首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A recently designed single-crystal surface calorimeter has been deployed to measure the energy difference between two solid surface structures. The clean Pt{100} surface is reconstructed to a stable phase in which the surface layer of platinum atoms has a quasi-hexagonal structure. By comparison of the heats of adsorption of CO and of C(2)H(4) on this stable Pt{100}-hex phase with those on a metastable Pt{100}-(1x1) surface, the energy difference between the two clean phases was measured as 20 +/- 3 and 25 +/- 3 kilojoules per mole of surface platinum atoms.  相似文献   

2.
Scanning tunneling microscopy and monoenergetic molecular beams have been used to obtain real-space atomic images of the competition between abstractive and dissociative chemisorption. The size distribution of Si-F adsorbates on the Si(111)-(7x7) surface was examined as a function of the incident translational energy of the F(2) molecules. For F(2) molecules with 0.03 electron volt of incident energy, the dominant adsorbate sites were isolated Si-F species. As an F(2) molecule with low translational energy collides with the surface, abstraction occurs and only one of the F atoms chemisorbs; the other is ejected into the gas phase. For F(2) molecules with 0.27 electron volt of incident energy, many adjacent Si-F adsorbates (dimer sites) were observed because F(2) molecules with high translational energy collide with the surface and chemisorb dissociatively so that both F atoms react to form adjacent Si-F adsorbates. For halogens with very high incident energy (0.5-electron volt Br(2)), dissociative chemisorption is the dominant adsorption mechanism and dimer sites account for nearly all adsorbates.  相似文献   

3.
The high performance of Au-CeO2 and Au-TiO2 catalysts in the water-gas shift (WGS) reaction (H2O + CO-->H2 + CO2) relies heavily on the direct participation of the oxide in the catalytic process. Although clean Au(111) is not catalytically active for the WGS, gold surfaces that are 20 to 30% covered by ceria or titania nanoparticles have activities comparable to those of good WGS catalysts such as Cu(111) or Cu(100). In TiO(2-x)/Au(111) and CeO(2-x)/Au(111), water dissociates on O vacancies of the oxide nanoparticles, CO adsorbs on Au sites located nearby, and subsequent reaction steps take place at the metal-oxide interface. In these inverse catalysts, the moderate chemical activity of bulk gold is coupled to that of a more reactive oxide.  相似文献   

4.
The structure of self-assembled monolayers (SAMs) of long-chain alkyl sulfides on gold(111) has been resolved by density functional theory-based molecular dynamics simulations and grazing incidence x-ray diffraction for hexanethiol and methylthiol. The analysis of molecular dynamics trajectories and the relative energies of possible SAM structures suggest a competition between SAM ordering, driven by the lateral van der Waals interaction between alkyl chains, and disordering of interfacial Au atoms, driven by the sulfur-gold interaction. We found that the sulfur atoms of the molecules bind at two distinct surface sites, and that the first gold surface layer contains gold atom vacancies (which are partially redistributed over different sites) as well as gold adatoms that are laterally bound to two sulfur atoms.  相似文献   

5.
The shapes of noble metal nanocrystals (NCs) are usually defined by polyhedra that are enclosed by {111} and {100} facets, such as cubes, tetrahedra, and octahedra. Platinum NCs of unusual tetrahexahedral (THH) shape were prepared at high yield by an electrochemical treatment of Pt nanospheres supported on glassy carbon by a square-wave potential. The single-crystal THH NC is enclosed by 24 high-index facets such as {730}, {210}, and/or {520} surfaces that have a large density of atomic steps and dangling bonds. These high-energy surfaces are stable thermally (to 800 degrees C) and chemically and exhibit much enhanced (up to 400%) catalytic activity for equivalent Pt surface areas for electro-oxidation of small organic fuels such as formic acid and ethanol.  相似文献   

6.
We found that anthraquinone diffuses along a straight line across a flat, highly symmetric Cu111 surface. It can also reversibly attach one or two CO2 molecules as "cargo" and act as a "molecule carrier," thereby transforming the diffusive behavior of the CO2 molecules from isotropic to linear. Density functional theory calculations indicated a substrate-mediated attraction of approximately 0.12 electron volt (eV). Scanning tunneling microscopy revealed individual steps of the molecular complex on its diffusion pathway, with increases of approximately 0.03 and approximately 0.02 eV in the diffusion barrier upon attachment of the first and second CO2 molecule, respectively.  相似文献   

7.
We have measured the quantum yield for exciting the motion of a single Co atom in CoCu(n) linear molecules constructed on a Cu(111) surface. The Co atom switched between two lattice positions during electron excitation from the tip of a scanning tunneling microscope. The tip location with highest probability for inducing motion was consistent with the position of an active state identified through electronic structure calculations. Atom motion within the molecule decreased with increased molecular length and reflected the corresponding variation in electronic structure.  相似文献   

