首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
<正>马铃薯是我国第四大粮食作物,在生长过程中易受多种病毒侵染,其中马铃薯帚顶病毒(potato mop-top virus,PMTV)致病性强、危害严重,被我国列入进境植物检疫禁止进境物名录。该病毒于1966年在爱尔兰和北苏格兰被首次发现(CalvertHarriso,1966),随后扩散蔓延到世界诸多马铃薯主产区。感染该病毒的植株主要表现为帚顶,上部叶片出现褪绿V型环纹,基部叶片出现不规则黄色斑块、环纹和  相似文献   

2.
2011年6月,在巴西Goiás州Cristalina县的一个商业种植园中发现一些马铃薯植株的叶片特别是老叶表现叶片卷曲、脉间褪绿等症状,并且该种植园B型烟粉虱(Bemisia tabaci)发生严重。从表现症状的植株上采集4个块茎样品,用于检测马铃薯植株是否受到以下4种病毒的侵染:番茄褪绿病毒(Tomato chloro-  相似文献   

3.
通过对含马铃薯病毒PVA的毒源马铃薯和毒源烟草茎尖在试管中培养 ,保存PVA的效果证明 ,在无菌条件下切取毒源马铃薯和毒源烟草茎尖0.6~1cm ,在盛有MS培养基的试管中培养 ,或在试管中长至 10~12cm时切单节段更新试管培养 ,均可正常生长发育。利用电镜检测筛选出 5管PVA纯毒源材料进一步试验证明 ,在毒源马铃薯和毒源烟草生长发育的不同时期 ,植株内的PVA含量不同 ;毒源马铃薯和毒源烟草试管苗移入温室栽培可正常生长发育。接种指示植物证明 ,毒源马铃薯和毒源烟草试管苗中的PVA与温室常规保存的PVA有相同的侵染力  相似文献   

4.
引起辣椒花叶、枯顶的一个病毒分离物的鉴定   总被引:1,自引:0,他引:1  
 从河北望都辣椒地分离到一株辣椒病毒分离物.测定表明能侵染茄科、苋科、豆科、菊科、藜科的25种植物,不能侵染葫芦科和十字花科等13种植物.桃蚜(Myzus persicae)非持久性传毒;钝化温度65—70℃,稀释限点10-4—10-5体外保毒期6天(20—22℃);病毒颗粒呈球形,直径约25nm;ISEM测定它与蚕豆萎蔫病毒(BBWV)关系密切;电镜下观察到BBWV所特有的长管状内含体和布纹状结晶体,认为该分离物是BBWV.但寄主范围和寄主反应与文献报道的BBWV各分离物有所不同,可能是另一毒株。  相似文献   

5.
多效唑(MET)又名PP333,属三唑类化合物,系英国ICI公司1981年公开的一种广谱的植物生长延缓剂,兼有杀菌作用。化学名称(2RS,3RS)-1-(4-氯苯基)-4.4-二甲基-2-(1H-1,2,4-三唑-1-基)戊醉-3。纯品为白色结晶,在25℃以下能稳定6个月以上,熔点165-166℃,稳定性强。稀溶液在任何PH值或光下均稳定,低毒,大白鼠急性经口毒性LD_(50)为1365毫克/公斤,经皮LD_(50)为1000毫克/公斤。国内1984年由江苏省农药研究所和建湖县农药厂共同试验成功,由建湖农药厂最先生产,我们把多效唑在油菜、马铃薯、水稻上进行试验、示范和  相似文献   

6.
马铃薯是重要的粮食和经济作物。马铃薯Y病毒(potato virus Y,PVY)是危害马铃薯安全生产的重要病毒。近年来,危害我国马铃薯的PVY株系组成发生了显著变化。PVY重组型株系尤其是PVYNTN-NW SYRI和SYRII型成为优势株系,但与传统株系分离物相比,优势株系分离物在不同寄主上的侵染性及其致病力还不清楚。本研究分析了PVYN株系代表性分离物PVYN605和PVYNTN-NWSYRI型分离物GZ在本氏烟、普通烟和辣椒上的侵染性,比较了二者在本氏烟和普通烟上的致病力。结果表明,PVYN605和PVYNTN-NWSYRI-GZ分离物均能侵染本氏烟和普通烟,并在普通烟上引起叶脉坏死;PVYN605不能系统侵染辣椒品种‘特大牛角王’,而PVYNTN-NWSYRI-GZ可系统侵染辣椒品种特大牛角王。PVYNTN-NWSYRI-GZ在本氏烟细胞间的移动速度明显慢于PVYN  相似文献   

7.
了解白粉病在小麦顶三叶上(从旗叶起,旗叶为倒一叶,其下位叶为倒二叶,倒二叶下位叶为倒三叶,下同)的发生规律,对于及时展开小麦白粉病的防治,保护顶三叶功能有重要意义。我们根据田间系统调查资料,作如下分析。 一、顶三叶间发病的相关回归关系 1.倒二叶与倒三叶发病具有同步性 从图一可见,小麦顶三叶发生白粉病趋势基本一致,从零星发病开始,病叶率逐渐  相似文献   

