首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了改善高压叶片泵的性能,提升配流副的摩擦特性,采用理论分析、数值模拟和试验测试的方法,研究配流副油膜不同部位的温升情况。首先分析了吸油区和排油区的内、外层区域油膜油液运动情况,建立油膜温升的计算模型。然后从理论计算结果、温度场数值模拟云图和试验测试结果进行分析讨论。结果发现,高压子母叶片泵配流副油膜的温升受到工作压力和油膜厚度的影响,油膜厚度一定时,油膜温升值随压力的增大而增大,而工作压力一定时,油膜温升值随油膜厚度增大而减小。配流副吸油区油膜的内外层区域的温升值不一样,外层区域油膜温升值比内层区域高0.5~1 ℃。相同的工作压力下,由于受到剪切流动和较大压差流动的共同作用,吸油区油膜温升值比排油区油膜温升值高1.5~3.5 ℃。排油区外层区域的油膜温升值比内层区域的高,内外层区域油膜温升值沿圆周方向均从两侧向中心方向增大,中心位置温升值最大,差值约为0.25~0.5 ℃。  相似文献   

2.
球塞式液压泵配流轴平衡特性   总被引:1,自引:1,他引:0  
在轴向压力线性分布的条件下,建立了配流副的流场模型,同时建立了配流轴支承系统在突变载荷下的动态仿真模型,在此基础上对球塞式液压泵配流轴的平衡特性进行了研究。结果表明配流轴支承系统具有压力反馈的闭环调节作用,配流轴在压力反馈作用下恢复到偏心率为0的平衡状态,且没有超调量。为高效球塞式液压泵配流副的设计提供了理论依据,同时为高功率密度球塞式液压元件的深入研究打下了基础。  相似文献   

3.
弹性变形对轴向柱塞泵配流副润滑特性的影响   总被引:4,自引:2,他引:2  
考虑到配流副在高压条件下的弹性变形量已与油膜厚度同一量级,该文应用弹性流体动力润滑理论,建立了弹性变形条件下配流副的润滑数学模型,采用有限差分法求解了模型的控制方程,进行了弹性变形对配流副润滑特性的影响分析。结果表明,在油膜厚度较小时,配流副的弹性变形使平均油膜厚度相比增大了14.48%,但最大油膜压力却减小了18.60%,且配流副的油膜承载力和泄漏量明显增大,而摩擦转矩明显减小;但油膜厚度大于15 mm时,可以忽略弹性变形对配流副润滑特性的影响。研究为高压化轴向柱塞泵配流副的设计与研究打下了基础。  相似文献   

4.
固体颗粒对高压叶片泵配流副油膜特性影响的数值模拟   总被引:1,自引:1,他引:0  
叶片泵对油液的清洁度要求较高,油液中混入的少量固体颗粒会引起泵内部摩擦副磨损而使其间隙增大,影响叶片泵的容积效率。为了探明颗粒在叶片泵配流副油膜内部的分布状态及其对配流副损坏机制,该研究使用理论分析、数值模拟和试验测试的方法,研究油液中的固体颗粒对高压叶片泵配流副油膜特性的影响。应用Fluent内置的两相流模型,分别改变固体颗粒直径(0.5~13 μm)和固相体积分数(0.2%~1%)、泵的工作压力和转速,开展子母叶片泵配流副油膜内部的固相体积分数分布与温度分布的数值模拟,并对数值模拟结果进行验证。结果表明,油液中的固体颗粒基本不影响配流副油膜的压力数值及其分布,但会引起排油区的油膜温度降低。随着颗粒直径的增大,吸油区油膜固相体积分数减小,最大变化量为0.25%,排油区油膜固相体积分数增大,最大变化量为0.35%,油膜固相体积分数整体上呈增大趋势变化。叶片泵容积效率随着固体颗粒直径的增大而下降,二者近似线性关系。随着颗粒固相体积分数的增加,油膜固相体积分数整体呈增大的趋势变化,最大变化量为0.72%,引起叶片泵容积效率下降,且颗粒固相体积分数与容积效率之间呈非线性关系。油膜表面的温度随颗粒固相体积分数的增加而减小,吸油区各区域油膜温度变化较小,排油区油膜温度最大变化量为2 K。配流副油膜受压差流影响较大的区域内固相体积分数随工作压力升高而减小,最大变化量为0.3%,油膜表面各区域的温度有所上升,核心区域温度变化量为4 K。油膜大部分区域的油膜固相体积分数和温度都随着泵转速的增大而增大,影响较大的区域中固相体积分数最大变化量为0.2%,温度最大变化量为3 K。研究结果可为高压叶片泵配流副的设计提供参考。  相似文献   

