首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growing areas under transgenic crops have created a concern over their possible adverse impact on the soil ecosystem. This study evaluated the effect of Bt-cotton based cropping systems on soil microbial and biochemical activities and their functional relationships with active soil carbon pools in Vertisols of central India (Nagpur, Maharastra, during 2012–2013). Culturable groups of soil microflora, enzymatic activities and active pools of soil carbon were measured under different Bt-cotton based cropping systems (e.g. cotton-soybean, cotton-redgram, cotton-wheat, cotton-vegetables and cotton-fallow). Significantly higher counts of soil heterotrophs (5.7–7.9 log cfu g?1 soil), aerobic N-fixer (3.9–5.4 log cfu g?1 soil) and P-solubilizer (2.5?3.0 log cfu g?1 soil) were recorded in Bt-cotton soils. Similarly, soil enzymatic activities, viz. dehydrogenase (16.6–22.67 µg TPF g?1 h?1), alkaline phosphatase (240–253 µg PNP g?1 h?1) and fluorescein di-acetate hydrolysis (14.6–18.0 µg fluorescein g?1 h?1), were significantly higher under Bt-cotton-soybean system than other Bt- and non-Bt-cotton based systems in all crop growth stages. The growth stage-wise order of soil microbiological activities were: boll development > harvest > vegetative stage. Significant correlations were observed between microbiological activities and active carbon pools in the rhizosphere soil. The findings indicated no adverse effect of Bt-cotton on soil biological properties.  相似文献   

2.
Maize crop is grown mostly in tropical/subtropical environments where drought adversely affects its production. A field experiment was conducted on sandy loam soil for four years (1999 – 2002) to study the effect of wheat straw mulch (0 and 6 t ha?1) and planting methods (flat and channel) on maize sown on different dates. Maximum soil temperature without mulch ranged from 32.2 – 44.4°C in channel and 31.6 – 46.4°C in flat planting method. Mulching, however, lowered soil temperature by 0.8 – 7.0°C in channel and 0 – 9.8°C in flat planting. Mulching, on an average, improved leaf area index by 0.42, plant height by 14 cm, grain yield by 0.24 t ha?1 and biomass by 1.57 t ha?1, respectively. Mulching improved grain yield only in flat sowing. Interaction between sowing date and planting method was significant. Seasonal variation in biomass were significantly correlated (p = 0.05) with mean air temperature during 0 – 45 days after planting (DAP) (r = ?0.95), pan evaporation during 0 – 15 DAP (r = 0.79) and negative correlation with rainfall in entire cropping season (r = ?0.89), whereas biomass increase with mulch in different cropping seasons had negative relation (r = ?0.74) with amount of rain during 0 – 15 DAP.  相似文献   

3.
A 2-year research experiment was laid out in a split-plot design with moldboard ploughing (MP, control) and minimum tillage (MT) as main plots and crop sequences as sub-plots. Summer-winter cropping sequences were fallow-wheat (Triticum aestivum L.) (FW, control), mungbean (Vigna radiata L.)-wheat (MW), sorghum (Sorghum bicolor L.)-wheat (SW), green manure-wheat (GW) and mungbean-chickpea (MC) (Cicer arietinum L.). During 2010–2011, in summer, mungbean crop produced the highest above ground biomass in mungbean-chickpea sequence under MP tillage (4.24 Mg ha1 mungbean) and in mungbean-wheat sequence under MT tillage (4.11 Mg ha1 mungbean). In winter, chickpea gave the highest biomass in mungbean-chickpea sequence under both tillage systems. During 2011–2012, mungbean produced the highest above ground biomass in mungbean-wheat sequence under MT tillage (4.43 Mg ha1 mungbean) and in both the mungbean-chickpea and mungbean-wheat sequences under MP tillage (4.24 and 4.17 Mg ha1 mungbean, respectively). In winter, fallow-wheat sequence gave the highest biomass in both tillage systems. The differences in grain yields were statistically non-significant in both the years. The gross marginal benefit ranged between ?190 and 548$ ha1 in the first year and ?165 and 1124$ ha1 in the second year. The net benefit values were the highest in mung-chickpea sequence under both tillage systems (1008 and 596$ ha1 under MP and MT, respectively), which gave cost–benefit ratios of 5.45 and 3.68, respectively. Use of legume-based cropping sequences is a sustainable and cost-effective practice in drylands of northern Punjab, Pakistan.  相似文献   