8.
单克隆抗体及其在植物病毒上的应用   总被引:1,自引:0,他引:1  
一、前言在植物病毒血清学诊断鉴定方面,目前所应用的技术几乎全部依赖于抗源—抗体反应这一基本原理。从常规的试管沉淀、免疫双扩散、乳胶凝集,反向间接血球凝集试验到较快速、灵敏的荧光抗体技术、免疫电镜和酶联免疫吸附技术(ELISA)等都是如此。由于传统方法制备的抗病毒抗体,都是含有  相似文献   

9.
10.
为明确巴氏新小绥螨Neoseiulus barkeri对马铃薯腐烂茎线虫Ditylenchus destructor的捕食能力,以马铃薯腐烂茎线虫和椭圆食粉螨Aleuroglyphus ovatus为猎物饲养巴氏新小绥螨,构建了巴氏新小绥螨的实验种群生命表,并构建了雌成螨对马铃薯腐烂茎线虫的捕食功能反应模型。结果显示,巴氏新小绥螨取食马铃薯腐烂茎线虫后能完成整个生活史,平均世代为6.71 d,产卵前期、产卵期、日产卵量以及雌成螨寿命分别为2.89 d、19.13 d、1.79粒和26.44 d,与取食椭圆食粉螨后的各参数间均无显著差异。巴氏新小绥螨雌成螨对马铃薯腐烂茎线虫的捕食功能反应为Holling Ⅱ型,在温度16~28℃范围内,其攻击系数(a)、捕食能力(a/T_h)、最大日捕食量(1/T_h)均随温度升高而升高,处理时间(T_h)缩短;在28℃时日捕食量达到最高,为52.69条,处理时间最短,为0.019 d;当温度高于32℃时捕食量开始下降。表明巴氏新小绥螨具有防治马铃薯腐烂茎线虫的潜力。  相似文献   

11.
12.
Potato virus Y (PVY) is responsible for major viral diseases in most potato seed areas. It is transmitted by aphids in a non-persistent manner, and it is spread in potato fields by the winged aphids flying from an infected source plant to a healthy one. Six different PVY strains groups affect potato crops: PVYC, PVYN, PVYO, PVYN:O, PVYNTN, and PVYN-Wi. Nowadays, PVYNTN and PVYN-Wi are the predominant strains in Europe and the USA. After the infection of the leaf and accumulation of the virus, the virus is translocated to the progeny tubers. It is known that PVYN is better translocated than PVYO, but little is known about the translocation of the other PVY strains. The translocation of PVY occurs faster in young plants than in old plants; this mature plant resistance is generally explained by a restriction of the cell-to-cell movement of the virus in the leaves. The mother tuber may play an important role in explaining mature plant resistance. PVY is able to pass from one stem to the other stems of the same plant through the vascular system of the mother tuber, but it is unknown whether this vascular link between stems is permanent during the whole life of the plant. Two greenhouse trials were set up to study the spread of PVY in the vascular system of the potato plant. The PVY-susceptible cultivar Charlotte was used for both trials. It was demonstrated that all stems growing from a PVY-infected tuber will become infected sooner or later, and that PVYN-Wi translocates more efficiently to progeny tubers than PVYNTN. It was also demonstrated that the progressive decay of the mother tuber in the soil reduces the possibility for virus particles to infect healthy stems through the vascular system of the mother tuber. This new element contributes to a better understanding of the mechanism of mature plant resistance.  相似文献   

13.
14.
15.
A field experiment was designed to obtain information on the extent of partial infection of Bintje potato tubers with potato virus YN. Data from eight fields, in which plants were artificially infected with the virus, showed that tubers with a weight lower than 30 g became infected only about half as frequently as bigger tubers; the latter were divided into three groups of 30–60 g, 60–90 g and over 90 g, but there were no significant differences in the extent of infection in these groups. In the same experiment it was found that the heel end of a tuber is less frequently infected than the rose end. This means that in testing samples of potato tubers for the presence of potato virus YN it is preferable to grow the rose end of the tuber.Samenvatting Een veldproef, waarbij aardappelplanten kunstmatig met aardappel-YN-virus werden geïnoculeerd met het doel nadere gegevens te verkrijgen omtrent de gedeeltelijke besmetting van knollen met dit virus, leverde de volgende resultaten op. Het percentage besmette knollen met een lager gewicht dan 30 g bleek ongeveer de helft te bedragen van dat van knollen in de gewichtsklassen 30–60 g, 60–90 g en de klasse zwaarder dan 90 g. Tussen de drie laatstgenoemde groepen traden geen betrouwbare verschillen in besmetting op.Verder bleek dat in alle gewichtsklassen de oogstek genomen van de top van de knol meer kans heeft met YN-virus besmet te geraken dan de oogstek genomen van het naveleinde van de knol. Voor de nacontrole van aardappelpoot-goed betekent dit, dat het toetsen van een oogstek van de top van een knol voor dit doel beter geschikt is dan de oogstek van het naveleinde. De knolgrootte speelt hierbij blijkbaar geen rol van betekenis, daar knollen lichter dan 30 g in het algemeen niet voor pootgoed worden gebruikt.  相似文献   

