首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用枯草芽孢杆菌、米曲霉和酿酒酵母混合菌株固态发酵法生产大豆多肽饲料。利用枯草芽孢杆菌和米曲霉分泌蛋白酶降解基料中的蛋白质,使其分解成小肽;利用米曲霉将淀粉和纤维素降解为简单糖类物质;利用酿酒酵母分解糖类,产生醇香味,增加多肽饲料的适口性。以高温豆粕为原料,研究了发酵培养基组成、接种菌配比、接种量、发酵温度和发酵时间对发酵豆粕中多肽得率的影响,得到了最佳工艺条件:豆麸比为8:1(m:m),加蜜量为2%,混菌菌种比(枯草芽孢杆菌、米曲霉、酿酒酵母)为5:1:1(V:V:V),加水量为120%,接种量为25%,发酵温度为34℃,发酵时间为96 h。最终发酵物中多肽得率达54.89%,发酵产物中多肽含量为21.47%(干基)。  相似文献   

2.
本试验旨在优化复合益生菌(酿酒酵母∶米曲霉∶枯草芽孢杆菌=5∶1∶2)发酵豆粕的生产工艺参数,并考察外源添加蛋白酶对发酵豆粕品质的影响。通过模拟工厂化规模生产,测定4个料水比水平(1∶0.3、1∶0.4、1∶0.5、1∶0.6)在发酵0、24、48、72 h时的发酵温度、pH以及初水分、粗蛋白质、真蛋白质和挥发性盐基氮含量,选择复合益生菌发酵的最优生产参数,而后在该最优参数下设计加酶试验组和无酶对照组,比较添加外源蛋白酶对发酵豆粕品质的影响。结果表明:1)不同料水比条件下发酵72 h,底物温度先升高后下降,pH缓慢下降,初水分含量逐渐提高,粗蛋白质含量在1∶0.6料水比发酵48 h时有最高值47.29%,真蛋白质含量在1∶0.4料水比发酵48 h时有最高值43.34%,挥发性盐基氮含量在1∶0.6料水比发酵48 h时有最高值38.10×10-2mg/g。2)加入蛋白酶后发酵豆粕真蛋白质和干物质含量较对照组分别降低了2.59和4.11个百分点(P<0.05),游离氨基酸含量提高了0.36个百分点(P<0.05),豆粕大分子蛋白质降解程度显著升高(P<0.05)。由此可知,复合益生菌可实现对豆粕低料水比发酵,添加蛋白酶可进一步改善发酵豆粕的品质。推荐发酵参数为复合益生菌(酿酒酵母∶米曲霉∶枯草芽孢杆菌=5∶1∶2)总添加量0.5%,蛋白酶添加量为0.01%,料水比1∶0.4,发酵48 h。酶菌协同作用可进一步提高发酵豆粕中可利用氮的质量。  相似文献   

3.
为探讨发酵豆粕生产的最适条件,本研究测定不同的菌种接种量、发酵温度、水分、发酵时间、辅料等几种因子对豆粕发酵效果的影响。结果显示枯草芽孢杆菌、酿酒酵母菌、乳酸菌的添加比例分别为3‰、2‰、1‰,蛋白酶添加量为2‰,菌种活化时间为0.5 h,发酵的初始水分为38%,温度保持在30~42 ℃时,发酵豆粕的理化指标最优,其中小肽含量可达20%以上,乳酸含量可达3.5%以上,并且质量稳定。  相似文献   

4.
以普通豆粕、挤压豆粕、膨化豆粕为发酵材料,以米曲霉、枯草芽孢杆菌和酿酒酵母为菌种,以三个不同加水量组合为条件,采用L9(34)正交试验设计,设置空列和两次重复,检测蛋白质水解度、酸溶蛋白和游离氨基酸含量,进行数据的极差、方差分析和多重比较,寻找固态发酵豆粕工艺中前处理方法、菌种组合与加水量组合对提高蛋白质降解度的优化参数组合。对于提高发酵豆粕蛋白质水解度,膨化豆粕工艺优于普通豆粕和挤压豆粕,米曲霉菌种优于枯草芽胞杆菌及其与米曲霉两者的组合,较高加水量优于低加水量;酸溶蛋白和游离氨基酸含量与蛋白质水解度具有高度的一致性,可以使用蛋白质水解度作为蛋白质降解度的评价指标;对于蛋白质降解速度,好氧发酵是厌氧发酵的5.3倍。综合试验结果得到的优化工艺参数组合为A3B1C3。  相似文献   

