首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
BACKGROUND: The present study investigated the effect of chitosan seed priming on the induction of disease resistance in pearl millet against downy mildew disease caused by Sclerospora graminicola (Sacc.) Schroet. RESULTS: Pearl millet seeds were primed with chitosan at different concentrations: 0.5, 1.5, 2.5 and 3 g kg?1 seed. Of the different concentrations, 2.5 g kg?1 was found to be optimum, with enhanced seed germination of 99% and seedling vigour of 1782, whereas the untreated control recorded values of 87% and 1465 respectively. At optimum concentration, chitosan did not inhibit sporulation and release of zoospores from sporangia. Furthermore, pearl millet seedlings raised after seed treatment with chitosan showed an increased level of the defence‐related enzymes chitosanase and peroxidase as compared with the untreated pearl millet seedlings on downy mildew pathogen inoculation. The effect of chitosan in reducing downy mildew incidence was evaluated in both greenhouse and field conditions, in which respectively 79.08 and 75.8% disease protection was obtained. CONCLUSION: Chitosan was effective in protecting pearl millet plants against downy mildew under both greenhouse and field conditions by inducing resistance against the pathogen. Thus, chitosan formulation can be recommended for seed treatment in the management of downy mildew disease. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
Three commercial formulations of strobilurins, viz., azoxystrobin, kresoxim-methyl, and trifloxystrobin were evaluated for their efficacy against pearl millet downy mildew disease caused by Sclerospora graminicola. In vitro studies revealed inhibition of S. graminicola sporulation, zoospore release, and zoospore motility at 0.1-2 μg ml−1 of all the three fungicides. The fungicides were evaluated for phytotoxic effects on seed quality parameters and for their effectiveness against downy mildew disease by treating pearl millet by: (1) seed dressing, (2) seed dressing followed by foliar spray, and (3) also by foliar spray alone. The highest non-phytotoxic concentrations of 5, 10, and 10 μg ml−1 for azoxystrobin, trifloxystrobin, and kresoxim-methyl, respectively, were selected for further studies. Under greenhouse conditions, these fungicides showed varying degrees of protection against downy mildew disease. Among the three fungicides, azoxystrobin proved to be the best by offering disease protection of 66%. Further, seed treatment along with foliar application of these fungicides to diseased plants showed enhanced protection against the disease to 93, 82, and 62% in treatments of azoxystrobin, kresoxim-methyl and trifloxystrobin respectively. Foliar spray alone provided significant increase in disease protection levels of 91, 79, and 59% in treatments of azoxystrobin, kresoxim-methyl, and trifloxystrobin, respectively. Disease curative activity of azoxystrobin was higher compared to trifloxystrobin and kresoxim-methyl. Tested fungicides showed weaker translaminar activity, as the disease inhibition was marginal when applied on adaxial leaf surface. Partial systemic activity of azoxystrobin was evident by root uptake, while trifloxystrobin and kresoxim-methyl showed lack of systemic action in pearl millet. A trend in protection against downy mildew disease similar to greenhouse results was evident in the field trials. Grain yield was significantly increased in all strobilurin fungicide treatments over control and maximum increase in yield of 1673 kg ha−1 was observed in combination treatments of seed treatment and foliar spray with azoxystrobin.  相似文献   

3.
In an attempt to find a suitable alternative to the otherwise perilous chemical control strategy of disease management, the amino acid proline was evaluated for its efficiency to elicit resistance in pearl millet (Pennisetum glaucum (L.) R. Br.) against downy mildew disease caused bySclerospora graminicola (Sacc.) Schroet both under greenhouse and field conditions. Proline treatment to seeds at 50 mM concentration for 3 h, significantly enhanced the seed germination and seedling vigor of pearl millet in comparison with the control. The same concentration and duration of seed treatment protected the pearl millet plants from downy mildew by offering 58% protection under greenhouse and 67% protection under field conditions. Studies revealed that 3 days were required for proline-treated plants to develop resistance, which was systemic and was sustained throughout the life of the plants. Apart from disease protection, proline was also found effective in enhancing vegetative and reproductive growth of the plants, as evidenced by the increase in height, fresh weight, leaf area, tillering capacity, 1000-seed weight and grain yield in comparison with the control plants. http://www.phytoparasitica.org posting Oct. 3, 2004.  相似文献   

