E in F2 populations of 3E(3A) × CS and 3E(3D) × CS were significantly higher than in thatof 3E(3B) × CS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号