5.
液压冲击下五星式径向柱塞马达配流轴疲劳分析   总被引:2,自引:2,他引:0  
为探明某内五星式径向柱塞马达在液压冲击下的疲劳损伤机理,应用AMESim软件研究分析了液压马达油路中因阀门突然关闭而产生的液压冲击波及其最大压强值,将液压冲击的冲击压强作为马达配流盘中流体分析的压强边界,计算得出高压流体作用在配流盘上的冲击压强,由此得到配流盘与上壳体之间的正压力,进而得到配流轴的工作负荷,分析配流轴的疲劳损伤形式。液压系统仿真分析表明,当马达转速由400 r/min迅速降低至0的过程中,系统最大压强可达36 MPa,配流盘上的冲击反压强可达34.9 MPa,配流盘与壳体之间的摩擦阻力矩可达60.02 N·m,在此负载条件下,配流轴疲劳寿命最低至2 197.6次,发生在配流轴与配流盘相接触区域,极易发生疲劳损伤。实际马达的损伤情况与所分析结论相符合,证明采用该分析方法能有效预测马达疲劳损伤情况。该研究的开展为液压马达配流轴和配流盘结构设计提出了参考,同时为液压油路的设计提出了要求。  相似文献   

6.
低速大扭矩水压马达的配流性能分析及试验   总被引:1,自引:1,他引:0  
为了提高低速大扭矩水压马达的容积效率,以马达的配流副为研究对象,基于力平衡方程及流量方程,建立了配流体端面与转子端面间的泄漏流量损失和功率损失的数学模型。以配流体转子间的水膜厚度、介质温度和马达转速等为性能指标,分析了不同供流方式下间隙、温度和转速对其性能的影响。研究结果表明:间隙越大,配流体转子端面的泄漏流量损失和功率损失越大,温度越高,功率损失越大,同时内环供流时水压马达的性能要优于外环供流。因此,减小水膜厚度,降低水温,可减小配流副的泄漏流量损失和功率损失,提高水压马达的容积效率及马达性能。综合考虑,配流间隙控制在4~5μm较为合适,水温控制在室温(20±5)℃状态下为宜。同时基于上述研究,设计加工出低速大扭矩水压马达物理样机,并对样机的性能进行了加载试验测试,得到了相应的性能曲线,试验结果表明:加工完成的水压马达样机在带载时的容积效率最高可达到90.97%,机械效率最高可达到93.59%,从而验证了所研制的低速大扭矩水压马达原理正确可行,也证明了上述研究结果的正确性,解决了低速大扭矩水压马达的设计理论及关键技术问题。该研究为低速大扭矩水压马达进一步的产品化提供了参考。  相似文献   