16.
Differences in the early responses of two potato cultivars, Igor and Nadine, to two isolates of Potato virus Y (PVY), the aggressive PVYNTN and the mild PVYN, were monitored. Microarray and quantitative real‐time PCR analyses were carried out to identify differentially expressed genes after inoculation with each virus isolate. Additionally, symptom severity and development was observed and the amount of virus isolate accumulated in systemically infected leaves was evaluated, where a significantly higher amount of PVYNTN was detected. Microarray analysis revealed 572, 1288 and 1706 differentially expressed genes at 0·5, 12 and 48 h post‐inoculation, respectively in cv. Igor, with a similar pattern observed in cv. Nadine. Microarray and quantitative real‐time PCR results implied an earlier accumulation of sugars and lower photosynthesis in leaves inoculated with the aggressive isolate than in leaves inoculated with the mild isolate. The PVYNTN isolate did not activate early differential expression of the Fe‐superoxide dismutase and pectin methylesterase inhibitor (PMEI) genes, indicating a delay in plant response relative to that following PVYN inoculation. Differences in the expression of the β‐glucanase‐I gene were also observed in early plant responses to inoculation with each virus isolate.  相似文献   

17.
18.
Removal of leaves from primarily infected plants does not stop translocation of potato virus X and potato virus YN from the stem to the tubers in potato plants. In some cases there is evidence that even more virus reaches the tubers. The removal of the top of a potato plant results clearly in a larger extent of infection of the tubers, as was demonstrated in experiments with both viruses. This effect proved to be greater according as the removed top was larger. Removal of leaves and tops apparently changes the physiological behaviour of potato plants in such a way that virus translocation is promoted. This means that in haulm killing, as is applied in seed potato growing, only perfect killing of the stems and leaves can result in stopping virus translocation to tubers; incomplete killing may have the opposite effect.Samenvatting In primair met aardappel-X- en aardappel-YN-virus besmette aardappelplanten werd het transport van virus naar de knollen voortgezet na ontbladering van de planten. In enkele gevallen bleek zelfs een zwaardere knolbesmetting op te treden. Het verwijderen van de top van aardappelplanten leidde in proeven met dezelfde virussen tot een sterkere knobesmetting dan in niet getopte planten. Dit gold des te meer naarmate de verwijderde top groter was.Het verwijderen van bladeren en top brengt een zodanige verandering in het fysiologische gedrag van de aardappelplant teweeg dat er een verhoogde mate van virustransport, dus een zwaardere knolbesmetting optreedt. Voor de teelt van pootaardappelen betekenen deze resultaten dat de loofdoding alleen het beoogde doel zal bereiken als een volledige doding van de bovengrondse plantedelen wordt bewerkstelligd.  相似文献   

19.
Potato leafroll virus (PLRV) antigen was localized by immunogold labelling in semi-thin leaf sections of secondarily-infected potato plants cv. Bintje. Viral antigen was present in all cell types of the phloem tissue. but occurred most abundantly in the companion cells. Detectable amounts of PLRV antigen were found only in the sieve elements in veins with a large number of infected companion cells. Occasionally, parenchyma cells were also found to be infected. PLRV was not exclusively limited to the phloem tissue in the infected potato plants, but was also found in mesophyll cells neighbouring minor phloem vessles. Spread of virus from cell to cell in the mesophyll was not observed. The distribution of PLRV in the potato leaf tissue has implication on its availability, for acquisition by aphids.  相似文献   

20.
研究了植物诱抗剂3-丙酮基-3-羟基羟吲哚(3-acetonyl-3-hydroxyoxindole, AHO)联合茎尖培养从试管苗中脱除马铃薯S病毒(PVS)?马铃薯Y病毒(PVY)的方法和效率?取PVS侵染的‘定薯3号’和‘定薯4号’以及PVY侵染的‘靖薯3号’和‘靖薯4号’的壮芽, 茎尖剥离后培养至4~5个叶片, 用100 mg/L植物诱抗剂 AHO水剂喷施试管苗, 每隔2 d喷施一次, 共3次, 末次喷施2 d后取茎尖剥离培养, 获得再生试管苗?用电子显微镜负染色?ELISA?荧光定量RT-PCR检测再生试管苗的带病毒情况?结果显示, AHO对4个品种的马铃薯试管苗生长无影响, 用AHO处理后再茎尖剥离培养, 脱毒率均高于未处理的对照; 检测结果还显示AHO处理的马铃薯再生苗的带毒量也低于未处理的对照, 且随处理次数增加带毒量下降?研究结果表明, 利用植物诱抗剂AHO联合茎尖剥离培养方法可以提高脱除PVS?PVY的效率, 获得无病毒核心苗?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号