4.
Azorhizobium caulinodans strongly colonized the rhizosphere of rice plants after incorporation of Sesbania rostrata in a field trial throughout the growing season and during the fallow period until 19 weeks after incorporation of S. rostrata. A. caulinodans became well established in the rhizosphere (7.17 log cfu g–1 dry rice root) and colonized subsequent S. rostrata test plants. Three traditional and three improved high-yielding rice varieties were inoculated with A. caulinodans under gnotobiotic conditions. In none of the combinations did acetylene reduction activity significantly increase. Ethylene production on colonized rice roots only started after the growth medium had been supplemented with an extra C source (0.1 to 0.25% Na-lactate). This indicates that the bacterial nitrogenase activity is limited by energy supply. Four possible inoculant-carriers (peat, coir dust, bagasse, rice straw) were compared for long-term survival of the bacterial strain. Independent of the storage temperature (26  °C or 4  °C), the survival of A. caulinodans in peat and coir dust was very high during a 12-month period (>8 log cfu g–1 dry carrier), whereas the bagasse and rice straw carriers showed a serious decline from 3 months onwards. Received: 6 April 1999  相似文献   

5.
The potential of Nostoc 9v for improving the nitrogen (N)2–fixing capacity and nutrient status of semi‐arid soils from Tanzania, Zimbabwe, and South Africa was studied in a laboratory experiment. Nostoc 9v was inoculated on nonsterilized and sterilized soils. Inoculum rates were 2.5 mg dry biomass g?1 soil and 5 mg dry biomass g?1 soil. The soils were incubated for 3 months at 27 °C under 22 W m2 illumination with a photoperiod of 16 h light and 8 h dark. The moisture was maintained at 60% of field capacity. In all soils, Nostoc 9v proliferated and colonized the soil surfaces very quickly and was tolerant to acidity and low nutrient availability. Cyanobacteria promoted soil N2 fixation and had a pronounced effect on total soil organic carbon (SOC), which increased by 30–100%. Total N also increased, but the enrichment was, in most soils, comparatively lower than for carbon (C). Nitrate and ammonium concentrations, in contrast, decreased in all the soils studied. Increases in the concentration of available macronutrients were produced in most soils and treatments, ranging from 3 to 20 mg phosphorus (P) kg?1 soil, from 5 to 58 mg potassium (K) kg?1 soil, from 4 to 285 mg calcium (Ca) kg?1, and from 12 to 90 mg magnesium (Mg) kg?1 soil. Positive effects on the levels of available manganese (Mn) and zinc (Zn) were also observed.  相似文献   

6.
The biodegradation kinetics of anionic (sodium laureth sulfate – SLES), amphoteric (disodium cocoamphodiacetate – DSCADA), and nonionic surfactants (polyalcohol ethoxylate – PAE) were assessed in this laboratory study. Similar degradation behavior was observed for all surfactants with only a fraction of the parent compound readily biodegradable. Biodegradation, as estimated by COD removal, was initially (i.e., within 24 h) rapid, however only 40–70% of the surfactant molecules were readily biodegradable. Intrinsic kinetic parameters were successfully quantified for the readily biodegradable component of the surfactant. Inhibition was not observed and microbial kinetics of SLES, DSCADA, and PAE degradation fit the Monod model well. Average μ-S curves were generated for each surfactant. Based on these results, complete degradation of the target surfactants using biological waste treatment would be limited.  相似文献   

7.
This study highlights the effects of composts of olive mill wastes and organic household refuse with a pH range of 7 to 7.98 and a C/N ratio between 14.9 and 22, to improve the growth and the mineral nutrition of the date palm (Phoenix dactylifera L.). After 7 months of cultivation, plants amended with composts showed higher biomass production than the controls. Compost C1, i.e., the basic compost with no additives phosphate, at 100% and 45% doubled the production of dry matter in comparison with control plants. The rise of root biomass was considerably greater for plants grown with compost C1 without phosphate. In contrast, the shoot biomass was highly significant for composts C2 and C3 enriched with phosphate. The control plants, grown without amendment, showed significantly higher specific root length (SRL) and specific leaf length (SLL). The efficiency of compost application was reflected by the biomass rise, the number of emerged leaves (2.6–4), and the rise in leaf area (3.3 to 6.7 cm2) by improving the mineral nutrition of the date palm. The composts of olive mill waste and organic household refuse supplemented with natural rock phosphate, or not, generated a notable agronomic added value.  相似文献   