7.
柱塞式能量回收马达是将液压马达与发电机一体化的新一代液压能量回收装置,缸体-配流轴组成的配流副是其关键摩擦副之一,配流副配合面锥度角的选择对马达的配流、承载和摩擦磨损特性有重要影响。该研究采用理论分析、数值模拟和试验测试的方法,探讨柱塞式能量回收马达配流副锥度角的最优值选择。首先根据配流副结构与尺寸,明确锥度角范围,然后以36°、39°、42°和45°共4个配流副锥度角为对象。分别从流场仿真、弱流固耦合和摩擦磨损试验3个方面,评价各锥度角配流副的柱塞腔油液压力与压力脉动、配流副部件应力与变形、配流副摩擦磨损等性能。结果发现配流副锥度角为42°和45°时,位于配流副上死点的柱塞腔内油液压力和压力波动较小,压力分别为4.66、4.62 MPa、压力波动幅度分别为3.307和3.246 MPa;在柱塞腔与高压油孔接通阶段,柱塞腔油液压力波动幅度分别为0.324、0.322 MPa;两种锥度角下的配流轴最大等效应力皆远小于其屈服强度;锥度角为42°缸体的最大等效应力占屈服强度比例较45°锥度角大0.74个百分点,最大变形量大0.251 μm;两种锥度角的配流副没有强度失效的风险,虽然有微量弹性变形,但对配流副的正常工作影响极小。相较于45°锥度角,42°锥度角摩擦副的平均摩擦系数小0.012,且波动小、稳定性好;上、下试件的磨损率分别小1.966×10-6和7.601×10-6 mm3/(N·mm)。所以42°锥度角有利于能量回收马达配流副的稳定工作及高效运转。研究结果可为柱塞式能量回收马达的设计提供参考。  相似文献   

8.
为分析周边进水沉淀池配水槽各种常用设计方法的实际效果,采用计算流体力学(computational fluid dynamics,CFD)方法对直径为20m沉淀池进水槽进行了三维稳态模拟,比较了各种设计方法下配水孔的配水、配泥质量流量的均匀性,模拟以Eulerian-Eulerian multiphase model中的均匀混合连续流体模型(homogeneous model)为框架,包含配水槽中的水、污泥颗粒和水面上部的大气三相,设计方法选择了工程实践中常用的变槽宽定孔径、变槽宽变孔径、定槽宽定孔径和定槽宽变孔径4种配水槽设计方法。模拟结果显示:4种配水槽设计方法中各配水孔质量流量的标准差最小在10%左右,变槽宽的等流速设计整体来说配水、配泥相对均匀,可以考虑优先采用;变孔径设计孔径变化很小,但当采用等槽宽设计时,配水、配泥质量流量的均匀性改善明显。  相似文献   

9.
不同叶顶间隙对斜流泵性能影响的数值分析   总被引:1,自引:3,他引:1  
斜流泵具有高效,启动特性好,运行工况宽等特点。目前斜流泵设计时,无法定量评估叶顶间隙对性能影响的敏感性。为了揭示不同叶顶间隙值对斜流泵内部流场和性能的影响,给定叶顶间隙选取的范围。分别选取无叶顶间隙和叶顶间隙分别为0.5,1.0,1.5 mm共4种设计方案的斜流泵为对象,基于剪切压力传输模型(shear stress transport,SST k-ω)湍流模型,SIMPLEC算法与块结构化网格,对斜流泵内部流场进行数值模拟和试验验证。结果表明,叶顶间隙为0.5 mm时,可以有效抑制斜流泵的扬程-流量正斜率特性,此时斜流泵的效率值最高;无叶顶间隙时,斜流泵扬程-流量正斜率特性较为明显;叶顶间隙为1 mm时,数值模拟与试验结果吻合较好,SST k-ω模型可较好模拟斜流泵叶顶间隙区流动特征,性能预估结果具有一定的可信度。在小流量工况下,叶顶间隙为0.5 mm可有效抑制斜流泵的正斜率不稳定特性。小叶顶间隙0.5mm时,斜流泵水力性能最优;叶顶间隙增大时,叶顶泄漏流动逐渐显著,叶轮出口近壁区轴面流速和涡量分布规律显著变化,表明叶顶间隙直接影响叶轮轴面速度分布规律和叶片负荷分布规律,由于受壁面摩擦阻力和液体黏滞阻力的影响,叶轮轮毂和叶顶间隙侧的叶轮轴面速度较小;叶顶间隙增大时,叶轮轮毂和叶顶间隙侧叶片负荷急剧衰减,影响叶片的做功能力。同时,叶顶泄漏流动区域与叶片主流区域的掺混效应,使叶片轮缘的低速区扩展到叶轮流道内部的主流区域,引起叶轮流道内部主流流动的堵塞效应,产生二次流动、漩涡等流动不稳定现象。上述研究结果,揭示了叶顶间隙对斜流泵内部流场和性能的影响机理,为斜流泵叶顶间隙的选择提供了理论依据。  相似文献   

