首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
盐旱交叉胁迫对各施氮水平下小麦苗期的影响   总被引:3,自引:0,他引:3  
为探究不同浓度盐胁迫和水分胁迫及两者互作对小麦幼苗生理特性的影响,于2017年3月至5月布置盆栽试验,分别设置两个NaCl胁迫(S1,NaCl 1.9 g/kg;S2,NaCl 2.9 g/kg)和两个水分处理水平(W1,78%田间持水量;W2,47%田间持水量),测定了冬小麦幼苗地上部和地下部干物质量、全氮、叶绿素和可溶性糖含量。结果表明:①在本试验盐胁迫范围内,单一盐胁迫下盐分含量的上升会显著抑制小麦的生长,冬小麦各部分干重、全氮、叶绿素含量明显下降,渗透物质可溶性糖含量会上升;②低盐干旱胁迫互作改善冬小麦幼苗生长状况,叶绿素含量、各部分干物质累积、氮积累量以及可溶性糖含量最大,呈现出对盐旱复合胁迫的适应性;③高盐干旱胁迫互作会加剧对小麦幼苗的生长限制。因此,低盐胁迫下对冬小麦进行适度的干旱刺激可以促进小麦幼苗适应复合胁迫,有利于小麦幼苗生长。  相似文献   

2.
不同水肥处理下冬小麦冠层含水率与温度关系的研究   总被引:12,自引:1,他引:12  
研究了不同水肥处理下冬小麦冠层含水率与冠层温度的关系。结果表明,随灌水量增加,冬小麦冠层含水率呈逐渐增加的趋势,灌水量达一定程度后,冠层含水率反而下降,冠层温度表现出与冠层含水率相反的趋势;冠层含水率与冠层温度呈显著负相关。两品种施氮处理冠层含水率均明显高于不施氮处理。“京冬8号”各施氮处理冠层含水率随施氮量增加呈逐渐降低的趋势,冠层温度则随施氮量增加而上升;其冠层含水率与冠层温度存在显著负相关关系。“中优9507”各施氮处理不具“京冬8号”的规律性,但其冠层含水率与冠层温度也呈负相关。用冠层温度反映冠层含水率具有较高的可靠性。  相似文献   

3.
The objective of this experiment was to assess the effect of interaction between early and late nitrogen (N) fertilization on grain yield, protein content, and distribution of N between organs of winter wheat. Wheat was grown in pots in vegetation house. Experiment has been carried on in three years 2001–2003, each year in four replications. Wheat supplied with 0.9, 1.4, 1.9, 2.4, and 2.9 g N/pot was top dressed at anthesis by 0.85 g labeled nitrogen 15N/pot. Plants supplied with 0.9 g N/pot enhanced grain yield by 28% and gluten content by 62% and plant supplied with 2.9 g N/pot by 27% and 13%, respectively. The amount of 15N fertilizer stored in plant organs decreased proportionally to the amount of previously accumulated nitrogen, but the share of 15N in plant parts was almost constant. Grain accumulated about 86% of total 15N taken up by plants. Irrespective on nitrogen status prior to anthesis, about 50% of 15N has been used for gluten formation. The percentage of 15N recovery fraction ranged from 79% to 86%.  相似文献   

4.
基于中国冬小麦区14个站点近25a(1990?2015)农业气象站冬小麦观测资料、气象资料和土壤资料,利用DSSAT作物生长模型,模拟研究改变土壤养分条件、播期、种植密度和施氮量对缩小冬小麦产量差和提高N肥利用效率的影响,探索冬小麦高产高效的技术途径。结果表明:不同冬小麦站点的潜在产量区域间差异较大,其范围在7617~14242kg·hm-2。不同农艺措施对产量影响程度不同,其中提高土壤养分含量的增产潜力为53~3124kg·hm-2,对缩小产量差(缩差)的贡献率在8%以下,氮肥利用效率提高1.1~20.82kg·kg-1;播期提前的增产潜力为?327~2292kg·hm-2,其缩差贡献率为7%~17%,氮肥利用效率在?2.18~15.28kg·kg-1;增加种植密度的增产潜力为?255~699kg·hm-2,其缩差贡献率小于5%,氮肥利用效率在?1.7~4.66kg·kg-1;增施氮肥的增产潜力为0~4491kg·hm-2,其缩差贡献率为11%~33%,氮肥利用效率在?32.04~0kg·kg-1。表明增施氮肥和调整播期的增产潜力及缩差贡献率较大,提高土壤养分含量和增加种植密度次之,但是增加土壤施氮量使氮肥利用效率明显下降。  相似文献   