8.
Abstract

Azotobacter chroococcum strains E12, HT57 were genetically tagged with lac Z, gfp to study the colonization behaviour on wheat (Triticum aestivum) and cotton (Gossypium sp.) in soil under controlled conditions. 103 – 104 cfu g?1 soil of HT57 lac Z were found to colonize roots of both cotton and wheat crops whereas 1.7 × 104 – 7.2 × 104 cfu g?1 soil of E12 gfp was colonizing wheat roots and 1.6 × 104 – 9.3 × 104 cfu g?1 soil of E12 gfp colonized cotton roots respectively. Tagged strains colonized mostly on root tips compared to basal roots in both the crops.  相似文献   

9.
Four locally composted green waste composts (GWCs) namely Almukhasib, Growers, Plantex, and Super were screened to determine whether they meet the standards. All composts showed normal physical properties, except for the bad smell from sulfur reducing bacteria in Almukhasib compost, and light brown color Plantex. The germination indexes of the composts comparable to the standard (90%) were 98% for Plantex followed by Growers (77%), and 5% for both Super and Almukhasib. The chemical and physical properties vary considerably as follows: pH 3-10.5 (standard 5-8), electrical conductivity (EC) 0.4-10.2 mScm?1 (standard 0.04.0 mScm?1), moisture content (MC) 29-43.7% (standard 35-60%) and water holding capacity (WHC) 92-200%. Wide ranges in the chemical properties were expressed as total nitrogen concentration 5705-16401 mgkg?1 (standard <500 mgkg?1), organic matter 17-67.6% (standard 35%). Although, there are significant variations in the concentration of the heavy metals among the tested composts, the concentrations of these metals (Zn, Ni, Pb, Hg, As, Cd, and Cr) were lower than the recommended levels. The average of the bacterial colony forming unit per gram dry weight ranged between 464-2292 cfu/g, whereas the fungal cfu were 14-4308 cfu/g (standard < 1000 cfu/g). The most probable number (MPN) for coliform bacteria was 64-1549 cfu/g dry weight. Aspergillus niger was the predominant fungus recovered from all compost samples (100%) followed by A. fumigatus (50%), A. sparsus (50%), yeasts (50%), A. flavus (37.5%), and the remaining A. restrictus, A. ochraceous, Cladosporium spp., and Penicillium spp. is 25% each. The results showed that the physicochemical properties and microbial contamination of the screened composts were considerably varied and did not meet many of the acceptable limits in Oman, which render them unsafe for handling or unsuitable as direct fertilizer for plant growth or for soil bioremediation, which suggests mixing the composts with vermiculite and soil in order to improve their general characteristics. Therefore, there is evident need for urgent development of proper composting techniques, standard laboratory testing methods for high quality control measures, and adopting strong legislation. The use of certified and high grade mature green waste compost is a priority.  相似文献   

10.
Warm-season annual grasses may be suitable as forage crops in integrated weed management systems with reduced herbicide use. A 2-year field study was conducted to determine whether tillage system and nitrogen (N) fertilizer application method influenced crop and weed biomass, water use, water use efficiency (WUE), and forage quality of three warm-season grasses, and seed production by associated weeds. Tillage systems were zero tillage and conventional tillage with a field cultivator. The N fertilization methods were urea broadcast or banded near seed rows at planting. Warm-season grasses seeded were foxtail (Setaria italica L.) and proso (Panicum mileaceum L.) millets, and sorghum–sudangrass (Sorghum bicolor (L.) Moench × Sorghum sudenense Stapf.). Density of early emerging weeds was similar among treatments, averaging 51 m?2. Millets exhibited higher weed density and weed biomass than sorghum–sudangrass. At harvest, sorghum–sudangrass produced significantly greater biomass and N accumulation than either millet. Water use (157 mm) and WUE (25.1 kg mm-1 ha?1) of total biomass did not vary among treatments or grass entries. Weed seed production by redroot pigweed and green foxtail was respectively 93 and 73% less in sorghum–sudangrass than proso millet. Warm-season grasses offer an excellent fit in semiarid cropping systems.  相似文献   