10.
双流道泵水力设计的研究   总被引:5,自引:1,他引:5  
在大量试验研究和设计实践的基础上,对双流道泵叶轮和蜗壳的一些主要几何参数进行了统计分析,发展和完善了双流道泵水力设计方法。给出了双流道泵叶轮轴面图前、后盖板圆弧半径R1、R2与比转数ns及叶轮进、出口直径Dj、D2的关系,提出了叶轮平面图流道中线方程。总结了双流道泵蜗壳基园直径D3、进口宽度b3、隔舌角φ0和面积比系数y的计算公式。  相似文献   

11.
大型低扬程泵装置优化设计与试验   总被引:1,自引:3,他引:1  
为了对配置肘形进水流道和虹吸式出水流道的立式泵装置进行深入的研究,得到一种高效的立式泵装置,在肘形进水流道和虹吸出水流道型线数学模型基础上,开发了基于流道设计参数的优化设计软件,能快速进行流道型线的绘制,使流道的型线自动符合一维流速渐变的原则,并对虹吸出水流道的最优驼峰位置进行了理论分析。结合计算流体动力学技术,对待建的某大型低扬程泵站进行了肘形进水流道和虹吸出水流道的优化设计,得到了水力性能优良的进出水流道型线方案。根据泵装置水力模型比选试验,优选出了效率高、高效运行范围宽、无不稳定运行区、汽蚀性能好的高比转数导叶式混流泵211-80模型,在配置优化了的进出水流道的基础上使泵装置在扬程 5.4 m时模型装置效率达到了79.62%。该泵装置的优化设计方法与试验结果对相同装置型式的大型低扬程泵站建设具有重要的参考价值。  相似文献   

12.
为了深入研究气力提升泵的提升性能,该文首先进行了理论分析,建立了适用于不同进气方式的气力提升模型。同时通过改变进气面积与气孔分布方式进行试验研究,试验结果与理论分析结果吻合较好,该模型在一定范围内能够较好地预测提升泵的提升流量;并且根据试验结果,进一步分析了不同进气方式对气力提升泵的液体提升量与提升效率的影响规律。结果表明:首先,7 mm方形喷嘴进气方式下,随着气流量的增加,提升液体流量先较快增加,之后上升趋势逐渐变缓,提升效率先迅速升高,达到峰值后又下降,而沉浸比升高会使峰值效率提高。其次,沉浸比为0.5时,不同进气面积下,较小的进气面积导致提升效率降低;在相同进气面积下,不同的气孔排布方式对提升液体流量与提升效率的影响并不明显。再次,当管内流型接近弹状流型时,提升效率较高,稳定性较好;在环状流下,提升泵的效率最低,稳定性差。  相似文献   

13.
为探究轴流泵叶轮导水锥的设计方法,揭示导水锥流场的内部流动特性以及不同型式导水锥流场与叶轮流场之间的相互影响关系,并对导水锥头部圆整问题进行初步探索,该文基于三维不可压缩流体的雷诺平均N-S方程和k-ε湍流模型,采用6种型式的导水锥,利用Fluent软件对各型导水锥流场及其叶轮流场进行三维流场计算。结果表明:出口流场均匀性最好的维多辛斯基式导水锥的叶轮水力效率最高,而出口流场均匀性最差的直锥式导水锥叶轮水利效率最低。叶轮对水流的预旋作用对导水锥流道出口断面轴向速度分布均匀度影响较大,而对速度加权平均偏流角和水力损失的影响很小。同时,水流预旋对导水锥出口流场的轴向速度影响较大,切向速度影响较小。导水锥流场液流越近叶轮,其受叶轮旋转的影响越大。适当增加导水锥的长度可提高叶轮水力效率,但导水锥长度过长会导致水力损失增加,建议导水锥长度最佳取值范围为叶轮外径的0.5~0.7倍。导水锥头部的圆整,可有效消除因尖锐头部造成的逆压梯度,从而减少流场的不稳定性。随导水锥头部圆整长度的增加,导水锥的水力损失降低,叶轮水力效率升高。建议导水锥头部圆整位置距导水锥头部应为导水锥长度的1/8~1/7倍。研究可为高效轴流泵水力模型设计提供参考。  相似文献   