4.
Metalaxyl (Apron 35WS) as a seed treatment has been used extensively to control downy mildew (caused by Sclerospora graminicola) in pearl millet in India. However, the extent of disease control has varied across cultivars, years and locations. We investigated the effects of fungicide dosage, storage time and storage temperature of metalaxyl-treated seed on disease incidence in four pearl millet lines having varying levels of resistance. A linear relationship was found between fungicide dosage (0.5, 1.5 and 2 g a.i. kg−1 seed) and reduction in disease incidence up to 40 days after emergence in all the lines. The normal fungicide dose (2 g a.i. kg−1 seed) protected the crop for up to 20, 40 and 50 days after emergence in highly susceptible (7042S), moderately susceptible (4042R), and moderately resistant (ICMP 451) lines, respectively. However, the quarter and half the normal dosage of fungicide provided protection only up to 20 days after emergence in 7042R and 40 days after emergence in ICMP 451. Storage duration of metalaxyl-treated seed (2 g a.i. kg−1) up to 9 months at 25 ± 2°C did not affect fungicide efficacy. Storage temperatures (5, 25 and 40°C) and duration (30, 60 and 90 days) of metalaxyl-treated seed (2 g a.i. kg−1) showed differential effects in two pearl millet lines 7042S and 843B with downy mildew incidence being significantly lower in 7042S than in 843B. Metalaxyl-treated seed of 7042S and 843B stored at 40°C for different durations showed phytotoxic effects and it was more pronounced in 843B stored for 60 and 90 days where seed germination was inhibited in pot soil.  相似文献   

5.
Downy mildew of pearl millet, caused by Sclerospora graminicola, is a devastating disease, resulting in high economic losses in the semi-arid regions of the world. Recently, induction of host plant resistance using biotic and abiotic inducers are included among disease management practices as an eco-friendly approach. Unsaturated fatty acids are considered as a new generation of plant disease resistance inducers. In the present study, six unsaturated fatty acids, viz. docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA), linolenic acid, linoleic acid and oleic acid, all originally detected in the zoospores of S. graminicola,were applied to seeds of susceptible cultivars of pearl millet to examine their ability to protect against downy mildew under greenhouse and field conditions. In greenhouse experiments, EPA and AA induced a maximum of 78.6% and 76.5% protection, whereas linoleic acid, DHA and linolenic acid provided up to 66.3%, 61.2% and 24.5% protection, respectively. Oleic acid was not effective in protecting pearl millet (only 5.1% protection). A time interval of four days between treatment of seeds and challenge inoculation was required to obtain optimum protection. Plants raised from treated seeds and challenge inoculated at the tillering and inflorescence stages showed enhanced resistance, resulting in higher grain yield compared to untreated plants of the same cultivar. Chitinase activity was found to be higher in susceptible seedlings of pearl millet after treatment with the fatty acids and pathogen inoculation than in seedlings only inoculated with the pathogen. This indicates that host defence responses are activated and thus that induced resistance is involved in the protection observed. The role of unsaturated fatty acids as activators of resistance against downy mildew in pearl millet is discussed.  相似文献   

6.
Differential resistance of pearl millet cultivars to downy mildew disease was correlated with the levels of -1,3-glucanase in their seeds. Higher activity of the enzyme in highly resistant cultivars and lower activity in the highly susceptible ones suggested the possible use of -1,3-glucanase as a biochemical marker for screening pearl millet cultivars for downy mildew disease. Inoculation of seedlings with the downy mildew pathogen Sclerospora graminicola resulted in increased enzyme levels in resistant cultivars. Mesocotyl and shoot regions of seedlings recorded higher levels of enzyme than the root. Isoelectric focusing revealed four basic isoforms with pI 9.6, 9.0, 8.9 and 8.2 and two acidic isoforms with pI 4.9 and 6.2 of -1,3-glucanase in pearl millet. The pI 9.6 isoform was a major isoform of the enzyme in the pearl millet seedlings with a probable developmental function. Isoforms pI 6.2 and pI 8.2 appeared to be involved in resistance and pI 4.9 isoform seemed to be involved in pathogenesis of pearl millet-downy mildew.  相似文献   