11.
Abstract

Growth, mineral nutrition, leaf chlorophyll and water relationships were studied in cherry plants (cv. ‘Bigarreau Burlat’[BB] and ‘Tragana Edessis’[TE]) grafted on ‘Mazzard’ rootstock and grown in modified Hoagland solutions containing 0, 25 or 50 mmol L?1 NaCl, over a period of 55 days. Elongation of the main shoot of the plants treated with 25 or 50 mmol L?1 NaCl was significantly reduced by approximately 29–36%, irrespective of the cultivar. However, both NaCl treatments caused a greater reduction in the dry weight of leaves and scion's stems in BB than in TE plants. Therefore, BB was more sensitive to salinity stress than TE. The reduction of leaf chlorophyll concentration was significant only when BB and TE plants were grown under 50 mmol L?1 NaCl. Osmotic adjustment permitted the maintenance of leaf turgor in TE plants and induced an increase in leaf turgor of BB plants treated with 25 or 50 mmol L?1 NaCl compared with 0 mmol L?1 NaCl. Concerning the nutrient composition of various plant parts, Na concentrations in all plant parts of both cultivars were generally much lower than those of Cl. For both cultivars, leaf Cl concentrations were much higher than the concentrations in stems and roots, especially in the treatments containing NaCl. Finally, the distribution of Na within BB and TE plants treated with NaCl was relatively uniform.  相似文献   

12.
Abstract

Forest fires can change the greenhouse gase (GHG) flux of borea forest soils. We measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes with different burn histories in black spruce (Picea mariana) stands in interior Alaska. The control forest (CF) burned in 1920; partially burned (PB) in 1999; and severely burned (SB1 and SB2) in 2004. The thickness of the organic layer was 22 ± 6 cm at CF, 28 ± 10 cm at PB, 12 ± 6 cm at SB1 and 4 ± 2 cm at SB2. The mean soil temperature during CO2 flux measurement was 8.9 ± 3.1, 6.4 ± 2.1, 5.9 ± 3.4 and 5.0 ± 2.4°C at SB2, SB1, PB and CF, respectively, and differed significantly among the sites (P < 0.01). The mean CO2 flux was highest at PB (128 ± 85 mg CO2-C m?2 h?1) and lowest at SB1 (47 ± 19 mg CO2-C m?2 h?1) (P < 0.01), and within each site it was positively correlated with soil temperature (P < 0.01). The CO2 flux at SB2 was lower than that at CF when the soil temperature was high. We attributed the low CO2 flux at SB1 and SB2 to low root respiration and organic matter decomposition rates due to the 2004 fire. The CH4 uptake rate was highest at SB1 [–91 ± 21 μg CH4-C m?2 h?1] (P < 0.01) and positively correlated with soil temperature (P < 0.01) but not soil moisture. The CH4 uptake rate increased with increasing soil temperature because methanotroph activity increased. The N2O flux was highest [3.6 ± 4.7 μg N2O-N m?2 h?1] at PB (P < 0.01). Our findings suggest that the soil temperature and moisture are important factors of GHG dynamics in forest soils with different fire history.  相似文献   

13.
Field experiments were conducted to assess the ability of rhizobacterial inoculants to enhance growth and yield of maize. Performances of two phosphorus (P)-solubilizing bacteria in combination with a fertilizer mixture containing rock phosphate and triple super phosphate (PFM), and five diazotrophs combining either with 150 kg or 100 kg nitrogen (N) ha?1 supplied as urea were compared with non-inoculated-fertilized controls. Shoot P and N and soil available P and N contents were assessed and shoot biomass and ear weights were recorded at harvest. Pseudomonas cepacia resulted in significantly higher available P (51 mg P kg?1 soil), P accumulation (3.6 g kg?1 dry matter) and 13% increase in shoot biomass over control. Azospirillum sp. and dual inoculant comprising Enterobacter agglomerans + Agrobacterium radiobacter led to significantly higher available N (74–94 mg kg?1 soil) and 19 to 26% increase in shoot biomass over the control. However, inoculants did not increase the yield significantly.  相似文献   