8.
Anthraquinone molecules self-assemble on a Cu(111) surface into a large two-dimensional honeycomb network (square root of 304 x square root of 304)R23 degrees with pore diameters of approximately 50 A. The spontaneous formation of a pattern containing pores roughly five times larger than the size of the constituent molecules is unprecedented. The network originates from a delicate balance between substrate-mediated repulsion and intermolecular attraction involving an unusual chemical motif: hydrogen bonding between a carbonyl oxygen and an aromatic hydrogen atom. Substrate-mediated long-range adsorbate-adsorbate repulsion has been observed on anisotropic surfaces and in the context of the absence of pattern formation. Its applicability for the design of tailored molecular films is explored here.  相似文献   

9.
采用室内实验方法,研究了两种低分子有机酸(草酸和柠檬酸)对生物炭(热解温度200、300、400、500℃)吸附Cu(Ⅱ)的影响。结果表明:柠檬酸浓度在10 mg·L~(-1)以下时,其在生物炭表面的吸附为Cu(Ⅱ)提供了更多的吸附位点,从而促进了Cu(Ⅱ)吸附;柠檬酸浓度增大以后,堵塞生物炭的内部孔隙,从而抑制了Cu(Ⅱ)在生物炭上的吸附。草酸浓度在0.5~50 mg·L~(-1)范围内,对生物炭吸附Cu(Ⅱ)始终为抑制作用,这与液相中的草酸与Cu(Ⅱ)的强络合、固相吸附的草酸竞争Cu(Ⅱ)吸附位点(比如占据含氧官能团、生物炭内部孔隙)有关。  相似文献   

10.
The structure of organic monolayers on liquid surfaces depends sensitively on the details of the molecular interactions. The structure of a stearic acid film on a mercury surface was measured as a function of coverage with angstrom resolution. Unlike monolayers on water, the molecules were found here to undergo a transition from surface-parallel to surface-normal orientation with increasing coverage. At high coverage, two condensed hexatic phases of standing-up molecules were found. At low coverage, a two-dimensional (2D) gas phase and condensed single- and double-layered phases of flat-lying molecular dimers were revealed, exhibiting a 1D longitudinal positional order. This system should provide a broader tunability range for nanostructure construction than solid-supported self-assembled monolayers.  相似文献   

11.
Kendall K 《Science (New York, N.Y.)》1994,263(5154):1720-1725
There is a difference between adhesion at the molecular level and adhesion in engineering. There is no doubt that molecules of solid materials stick together and can be separated mechanically. The problem is explaining the connection between molecular attractions and mechanical measurements. False ideas such as keying and gluing require critical assessment because they confuse molecules and mechanics. Mechanisms such as adhesive hysteresis, stringing, and clustering deserve evaluation. A rational theory of these phenomena should be based on the theoretical concept of reversible work of adhesion and on the measured quantity of adhesive energy, which includes the extra energy required to restructure the interface as surfaces move.  相似文献   

12.
Femtosecond laser irradiation is used to excite adsorbed CO molecules on a Cu110 surface; the ensuing motion of individual molecules across the surface is characterized on a site-to-site basis by in situ scanning tunneling microscopy. Adsorbate motion both along and perpendicular to the rows of the Cu110 surface occurs readily, in marked contrast to the behavior seen for equilibrium diffusion processes. The experimental findings for the probability and direction of the molecular motion can be understood as a manifestation of strong coupling between the adsorbates' lateral degrees of freedom and the substrate electronic excitation produced by the femtosecond laser radiation.  相似文献   

13.
A synthetic pathway is described to construct "in bulk" two-dimensional (2D) polymers shaped as molecular sheets. A chiral oligomeric precursor is used that contains two reactive sites, a polymerizable group at one terminus and a reactive stereogenic center near the middle of the molecule. The bulk reaction yields bilayer 2D polymers of molecular weight in the order of millions and a monodisperse thickness of 50.2 angstroms. The 2D molecular objects form through molecular recognition by the oligomers, which self-organize into layers that place the reactive groups within specific planes. The oligomers become catenated by two different stitching reactions involving the reactive sites. At room temperature, stacks of these molecular objects can organize as single crystals and at higher temperatures melt into smectic liquid crystals. Nonlinear optical experiments reveal that solid films containing the 2D polymers form structures that are thermally and temporally more stable than those containing analogous 1D polymers. This observation suggests that the transformation of common polymers from a 1D to a 2D architecture may produce generations of organic materials with improved properties.  相似文献   