7.
The synthetic 1-oxo-indanoyl-l-isoleucine methyl ester (Ind-Ile-Me) represents a highly active mimic of octadecanoic phytohormones, which are involved in plant defenses against pathogens and pests. Seed treatments and foliar spray with Ind-Ile-Me were tested for induced resistance against downy mildew disease caused by the phytopathogenic oomycete Sclerospora graminicola in pearl millet (Pennisetum glaucum) under greenhouse and field conditions. Under greenhouse conditions, a 50% protection level was achieved after seed treatment. Seed treatment in combination with foliar spray resulted in 60% protection. The induction of resistance was correlated with the enhanced activities of defense-related proteins such as phenylalanine-ammonia-lyase, peroxidase, and enhanced level of hydroxyproline-rich glycoproteins. Under field conditions, a maximum protection of 62% was recorded upon seed treatment along with foliar spray. Hence, it infers that Ind-Ile-Me can be used as a valuable protection compound at least in downy mildew disease management.  相似文献   

8.
BACKGROUND: The nature and durability of resistance offered by chitosan and the involvement of nitric oxide (NO) in chitosan‐induced defence reactions in pearl millet against downy mildew disease were investigated. RESULTS: It had previously been reported that chitosan seed priming protected pearl millet plants against downy mildew disease. Further elucidation of the mechanism of resistance showed that chitosan seed priming protects the plants systemically. A minimum 4 day time gap is required between the chitosan treatment and pathogen inoculation for maximum resistance development, and it was found to be durable. Chitosan seed priming elevated NO accumulation in pearl millet seedlings, beginning from 2 h post‐inoculation, and it was found to be involved in the activation of early defence reactions such as hypersensitive reaction, callose deposition and PR‐1 protein expression. Pretreatment with NO scavenger C‐PTIO and nitric oxide synthase (NOS) inhibitor L‐NAME before pathogen inoculation reduced the disease‐protecting ability of chitosan, and defence reactions were also downregulated, which indicated a possible role for NO in chitosan‐induced resistance. CONCLUSION: Protection offered by chitosan against pearl millet downy mildew disease is systemic in nature and durable. Chitosan‐induced resistance is activated via NO signalling, as defence reactions induced by chitosan were downregulated under NO deficient conditions. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
‘Priming’ the plant and seed induces a physiological state in which plants are able to activate defense responses. Plant-based exudates are excellent gum biopolymers which contain plant growth-regulating hormones with priming potential without any side effects. In this study, gum exudates of Acacia arabica, Moringa oleifera, Carica papaya and Azadirachta indica were evaluated for synergistic effects of seed priming with exuded gum biopolymer combined with metalaxyl (Apron 35 SD) on pearl millet seed quality, growth parameters, and resistance to Sclerospora graminicola. Seeds of 7042S were primed with gum biopolymers and metalaxyl 35 SD and evaluated under laboratory and greenhouse conditions. Seed germination and vigor were synergistically enhanced using gum biopolymers solution (1:2 w/v) with 3 g kg−1 metalaxyl 35 SD. A. arabica and A. indica gum biopolymers alone or with 3 g kg−1 of metalaxyl 35 SD resulted in seed germination of >91%. Seed priming with 6 g kg−1 of metalaxyl 35 SD gave 89% seed germination and was not significantly different from control. A similar trend in vigor was observed among treatments. Seed priming with gum biopolymers alone provided varied disease protection levels when compared with the control. A. arabica or A. indica gum with 3 g kg−1 of metalaxyl 35 SD was the superior treatment, offering significant 86% disease reduction while exhibiting a growth-promoting effect. Synergistic use of gum biopolymers and metalaxyl 35 SD by seed priming is highly effective in growth promotion and management of pearl millet downy mildew disease.  相似文献   

10.
Tissue homogenates of pearl millet seedlings (cultivars HB 3, 843 B, ICMP 451 and IP 18292), with varying degree of resistance to downy mildew disease were tested for ribonuclease (RNase) enzyme activity and the profile of major RNase isozymes by substrate based gel assay. Polyacrylamide gel electrophoresis (PAGE) of the four pearl millet homogenates revealed 15–20 isozymes, varying in size from 6.5 to 121.0kDa. Most of the RNases were highly active between pH 6 and 8 with maximum activity at pH 7. Tissue specific expression of RNase was observed with more activity in the root, i.e., 38.84, 59.61, 39.90 and 49.23 units in HB 3, 843 B, ICMP 451 and IP 18292, respectively than in shoot 11.54, 9.95, 9.46 and 9.49 units in HB 3, 843 B, ICMP 451 and IP 18292, respectively. Effect of metal ions on the RNase profile indicates Zn++ at 2, 20 and 200M concentrations to be inhibitory. Ca++ and Mg++ at 1mM concentration enhanced the enzyme activity while at 10mM inhibition of enzyme activity was observed. Inoculation with the downy mildew pathogen Sclerospora graminicola reduced RNase activity by 4–13% in compatible interactions while in incompatible combinations, the enzyme activity increased by 10–27%. The significance of RNase in pearl millet-downy mildew interaction and its involvement of in systemic acquired resistance of pearl millet against the downy mildew pathogen are discussed.  相似文献   