14.
Sorghum is one of the water- and nutrient-use efficient crops raised in dry regions worldwide. A 3 × 3 split-plot experiment in randomized complete block design was conducted to study the effects of petroleum refinery waste aqueous ammonia (NH3) on irrigated fodder sorghum for two consecutive growing seasons. The main plots consisted of 0 (control), 40, and 80 kg N ha?1, respectively, and the injection depths (surface 15 cm, and 20 cm depth) were assigned to sub-plots. A significant effect of NH3 on both fresh and dry biomass production was observed where the highest yield was recorded from the 80 kg N ha?1 than the control and 40 kg N ha?1, respectively. Sorghum biomass yield increased most when NH3 was injected at 20 cm depth as compared to other depths. Biomass nutrient content and nitrogen-use efficiency were increased when 80 kg N ha?1 was applied as compared to the control. The critical limit of K:(Ca+Mg), above which the tetany risk increases, did not exceed in sorghum biomass by NH3 fertilization. Results suggested that industrial waste NH3 equivalent to 80 kg N ha?1 injected at 20 cm depth can be a sustainable approach to fertilize irrigated sorghum growing as a forage crop.  相似文献   

15.
This work describes recent research carried out in an extremely acidic (pH 0.61–0.82) and hypersaline (e.g., 134 g/L SO4 2-, 74 g/L Fe, 7.5 g/L Al, 3 g/L Mg, 2 g/L Cu, 1 g/L Zn) leachate which seeps from a pyrite pile in San Telmo mine (Huelva, SW Spain) and forms evaporative pools of ultra-concentrated water in which attractive crystals of Zn-rich melanterite (FeIISO4 7H2O) are formed. Geochemical modeling with the Pitzer method indicates that the acidic brine was near saturation with respect to melanterite (SIMel?=?0?±?0.2). The microbiological investigation has revealed a surprisingly high biomass (1.4?×?106 cells mL?1) and an exotic ecosystem composed of acidophilic, Fe-oxidizing archaea (mainly Ferroplasma spp., representing 52% of the microbial population), and minor numbers of acidophilic bacteria (including Leptospirillum spp. (3.2%), Acidithiobacillus spp. (1.6%), and Alphaproteobacteria (2.8%)). The microbial production of FeIII allows the oxidative dissolution of pyrite and other sulphides, which results in additional inputs of FeII, SO4 2- and acidity to the system. The surfaces of the pyrite crystals show a typical etch-pitted texture, as well as blobs of elemental sulphur, which are both compatible with this indirect, microbially mediated oxidation mechanism. The composition of the acidic leachate seems to result from the combination of several processes which include: (1) formation of melanterite within the pile during relatively dry seasons, (2) subsequent dissolution of melanterite during rainy episodes, (3) microbial oxidation of FeII, (4) sulphide oxidation mediated by FeIII, (5) dissolution of chlorite and other aluminosilicates present in the pile, and (6) cooling and/or evaporation of seepage from the pile and consequent melanterite precipitation.  相似文献   

16.
A field experiment was conducted to study the effects of tillage and mulch on weed growth, soil moisture storage, productivity and profitability of upland rice during 2012–2013 at Lembucherra, India. Tillage treatments included CT-RI: conventional tillage with 100% residue incorporation and NT-RR: no-till with 100% residue retention. Mulches included rice straw (SM), Gliricidia (GM), brown manuring (BM) and none (NM). CT-RI registered the highest total weed density (89–168 weeds m?2) and biomass (9.6–183 g dry weight m?2) than those for the NT-RR (75–161 weed m?2 and 8–155 g dry weight m?2). In addition, NT-RR stored (122–172 mm) more soil moisture (0–40 cm soil depth) in comparison with that for the CT-RI treatment (110–161 mm) during crop growing season. Tillage treatments did not have the significant effect on yields. NT-RR reduced the cost of cultivation by 31.5% compared with that for the CT-RI. Thus, the net returns under NT-RR were more than those for the CT-RI. The BM recorded the lowest weed biomass and density as compared to that under other mulches. Therefore, cultivation of upland rice using NT along with BM mulching enhanced productivity and profitability of rice cultivation in India.  相似文献   

17.
Accurate and reliable predictive models are necessary to estimate above and below ground biomass of plant and biomass carbon stock non-destructively. Different growth models namely viz, Linear, Allometric, Logistic, Gompertz, Richard’s, Negative exponential, Monomolecular, Mitcherlich and Weibull were fitted to the relationship between dry biomass of litchi tree components with collar diameter. Richard’s model outperformed the others and fulfilled the validation criterions to the best possible extent with lowest Akaike information criteria (AICc) of 90.47 and root mean square error (RMSE) of 1.79. The value of adjusted R2 ranged from 0.947 to 0.971 for the Richard’s models fitted on various biomass components and the ‘t’ values for all the components was found non-significant (p > 0.05) indicating the validation of the model. The estimated total dry biomass varied from 0.50 Mg ha?1 in two year to 5.71 Mg ha?1 in 10 year old litchi orchards. The estimated stored biomass carbon stock in litchi orchards (branches, bole and roots) varied from 0.10 Mg ha?1 in two year to 1.85 Mg ha?1 in 10 year orchards with CO2 sequestration potential from 0.19–4.63 Mg ha?1.  相似文献   