14.
为将奇点分布法这一有优势的流体机械叶片翼型设计方法应用于轴流泵叶轮叶片设计,以平面势流理论及数值计算为基础,推导了基于适合轴流泵叶片翼型边界条件的漩涡密度函数的系统应用性计算公式,所获结果将准确确定各翼型骨线关键节点位置,它们形成的翼型骨线在满足给定设计点泵的性能参数的同时,还能形成要求的流动奇点与驻点,由此产生流动损失最小的叶片翼型。以该方法改型设计的一台轴流泵的型式试验表明,设计泵在设计点的效率由原来的78%提升到85%,特性曲线符合要求。该研究深化了轴流泵叶轮叶栅流动理论,将奇点分布理论转化为轴流泵叶轮翼型的实用设计方法,为设计技术人员提供了开发新产品的工具。  相似文献   

15.
考虑到轴流泵叶轮出口导叶进口区域水流复杂,该文在常规设计导叶基础上通过改变导叶叶片前掠和后掠的角度,期望导叶能够尽可能的回收叶轮出口的速度环量,提高轴流泵段的效率。该文采用计算流体动力学软件研究后置导叶在不同的扫掠角度下对轴流泵段水力性能的影响。以常规设计导叶为基础,一共研究计算了6种不同导叶扫掠方案,每种导叶扫掠方案又计算了8个不同流量工况点。根据数值模拟结果,分析了不同导叶扫掠角度对轴流泵段能量特性的影响,对导叶和出水弯管的水力损失进行了定量计算。最后对前掠16°导叶进行了泵段能量性能试验,并结合数值模拟对该文主要结论进行验证分析。研究结果表明:导叶扫掠角度对轴流泵段性能影响主要体现在小流量工况,且导叶叶片前掠效果比后掠好;导叶叶片前掠16°时,整流效果最好,导叶损失和出水弯管损失最小,效率最高;试验数据与数值模拟结果各点误差在3%以内,验证了数值模拟结果的可靠性、准确性。研究结果不仅有助于导叶水力性能的优化设计,同时对提高泵段的效率提供了参考。  相似文献   

16.
流场分析与智能建模在机油泵CAD中的联合应用   总被引:1,自引:1,他引:0  
针对发动机机油泵新产品设计过程中性能预测难和试验成本高的问题,提出一种将流场数值模拟和神经网络智能建模预测技术联合应用于机油泵产品设计过程的新方法。结合机油泵初始设计结构尺寸,建立其内部流场的CFD(computathonal fluid dynamics)仿真模型;通过流场数值模拟分析,获取一定量的机油泵转速、供油压力、供油温度和供油流量数据;构建描述机油泵供油特性的BP神经网络模型,利用流场数值模拟结果数据作为样本训练该网络模型;最后利用训练好的BP神经网络智能模型对各种工况下机油泵的供油特性进行预测分析。实例验证结果表明,采用文中方法取得很好的仿真分析效果,可以用于在设计阶段对发动机机油泵产品的结构进行优化并调控产品的工作特性。  相似文献   