11.
beta-Aminobutyric acid (BABA) treatment of pearl millet [Pennisetum glaucum (L) R Br] seeds influenced seedling vigour and protected the seedlings from downy mildew disease caused by the oomycetous biotropic fungus Sclerospora graminicola (Sacc) Schroet. Of the different concentrations of BABA tested, viz 25, 50, 75 and 100 mM, seeds treated with 50 mM for 6 h resulted in the maximum of 1428 seedling vigour and showed 23% disease incidence in comparison with the control which recorded a seedling vigour of 1260 and 98% disease incidence i.e. 75% protection from disease. Seeds treated with BABA when challenged for downy mildew disease using zoospores of S graminicola required 48 h after inducer treatment to develop maximum resistance. Durability of induced resistance was also tested in plants raised from seeds treated with the inducer and identified as resistant, by second challenge inoculation with the downy mildew pathogen at tillers and inflorescence axes. Reduced disease incidence of only 10 and 12% in these plants, compared with 71 and 76% disease in control plants inoculated at the tillers and inflorescence axes, respectively, suggested that resistance induced in seeds with BABA remained operative through vegetative and reproductive growth of pearl millet plants. Induction of resistance by seed treatment with BABA enhanced vegetative growth, viz height, fresh weight, leaf area and tillering, and reproductive growth, viz early flowering, number of productive ear heads and 1000 seed weight. Studies on induction of resistance in different cultivars of pearl millet with varying resistance reaction to downy mildew indicated that the protection offered by BABA is independent of the nature of cultivars used and not dependent on their constitutive resistance.  相似文献   

12.
Pectinases extract (PE) from the fermentation product ofPenicillium oxalicum BZH-2002 was tested for its ability to induce protection against scab caused byCladosporium cucumerinum on cucumber (Cucumis sativus L.) plants. Seedlings with one true leaf were sprayed with various concentrations of PE (10–200 units ml−1) 3 days before inoculation withC. cucumerinum. Results showed that the induced local protection against the pathogen was dose-dependent when the concentrations of PE were between 20 and 120 units ml−1; systemically induced resistance against the pathogen was not observed. Boiled PE had a slight effect on disease reduction. Commercial pectinases prepared fromAspergillus niger showed lower protection against scab compared with PE when they were used at the same concentration of enzyme activity. No inhibitory activity was observed on conidial germination or germ-tube growth ofC. cucumerinum. PE was further evaluated for its enhancement of defense-related enzymes. Peroxidase (PO), polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) increased in cucumber seedlings after treatment with PE. PO and PPO remained at a higher level in PE-pretreated seedlings throughout the experiment period whether pathogen-inoculated or non-inoculated, whereas PAL activity began to decrease 2 days after PE treatment. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

13.
Cucumber downy mildew caused byPseudoperonospora cubensis (Berk. and Curt.) Rostov. limits crop production in Shandong Province of China. Since management of downy mildew is strongly dependent on fungicides, a rational design of control programs requires a good understanding of the fungicide resistance phenomenon in field populations of the pathogen. A total of 106 and 97 isolates ofP. cubensis were obtained in 2006 and 2007, respectively. The EC50 values for the growth of all the 106 isolates collected in 2006 were 0.0063–0.0688μg ml−1 (average: 0.0196±0.0048μg ml−1) azoxystrobin and these were therefore considered sensitive isolates. However, 57 field isolates ofP. cubensis of the 97 collected in 2007 with EC50 values that ranged from 0.609 to >51.2μg ml−1 were considered resistant to azoxystrobin. Fragments of the fungicide-targeted mitochondrial cytochromeb gene from total pathogen DNA were amplified using polymerase chain reaction and their sequences analyzed to elucidate the molecular mechanism of resistance. A single point mutation (GGT to GCT) in the cytochromeb gene, resulting in substitution of glycine by alanine at position 143, was found in the three selected azoxystrobin-resistant isolates of downy mildew. This substitution in cytochromeb exhibited different resistance levels, with the resistance factor from 21.15 to greater than 2618.9. In addition, the different resistance levels seemed to appear within 1 year (between 2006 and 2007). Therefore, growers of Shandong Province in China now are faced with a challenge in managing the azoxystrobin resistance in cucumber downy mildew. http://www.phytoparasitica.org posting March 10, 2008.  相似文献   