18.
Cadmium-contaminated soils can be re-used and also produce biomass energy if we plant soybeans or other biomass crops in the contaminated sites. In this study, two soils with pH values of 5.9 and 6.7 were artificially spiked to make their final total concentration as CK (about 1.0), 3.0, and 5.0 mg Cd kg?1. Different amendments were mixed with these artificially Cd-contaminated soils to study the effect on the growth and Cd uptake of soybean, which include control (without amendment addition), powder-activated carbon (1%), and biosolids (sludge, 5%), respectively. Three kilograms of the treated soils was added into each pot and sowed 10 seeds of soybean (Leichardt species). The experiment was conducted in a 25°C greenhouse and controlled the soil water contents in the levels of 50–70% water holding capacity during the experimental period. Plants were harvested after growing for 90 days, and their fresh weights, dry weights, and plant heights were determined and recorded. Compared with the lower pH soil (5.9), soybeans were higher and have higher fresh weights and dry weights when growing in the higher pH soil (6.7). For most of the treatments, the two amendments had no significant effects on the plant heights of soybeans. For 3.0 or 5.0 mg Cd kg?1 soil, the application of biosolids has significant effect on increasing the fresh weights and dry weights of soybeans (p?<?0.05). However, there were no specific effects of applying activated carbons on the fresh weights and dry weights of soybeans.  相似文献   

19.
Among plant-growth-promoting rhizobacteria (PGPR), fluorescent Pseudomonas spp. are an important group affecting plant growth. Pigeon pea is an important pulse crop and most of the studies were aimed at using Pseudomonas spp. for pest management in pigeon pea. Seventy-five fluorescent Pseudomonas spp. were isolated from diverse agroecosystems of India and evaluated for their plant-growth-promoting ability, primarily by the paper cup method. Seventeen selected isolates were further evaluated by short-term pot assay for plant growth promotion. Seeds treated with bacteria showed greater nutrient concentration and growth than the control. Isolate P17 showed significant growth promotion in terms of root length (54.5 cm), dry mass (323 mg), chlorophyll (24 spad units), carbohydrates (21.2 percent), nitrogen (2.45 percent), calcium (1.82 percent), iron (984 ppm), and manganese (564 ppm). Pseudomonas sp. P17 strain was identified as a potential PGPR for nutrient uptake and plant growth promotion in pigeon pea, and this finding paves a way for integrated plant nutrient management in rainfed agroecosystems.  相似文献   

20.
《Journal of plant nutrition》2013,36(6):1169-1188
Abstract

A pot experiment was conducted to assess the effect of mineral fertilization and compost on the growth and chemical composition of ryegrass (Lolium perenne L.) grown on two Malian agricultural soils coming from Baguinéda, abbreviated as Bgda, (12°23′ S, 7°45′ W) and Gao (16°18′ N, 0°). Treatments included non‐fertilized control, NPK alone, NPK + C25, NPK + C50, NPK + C100, PK + C50, NK + C50, NP + C50, K + C50, P + C50, N + C50, and C50 alone, where NPK represents the non modified Hoagland's solution and C25, C50, and C100 represent the different rates (25, 50, and 100 T/ha) of compost. Compost and mineral fertilization significantly increased dry matter production. The application of 50 T/ha of compost alone increased the dry matter yield by 10 and 17.5% while mineral nitrogen–phosphorus–potassium (NPK) increased yield by 69.7 and 65% for Gao and Bgda, respectively. The combination of compost and mineral NPK (NPK + C25 for Gao and NPK + C50 for Bgda) affected the highest dry matter yield. For both soils, N concentrations in plants increased significantly with compost rate. Phosphorus and K concentrations in plants varied according to the soil. The application of compost increased the uptake of iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), and potassium (K from both soils). Increases in soil organic carbon, available P, calcium (Ca), magnesium (Mg), Fe, Mn, Zn, Cu, K, and pH were observed in treatments receiving compost. Therefore, compost appeared to be a good supplier of nutrients for tropical soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号