17.
轴流泵叶轮导水锥型式设计及其流道水力特性模拟   总被引:1,自引:4,他引:1  
为探究轴流泵叶轮导水锥的设计方法,揭示导水锥流场的内部流动特性。基于三维不可压缩流体的雷诺平均N-S方程和k-ε湍流模型,结合典型的收缩曲线,设计了维多辛斯基式、五次方曲线式、双三次方曲线式等5种导水锥。利用Fluent软件对各型导水锥进行三维流场计算,分析了导水锥流道的流动特性,归纳了导水锥流场的3个流动部分以及流场轴面的速度分布规律。总结了轴向速度分布均匀度、加权平均偏流角随导水锥收缩型面的变化规律。分析各型导水锥水力损失发现:不同型式导水锥水力损失不同,直锥式导水锥损失略小,其他型式的导水锥水力损失相近。对流场均匀性相比较得出:在导水锥流场急剧收缩的断面上,轴向速度分布均匀度降低,速度加权平均偏流角和径向速度梯度增大。导水锥出口段收缩越平缓,整流能力越出色。综合考虑轴向速度均匀度和速度偏流角等指标,维多辛斯基式导水锥的整流能力最优,出口流场均匀性较好。当导水锥长度为叶轮外径的0.25~0.8倍时,导水锥长度增加,水力损失减小,导水锥出口流场品质提升。结合工程实际应用,给出导水锥长度最优取值范围为叶轮外径的0.5~0.6倍。  相似文献   

18.
为了定量研究大型泵装置导叶出口水流的速度环量对出水流道水力性能的影响,提出了泵装置导叶出口断面水流的速度环量定量表示方法和平均角速度的测量方法,分别采用数值计算和模型试验的方法研究了导叶出口水流的剩余环量对虹吸式出水流道和直管式出水流道水力损失的影响。结果表明:导叶出口水流的环量对出水流道水力损失的影响较为明显,存在使出水流道水力损失最小的最优环量,虹吸式和直管式出水流道的最优环量分别为0.972和1.308 m2/s;虹吸式出水流道和直管式出水流道最优环量时的水力损失计算值较零环量时的水力损失计算值分别小0.126和0.180 m。研究结果不仅有助于改进低扬程泵装置出水流道的优化水力设计,同时对改进轴流泵导叶的优化水力设计也有重要意义。  相似文献   

19.
不同湍流模型在轴流泵性能预测中的应用   总被引:1,自引:10,他引:1  
为了评价不同湍流模型在轴流泵性能预测中的精度,该文以南水北调工程轴流泵模型作为研究对象,分别选取了3种湍流模型标准k-ε湍流模型(standard k-ε)、重正化群k-ε湍流模型(renormalization group k-ε,RNG)和雷诺应力模型(reynolds stress model,RSM),基于SIMPLE算法(semi-implicit method for pressure-linked equations)和结构化网格,进行了轴流泵性能预测和全流场数值模拟,并以水利部天津同台测试的试验结果作为基准对预测扬程和效率进行了误差分析。研究结果表明,网格密度对模拟结果具有较大影响,较疏的网格导致性能预测精度降低,在大流量和小流量工况下预测的扬程和效率误差将达到3%以上;在最优工况下,Standard k-ε、RNG k-ε和RSM湍流模型的扬程预测误差分别为0.97%、1.12%和1.24%,效率预测误差分别为2.93%、2.49%和2.97%,可满足工程应用要求;但在非设计工况下,由于二次回流、空化等复杂流动的存在,内部流场复杂,3种湍流模型的扬程最大预测误差范围为9.40%~14.30%,效率最大预测误差范围为4.48%~8.30%。该结论将为轴流泵性能预测的可靠性提供依据。  相似文献   

20.
前置导叶调节混流泵性能的数值模拟   总被引:2,自引:4,他引:2  
利用有限元分析软件数值求解不同工况下混流泵的内部流场,了解前置导叶调节工况的基本规律,以改善混流泵在非设计工况运行时的水力性能。在叶轮叶片进口部位读取液流流入叶轮时绝对液流角、相对液流角、和绝对速度圆周分量的值,分析其随前置导叶安放角改变而变化的规律。结果表明,叶轮进口绝对液流角小于前置导叶安放角,流量越小相差的幅度越大;大流量工况下进口预旋调节的效果比小流量工况更为明显;在一定流量范围内,通过进口导叶调节使得叶轮进口液流满足无冲击进口或者较小冲角进口条件,可有效地改善混流泵在非设计工况的水力性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号