14.
Understanding how molecules can restructure the surfaces of heterogeneous catalysts under reaction conditions requires methods that can visualize atoms in real space and time. We applied a newly developed aberration-corrected environmental transmission electron microscopy to show that adsorbed carbon monoxide (CO) molecules caused the {100} facets of a gold nanoparticle to reconstruct during CO oxidation at room temperature. The CO molecules adsorbed at the on-top sites of gold atoms in the reconstructed surface, and the energetic favorability of this reconstructed structure was confirmed by ab initio calculations and image simulations. This atomic-scale visualizing method can be applied to help elucidate reaction mechanisms in heterogeneous catalysis.  相似文献   

15.
Inelastic electron tunneling spectroscopy at low temperatures was used to investigate vibrations of Au(111) and Cu(111). The low-energy peaks at 9 millielectron volts (meV) on Au(111) and 21 meV on Cu(111) are attributed to phonons at surfaces. On Au(111), the phonon energy is not influenced by the different stacking of the surface atoms, but it is considerably influenced by different atomic distances within the surface layer. The spatial variation of the phonon excitation is measured in inelastic electron tunneling maps on Au(111), which display atomic resolution. This atomic resolution is explained in terms of site-specific phonon excitation probabilities.  相似文献   

16.
The adsorption, diffusion, and clustering of water molecules on a Pd(111) surface were studied by scanning tunneling microscopy. At 40 kelvin, low-coverage water adsorbs in the form of isolated molecules, which diffuse by hopping to nearest neighbor sites. Upon collision, they form first dimers, then trimers, tetramers, and so on. The mobility of these species increased by several orders of magnitude when dimers, trimers, and tetramers formed, and decreased again when the cluster contained five or more molecules. Cyclic hexamers were found to be particularly stable. They grow with further exposure to form a commensurate hexagonal honeycomb structure relative to the Pd(111) substrate. These observations illustrate the change in relative strength between intermolecular hydrogen bonds and molecule-substrate bonds as a function of water cluster size, the key property that determines the wetting properties of materials.  相似文献   

17.
The electronic connection of single molecules to nanoelectrodes on a surface is a basic, unsolved problem in the emerging field of molecular nanoelectronics. By means of variable temperature scanning tunneling microscopy, we show that an organic molecule (C90H98), known as the Lander, can cause the rearrangement of atoms on a Cu(110) surface. These molecules act as templates accommodating metal atoms at the step edges of the copper substrate, forming metallic nanostructures (0.75 nanometers wide and 1.85 nanometers long) that are adapted to the dimensions of the molecule.  相似文献   

18.
Fractal surfaces of proteins   总被引:10,自引:0,他引:10  
M Lewis  D C Rees 《Science (New York, N.Y.)》1985,230(4730):1163-1165
Fractal surfaces can be used to characterize the roughness or irregularity of protein surfaces. The degree of irregularity of a surface may be described by the fractal dimension D. For protein surfaces defined with probes in the range of 1.0 to 3.5 angstroms in radius, D is approximately 2.4 or intermediate between the value for a completely smooth surface (D = 2) and that for a completely space-filling surface (D = 3). Individual regions of proteins show considerable variation in D. These variations may be related to structural features such as active sites and subunit interfaces, suggesting that surface texture may be a factor influencing molecular interactions.  相似文献   

19.
The atomic force microscope (AFM) was used to image an electrode surface at atomic resolution while the electrode was under potential control in a fluid electrolyte. A new level of subtlety was observed for each step of a complete electrochemical cycle that started with an Au(111) surface onto which bulk Cu was electrodeposited. The Cu was stripped down to an underpotential-deposited monolayer and finally returned to a bare Au(111) surface. The images revealed that the underpotential-deposited monolayer has different structures in different electrolytes. Specifically, for a perchloric acid electrolyte the Cu atoms are in a close-packed lattice with a spacing of 0.29 +/- 0.02 nanometer (nm). For a sulfate electrolyte they are in a more open lattice with a spacing of 0.49 +/- 0.02 nm. As the deposited Cu layer grew thicker, the Cu atoms converged to a (111)-oriented layer with a lattice spacing of 0.26 +/- 0.02 nm for both electrolytes. A terrace pattern was observed during dissolution of bulk Cu. Images were obtained of an atomically resolved Cu monolayer in one region and an atomically resolved Au substrate in another in which a 30 degrees rotation of the Cu monolayer lattice from the Au lattice is clearly visible.  相似文献   

20.
The trapping of single molecules on surfaces without the formation of strong covalent bonds is a prerequisite for molecular recognition and the exploitation of molecular function. On nanopatterned surfaces, molecules may be selectively trapped and addressed. In a boron nitride nanomesh formed on Rh(111), the pattern consisted of holes 2 nanometers in diameter on a hexagonal superlattice, separated by about 3 nanometers. The trapping was further investigated with density functional theory and the photoemission of adsorbed xenon, where the holes were identified as regions of low work function. The analysis showed that the trapping potential was localized at the rims of the holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号