14.
Higher basal level of peroxidase activity was observed in highly resistant pearl millet cultivar IP 18292. Upon inoculation with downy mildew pathogen, Sclerospora graminicola, up to 60% increase in peroxidase activity was observed in highly resistant seedlings over the period of time. Iso-electric focusing analysis revealed that, two acidic isozymes of peroxidase with the pI of 5.9 and 5.1 present only in IP 18292 pearl millet seedlings. Upon inoculation with downy mildew pathogen, accumulation of these to isozymes was increased. These results indicated the possible involvement of acidic peroxidase in pearl millet defense. To study the nature of the acidic peroxidase which increases upon inoculation was purified from seedlings of highly resistant pearl millet cultivar using DEAE–Sepharose and Sephadex G-100 columns. The purified enzyme has a molecular weight of 21.8 kDa on SDS–PAGE and has a pI of 5.1. The optimum pH for maximum peroxidase activity was found to be at pH 7.0 and was resistant to high temperature (27–60 °C). The Km for H2O2 and Vmax of the enzyme reaction were 5.26 mM and 322.58 units, respectively. Purified peroxidase enzyme was found to be CaCl2 dependent and both MgCl2 and ZnCl2 showed inhibitory effect on enzyme activity. Sodium azide and EDTA inhibited the enzyme and EGTA found to be specific inhibitor of peroxidase.  相似文献   

15.
Nitric oxide (NO) donors Nitroso-R-Salt, 2-Nitroso-1-Naphthol and Sodium Nitro Prusside (SNP) were evaluated for their effectiveness in protecting pearl millet [(Pennisetum glaucum L.) R. Br.] plants against downy mildew disease caused by Sclerospora graminicola [(Sacc). Schroet]. Optimization experiments with NO donors showed no adverse effect either on the host or pathogen. Aqueous SNP seed treatment with or without polyethylene glycol (PEG) priming was the most effective in inducing the host resistance against downy mildew both under greenhouse and field conditions. Potassium Ferrocyanide, a structural analog of NO donor lacking NO moiety failed to protect the pearl millet plants from downy mildew indicating a role for NO in induced host resistance. Spatio-temporal studies corroborated that the protection offered by NO donor treatment was systemic in nature and a minimum of 3-day time gap between the inducer treatment and subsequent pathogen inoculation was necessary for maximum resistance development. Disease protection ability of NO donors was also validated as durable in nature. Conversely, prior-treatment with NO scavenger 2-4-carboxyphenyl-4,4,5,5 tetrazoline-1-oxyl-3-oxide potassium salt (C-PTIO) rendered the pearl millet plants relatively susceptible for pathogen infection. Expression of primary defense responses like hypersensitive response, lignin deposition and defense related enzyme phenylalanine ammonialyase −EC 4.3.1.5 (PAL) were enhanced by NO donor treatments.  相似文献   

16.
Priming of pearl millet seedlings with nitric oxide (NO) donors sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG) induced hypersensitive reactions (HR) and accumulation of Proline/Hydroxyproline-rich glycoprotein (P/HRGP) during infection by downy mildew pathogen Sclerospora graminicola. Such defense responses were specifically altered by concentration of NO donors resulting in the modulation of endogenous NO in seedling tissues. The stoichiometric interactions of NO and hydrogen peroxide (H2O2) when followed in relation to HR and P/HRGP accumulation, the degree of defense response varied with H2O2 level, the latter being largely influenced by NO concentration. Therefore, balancing NO and H2O2 is vital for optimum expression of defense responses for imparting disease resistance.  相似文献   