5.
菌种和发酵条件对发酵豆粕营养成分的影响   总被引:1,自引:0,他引:1  
研究利用单一枯草芽孢杆菌、枯草芽孢杆菌和米曲霉混合菌种分别对豆粕进行固态发酵,通过单因素和正交试验对发酵时间、pH、温度、接种量和菌种比例进行优化,比较研究菌种和发酵条件对发酵豆粕营养成分的影响.结果表明:用枯草芽孢杆菌和米曲霉混合菌种发酵豆粕比用单一菌种枯草芽孢杆菌发酵更有利于提高发酵豆粕营养水平,发酵豆粕最优的方案为枯草芽孢杆菌和米曲霉混合菌种比例为2∶1,初始pH为7.5,温度为37℃,发酵时间为48 h.  相似文献   

6.
固态发酵生产豆粕多肽饲料的温度分段调控研究   总被引:1,自引:0,他引:1  
试验研究温度分段控制对豆粕固态发酵生产豆粕多肽饲料的影响。选用普通饲料豆粕为原料,米曲霉作为发酵菌种,在对菌株生长性质和蛋白酶学性质研究的基础上,以豆粕蛋白水解度为测定指标,对影响菌株发酵豆粕制备大豆肽的温度因素进行了分段研究,并运用混料设计法对不同温度的不同时间段进行了优化预测及验证。结果表明:在用米曲霉固态发酵豆粕的过程中,通过温度分段控制,可以达到生产多肽饲料的目的(豆粕蛋白水解度10%以上),并得到了最优发酵条件:0~33.5 h、26℃;33.5~50 h、23℃;50~65 h、45℃,在此条件下,豆粕蛋白的水解度为19.5%。温度分段控制对固态发酵生产豆粕多肽饲料影响明显,可大幅度提高豆粕蛋白的水解度(比原有工艺提高了140%)。  相似文献   

7.
本试验旨在研究应用固态发酵技术改善香蕉茎叶粉养分组成的工艺参数及鹅对其养分的利用率。选择米曲霉和产朊假丝酵母作为发酵菌种,逐步探究5个因素(单菌种发酵、硫酸铵添加量、米曲霉和产朊假丝酵母接种比例、混合菌液接种量)对发酵后香蕉茎叶粉蛋白质含量的影响。利用正交设计筛选最优发酵温度、底物水分和发酵时间的组合。结果显示:米曲霉和产朊假丝酵母单独发酵均能显著或极显著提高发酵后香蕉茎叶粉的粗蛋白质含量(P0.05或P0.01)。添加硫酸铵能显著或极显著提高发酵后香蕉茎叶粉的真蛋白质含量(P0.05或P0.01),其中添加2%硫酸铵组的真蛋白质含量最高。米曲霉∶产朊假丝酵母接种比例为2∶1的处理发酵后香蕉茎叶粉的蛋白质净增加量显著或极显著高于比例为1∶1、1∶3和3∶2的处理(P0.05或P0.01)。正交试验结果显示,以4%的接种量、接种比例为2∶1(米曲霉∶产朊假丝酵母)、2%的硫酸铵添加量,在基质水分为50%,30℃的环境下发酵4 d效果最佳。经过该工艺发酵后的香蕉茎叶粉粗蛋白质含量提高了33.82%,氨基酸分析结果显示,除赖氨酸和精氨酸外其余的15种氨基酸含量均有不同程度的提高。马冈鹅的代谢试验结果显示,发酵后香蕉茎叶粉中的粗蛋白质利用率提高了52.66%,极显著高于发酵前(P0.01);此外,代谢能和能量利用率也都略有提高(P0.05)。由此可见,经过该发酵工艺发酵后的香蕉茎叶粉营养价值不仅得到了改善,也促进了鹅对其养分的消化吸收。  相似文献   

8.
为探究不同益生菌固态湿发酵对豆粕营养品质的影响,选择地衣芽孢杆菌(Bac-l)、凝结芽孢杆菌(Bac-c)、罗伊氏乳杆菌(Lac)、米曲霉(Asp)、酿酒酵母(Sac)、沼泽红假单胞菌(Pho) 6种益生菌,固态发酵48 h,以粗蛋白、酸溶蛋白、蛋白酶、抗营养因子等为指标,从发酵豆粕营养指标、酶活性、抗营养因子含量等方面进行评定。结果表明:沼泽红假单胞菌发酵豆粕粗蛋白含量增加至31.55%(P<0.05);酿酒酵母和沼泽红假单胞菌发酵豆粕后酸溶蛋白含量提升至12.98%(P<0.05);罗伊氏乳杆菌能够有效降低pH(P<0.05),提高干物质回收率达到94%(P<0.05);发酵豆粕时,沼泽红假单胞菌的酸性蛋白酶活性最高,酿酒酵母的中性蛋白酶活性最高,地衣芽孢杆菌的碱性蛋白酶活性最高(P<0.05),酿酒酵母的植酸酶和纤维素酶活性最优;米曲霉分解大分子蛋白质的能力最强,对3种抗营养因子(大豆球蛋白、β-伴大豆球蛋白、胰蛋白酶抑制因子)的降解率也最高,分别达到64.71%、78.94%和98.07%(P<0.05)。说明益生菌发酵可以改善豆粕营养品质,...  相似文献   

9.
本试验旨在优化豆粕米曲霉(Aspergillus oryzae)固体发酵条件,使豆粕中的植酸降解到最低水平且发酵菌种的生物量达到最大值,同时了解植酸降解和发酵菌种生物量增长的相关性.采用Box-Behnken设计的响应面法来优化料水比、接种量和发酵时间,试验共设17组,共5个发酵条件,每个发酵条件设3个水平(料水比分别...  相似文献   

10.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P0.05),粗纤维含量则显著下降(P0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

11.
本试验以小肽含量为指标,对解淀粉芽孢杆菌单菌固态发酵豆粕以及解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母菌3个菌种混菌固态发酵豆粕的工艺条件进行优化,并对其发酵前后的营养物质含量变化进行研究。通过解淀粉芽孢杆菌、植物乳杆菌和酿酒酵母3个试验菌的生长曲线确定其接种到固态培养基的最佳接种时间。采用单因素试验设计研究解淀粉芽孢杆菌接种量、温度、料水比、发酵时间4个因素对豆粕发酵产小肽的影响,并在此基础上采用四因素三水平的正交试验设计对单、混菌固态发酵豆粕的工艺条件进行优化。对豆粕发酵前后豆粕营养物质含量、大豆球蛋白含量、蛋白质分子质量、发酵产物p H进行测定。结果显示:3株试验菌接在各自种子培养基扩大培养至21 h为其接种到固态培养基的最佳时间。解淀粉芽孢杆菌单菌固态发酵豆粕的最佳工艺条件为:接种量为10%、温度为40℃、料水比为1.0∶1.2、发酵时间为72 h;解淀粉芽孢杆菌、植物乳杆菌、酿酒酵母混菌固态发酵豆粕的最佳工艺条件为:接种量为15%、温度为31℃、料水比为1.0∶1.0发酵时间为120 h,3个菌株的接种比例为:解淀粉芽孢杆菌∶植物乳杆菌∶酿酒酵母=9∶3∶2。经微生物发酵后,发酵产物中小肽、粗蛋白质、粗灰分、粗脂肪含量较发酵前均得到显著提高(P<0.05),粗纤维含量则显著下降(P<0.05);单菌发酵组和混菌发酵组发酵产物中大豆球蛋白含量均较未发酵组显著降低(P<0.05);单菌发酵组和混菌发酵组发酵产物中蛋白质分子质量较未发酵组降低;混菌发酵组发酵产物的p H较未发酵组显著降低(P<0.05),而单菌发酵组发酵产物的p H则与未发酵组差异不显著(P>0.05)。综上所述,豆粕经微生物固态发酵后营养价值在一定程度上得到改善,大分子蛋白质被降解,p H也发生了变化,并且单菌发酵和混菌发酵的效果存在差异。  相似文献   