17.
The responses to cellulysin as an immune inducer in pearl millet that confers downy mildew resistance mediated through lipoxygenase (LOX), a jasmonate-dependent enzyme involved in defence signalling, are discussed in this paper. The susceptible pearl millet cultivar 7042S was treated with cellulysin at 10, 15, 20, 30 and 50 μg/ml concentrations. All tested concentrations showed enhanced seed germination and seedling vigour when compared with the untreated control. Maximum seed germination of 92 % and seedling vigour was obtained following 20 μg/ml cellulysin treatment. Significant (P?<?0.05) downy mildew disease protection of 67 % and 71 % was observed when cellulysin was used at 20 μg/ml under greenhouse and field conditions, respectively. Further studies showed that the resistance induced by cellulysin treatment in pearl millet plant was systemic, required a minimum of 4 days to achieve maximum resistance development after pathogen inoculation seedling inoculation (five-day-old), and was sustained throughout the plant’s life. Plants raised from cellulysin-treated seeds and challenge inoculated at tillering (25-day-old) and inflorescence (45-day-old) showed persistence in resistance till the end of the crop period. A notable increase in LOX activity was observed in all the tested concentrations of cellulysin in plants inoculated with the pathogen at 24 h, compared to the control. However, a maximum 6-fold increase in LOX activity was noticed using a cellulysin concentration of 20 μg/ml 48 hours post inoculation. In contrast, glucanase (GLU) activity was high in control inoculated seedlings, but was low in cellulysin treated samples at all time intervals. The optimal cellulysin treatment (20 μg/ml) provided enhanced vegetative and reproductive parameters that resulted in higher yield compared to the untreated control.  相似文献   

18.
Field studies were conducted near Lethbridge, Alberta, Canada, in 2001, 2004 and 2005 to determine the efficacy of the antagonistic fungusUlocladium atrum for control of white mold of bean caused bySclerotinia sclerotiorum. Results of the 3 years of field trials showed that, compared with the untreated control, foliar application of a spore suspension ofU. atrum (300 ml m−2 of 106 spores ml−1 suspension) significantly reduced incidence and severity of white mold, increased seed yield and reduced contamination of bean seed by sclerotia ofS. sclerotiorum. The level of control of white mold observed in the treatment ofU. atrum was similar to that of the mycoparasitic fungusConiothyrium minitans, but lower than the fungicide treatments of Ronilan (vinclozolin) at the rate of 1200 g ha−1 per application in 2001, or Lance (boscalid) at the rate of 750 g ha−1 per application in 2004 and 2005. The potential for use ofU. atrum as a biological control agent for sclerotinia diseases is discussed. http://www.phytoparasitica.org posting Nov. 12, 2006.  相似文献   

19.
Significant antibacterial activity was observed in the essential oil (E.O.) ofRosa damascena Mill. and the Minimum Bactericidal Concentration (MBC) of the E.O. was determined as 1386.5 μg ml−1 forErwinia amylovora, the causal agent of fire blight disease. Ooze formation on immature pears and lesion formation in artificially inoculated shoots were completely (100%) prevented by the essential oil ofR. damascena (1500 μg ml−1), essential oil ofThymbra spicata var.spicata (500 μg ml−1) and streptomycin (100 μg ml−1). Copper oxychloride plus maneb significantly reduced ooze formation and lesion formation, but the control was less than that obtained with the essential oils or streptomycin. The essential oil ofR. damascena may be a useful natural bactericide for the control of the fire blight pathogen,E. amylovora. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

20.
Proline/hydroxyproline-rich glycoprotein (P/HRGP) level in pearl millet genotypes resistant to downy mildew increase after inoculation with the oomycete pathogen Sclerospora graminicola. Using purified P/HRGPs from pearl millet cell walls, polyclonal antibodies (Pab-P/HRGP) were raised in rabbit. Based on this antiserum, an enzyme immunoassay was developed that displays a linearity detection range from 0.01 to 10 μg P/HRGP. Western blot analysis, confirming the induction of three marker P/HRGPs in the infected resistant genotype, and immunocytochemical studies on P/HRGP localization either in epidermal peelings or in suspension-cultured cells demonstrated the specificity of the antiserum. Besides its characterization, Pab-P/HRGP was employed to screen various genotypes of pearl millet for fast, sensitive and specific detection of induced P/HRGPs upon infections. The results presented are discussed with presumed importance to downy mildew disease and the use of this new antiserum in pearl millet screening for disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号