12.
邓永平  肖凯  车鑫  刘晓兰 《中国饲料》2023,1(3):149-154
本试验以农产品加工副产物玉米蛋白粉、米糠和豆粕为原料,通过多菌株固态发酵生产蛋白质饲料。以可溶性蛋白含量为指标,经单因素和正交试验优化发酵工艺条件。结果表明:培养基中玉米蛋白粉、米糠和豆粕的质量比例为5:2:3,含水量为53%(V/m),米曲霉、枯草芽孢杆菌和产朊假丝酵母种子液按体积比3:2:1组成复合种子液,接种量为6%,在32℃发酵72 h。在上述优化条件下发酵后玉米蛋白粉饲料中可溶性蛋白含量为19.37%、粗蛋白质约40.22%、干物质约54.17%、蛋白酶活力2926.52 U/g、羧甲基纤维素酶活力1092.07 U/g。因此表明,通过多菌株发酵显著提高了饲料营养价值。  相似文献   

13.
试验以鲤鱼幼鱼粉状配合饲料为原料,以枯草芽孢杆菌和酿酒酵母菌3:7为最佳接种比例,采用单因素试验筛选最佳发酵条件。试验结果表明:益生菌发酵鲤鱼幼鱼粉状配合饲料最佳发酵条件为:接种量5.00%、水分含量50.0%、发酵时间48 h、发酵温度34℃。在此试验条件下,测得发酵产物中真蛋白含量较未发酵组相比显著提高。  相似文献   

14.
王诚刚  郭芸  赵雯 《饲料研究》2023,(3):102-105
试验旨在研究乳酸菌发酵豆粕工艺参数优化及其对豆粕营养成分的影响。采用单因素试验和正交试验探究发酵时间、发酵温度、乳酸菌粉接种量、液料比对发酵豆粕中粗蛋白含量的影响,优化发酵工艺参数,比较最优工艺条件下发酵前后豆粕中各营养成分的差异。结果显示,影响发酵豆粕中粗蛋白含量的因素排序为发酵时间>乳酸菌粉接种量>发酵温度>液料比,最优工艺参数为发酵温度32℃、乳酸菌粉接种量1.5%、发酵时间72 h和液料比0.8 L/kg。在最佳工艺条件下,发酵后豆粕中粗蛋白含量达49.64%。与发酵前相比,发酵豆粕中粗蛋白含量显著高于发酵前(P<0.05),胰蛋白酶抑制因子含量降解率达97.32%(P<0.05)。研究表明,利用乳酸菌对豆粕进行固态发酵可进一步有效改善豆粕营养价值,提高豆粕利用率。  相似文献   

15.
本试验旨在优化白地霉、米曲霉、绿色木霉和枯草芽孢杆菌混菌固态发酵白酒糟开发为蛋白质饲料的条件,并评定其营养价值。将白地霉、米曲霉、绿色木霉和枯草芽孢杆菌按照1∶1∶1∶1混合后按10%接种到培养基中,采用L16(54)正交试验设计,共5个发酵条件,分别为基料、尿素、磷酸二氢钾、p H、水分,每个条件4个变量,共16组发酵条件。按条件配制好的混合物放置于(30±2)℃中培养72 h。对发酵前后真蛋白质、粗纤维含量进行极差分析确定最优条件,再比较最优条件发酵前后白酒糟营养水平和氨基酸组成的变化。结果显示:1)基料按照80%白酒糟、10%麸皮、5%玉米粉、5%菜籽粕配比,尿素添加量为1.5%,磷酸二氢钾添加量为0.7%,p H为5、水分为50%时发酵效果最好,为最优发酵条件。2)最优条件下发酵后白酒糟与发酵前相比,真蛋白质含量提高了57.85%(P0.01);粗纤维、酸性洗涤纤维、中性洗涤纤维、粗脂肪含量分别降低了42.39%、31.95%、27.73%、21.48%(P0.01);钙、磷含量分别提高了16.67%和68.18%(P0.01);总氨基酸含量提高了24.47%,其中赖氨酸、蛋氨酸、苏氨酸、缬氨酸、亮氨酸、异亮氨酸和脯氨酸含量分别提高了109.68%、38.09%、39.39%、71.43%、28.93%、10.87%和3.70%。综上可得,利用白地霉、米曲霉、绿色木霉和枯草芽孢杆菌混菌发酵白酒糟的最佳条件是:基料组成80%白酒糟、10%麸皮、5%玉米粉、5%菜籽粕,尿素1.5%,磷酸二氢钾0.7%,p H 5,水分50%,发酵产物的真蛋白质含量为24.34%。  相似文献   

16.
试验旨在研究利用酿酒酵母(Saccharomyces cerevisiae)Yn制备发酵饲料的合适参数及发酵后饲料品质。试验以酵母活菌数为检测指标,对发酵原料添加量、糖化酶添加量、接种量、料水比和发酵温度等参数进行单因素试验,通过响应面设计进一步确定糖化酶添加量、接种量和发酵温度的最优条件,同时评价最优固态发酵条件下发酵饲料的营养品质。结果表明:最适的发酵配方为玉米粉50%,豆粕20%;酵母菌Yn最佳的发酵条件为糖化酶添加量220 U/g、接种量1.4%(w/w)、料水比1:0.8(w/v),优化后的酵母菌数(折算干重)达到1.30×10~(10) CFU/g;粗蛋白、总酚、维生素B_2和低分子量肽含量在发酵后显著提高(P0.05),而粗脂肪含量显著降低(P0.05)。以上结果表明,该发酵条件在饲料发酵方面具有较好的应用前景。  相似文献   

17.
混合菌发酵豆渣生产蛋白质饲料的研究   总被引:1,自引:0,他引:1  
莫重文 《中国饲料》2007,(14):36-38
本文研究了用米曲霉(A3.042)、黑曲霉(H-16)和啤酒酵母,混合菌株固态发酵豆渣生产饲料蛋白质。研究了发酵料坯组成、接种菌配比、接种量及发酵温度对发酵豆渣中蛋白质含量的影响,通过L9(34)正交试验得到了在30℃最适温度下的发酵料坯组成为85∶15、接种菌配比为1∶1∶2及接种量为12%的最佳工艺条件,发酵周期为72h。其发酵豆渣产品中粗蛋白质含量可达29.76%,比原来增加43.07%。  相似文献   

18.
枯草芽孢杆菌固体发酵豆粕条件的优化   总被引:1,自引:0,他引:1  
本试验采用枯草芽孢杆菌对豆粕进行固体发酵,通过正交试验探讨不同碳源组合、发酵时间、培养温度、水分比例、接种菌量等因素对发酵豆粕粗蛋白质增加率和蛋白质水解度的影响。结果表明,影响枯草芽孢杆菌固体发酵豆粕粗蛋白质增加率的条件因素的主次顺序为玉米粉比例>培养时间>温度>麸皮比例>水分比例>次粉比例>接种菌量,表观分析固体发酵条件最佳组合为A3B1C3D3E2F2G1,粗蛋白质增加率达到28.05%;影响发酵豆粕蛋白质水解率的条件因素的主次顺序为温度>培养时间>玉米粉比例>接种菌量>麸皮比例>次粉比例>水分比例,表观分析固体发酵条件最佳组合为A2B3C1D3E3F3G1,蛋白质水解度达到46.46%。枯草芽孢杆菌固体发酵豆粕的粗蛋白质增加率与蛋白质水解率存在明显的正相关(R2=0.556)。  相似文献   

19.
本试验以蚕沙为原料,利用米曲霉发酵生产果胶酶,通过单因素试验和正交设计试验对产酶条件进行了优化,试验结果显示:在培养基初始pH为自然,蚕沙添加量为4%,接种量4%,发酵温度36℃,发酵时间96 h的培养条件下,测得酶活为131.3 U/mL,比初始培养条件的酶活力提高了229%。  相似文献   

20.
研究旨在优化微生物固态发酵提高红薯淀粉渣真蛋白含量的工艺。以红薯淀粉渣为主要原料,利用14种不同类型菌株进行单因素发酵试验,并利用响应面法优化发酵条件。在不同类型的微生物中,米曲霉发酵后产物的真蛋白含量最高;最佳的发酵菌种组合为米曲霉+巨大芽孢杆菌+库德里阿兹威氏毕赤酵母,接种比例为3:2:1,接种量为1×106CFU/g DM;响应面法优化的最佳发酵条件(温度33℃、初始含水量66%、时间86 h)下,红薯淀粉渣发酵饲料真蛋白含量为12.11%,约为未发酵底物的3倍,接近模型预测值。复合微生物固态发酵是提高红薯淀粉渣发酵饲料真蛋白含量的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号