5.
大气CO2浓度升高会给地球生态系统带来一系列环境问题,植物能够通过气孔调节光合作用和蒸腾作用,对环境变化做出响应。本研究以评价植物光合作用和蒸腾作用相互关系的指标水分利用效率为切入点,以冬小麦为研究对象,在灌浆期将冠层按距离地面高度分上、中、下三层,采用LI-6400便携式光合作用测量系统测定数据对各层叶片光合、蒸腾特性随CO2浓度变化的响应进行了对比分析。结果表明:随着CO2浓度的增加,(1)各层叶片净光合速率呈直角双曲线形式增加,不同层叶片之间净光合速率对CO2浓度响应的差异不显著(P〉0.05),但各层羧化速率、光合能力、光呼吸表现不一致,均为上层〉中层〉下层;(2)各层叶片蒸腾速率总体下降,不同层叶片之间蒸腾速率对CO2浓度响应的差异显著(P〈0.01),蒸腾速率的变化是气孔导度随CO2浓度变化的结果,两者呈显著正相关(P〈0.01);(3)净光合速率提高与蒸腾速率降低,共同使叶片水平水分利用效率提高。研究工作有利于加深气候变化对农业影响的认识,也为农田生态系统碳、水耦合循环的多层模型研究奠定基础。  相似文献   

6.
Abstract

This work reports the results of studies on the impact of sowing times (three dates), application of fungicides (protected and unprotected plots), and nitrogen rates (five treatments) on the seed yield, contents of crude protein (CP), glucosinolates (GSL), and crude fat (CF) in seed and on major unsaturated acids (oleic C18:1, linoleic C18:2, and linolenic C18:3) in oil of winter rape (Brassica napus L.) cv. Kasimir. A split–split plot design was used in the field trial conducted on Endocalcari–Epihypogleyic Cambisol during 1998–2002. Seed samples were analyzed by near infrared spectroscopy. ANOVA analysis was used to assess the significance of each factor for the yield and quality of seed of the tested cultivar. The seed yield significantly depended on harvest year, N rates annually, sowing time in three experimental years, and fungicide application in two years. CF and CP concentrations were significantly affected by sowing time and N rates each year of the experiment. A significant effect of fungicides was identified only in one harvest year. GSL concentration was significantly affected by sowing time in three years, by fungicides in two years, and by nitrogen rate annually. The effect of the studied factors on the composition of major unsaturated acids was inconsistent. Sowing time significantly affected the content of all three unsaturated acids in two years and fungicides only in one of the four harvest years.  相似文献   

7.
Determination of appropriate nitrogen (N) fertilization for wheat (Triticum aestivum L.) production with respect to the available resources can result in the enhanced efficiency of agricultural systems and ecosystem health. Hence, a 3-year field experiment was conducted to determine (1) the effects of soil total N and soil mineral N (including nitrate, NO3-N, and ammonium, NH4-N) measured at seeding and postseeding for wet and dry soil samples at 0- to-30 cm and 0- to 60-cm depths on wheat grain N uptake and (2) the regression equations that can best explain the variation in wheat grain N uptake by N fertilizer and soil total and mineral N. Determination of wheat grain N uptake as affected by soil NO3-N in areas with reasonable amounts of organic matter can also be used as a very useful tool for determination of appropriate N fertilization, which is of great agricultural and environmental implications.  相似文献   

8.
运用盆栽模拟土壤渍水逆境试验,研究不同生育时期根际土壤渍水逆境对不同小麦品种N、P、K素吸收、运转和分配的影响。结果表明,根际土壤渍水逆境对不同小麦品种N、P、K素吸收的影响有异;不同生育时期根际土壤渍水逆境显著影响根系对N、P素的吸收、运转与分配,以孕穗期渍水逆境影响最大,其次为灌浆期和拔节期,而不同生育时期根际土壤渍水逆境对K素的吸收影响较小。孕穗期以前浈水逆境主要影响小麦根系对N,P,K案的吸收.对N、P、K素在小麦体内的运输和分配影响较小;灌浆期渍水逆境不仅影响根系对N、P、K素的吸收.同时也影响N、P素在地上部各器官中的运转和分配,但对K素在小麦体内的运转和分配影响较小。因此,基肥中施足P肥和K肥,拔节孕穗期重施速效N肥,灌浆期叶面喷施KH2PO4对于培育壮秆大穗,减轻小麦溃害,提高受渍小麦籽粒产量具有非常重要的实际意义。  相似文献   

9.
利用旱作长期定位施肥试验研究了不同氮肥用量对冬小麦干物质累积和氮素吸收利用的影响,结果显示,不同处理下干物质累积变化趋势都呈"S"型曲线,且冬小麦各生育期干物质量,随氮肥用量的增加而增大,说明氮肥对促进冬小麦干物质累积作用显著。干物质累积速率均呈现明显的单峰曲线,拔节-灌浆阶段累积速率最大,是干物质累积的重要时期。小麦植株含氮量和氮素累积量都随氮肥用量增加而升高,在冬前-拔节期和开花-灌浆期两个阶段,冬小麦植株氮素累积量较大,累积速率快,是氮素吸收利用的两个关键阶段。  相似文献   

10.
Nitrogen in the soil is continually undergoing transformation, changing in form and availability. All phases of the cycle through which this element passes must be considered in attempting to explain nitrogen balances, losses or gains. Processed such as ammonification, nitrosofication, nitrification, nitrogen fixation, and denitrification need study in this respect. Nitrogen transformations and losses in soils have been investigated extensively in various countries and exhaustive reviews of a general nature1),8,,9),15) are available.  相似文献   

11.
Abstract

Nitrogen (N) deficiency has become more common in the traditional wheat cultivation areas of southern Finland as yield potentials have increased. Based on data for the period studied (1968-88) a grain protein concentration below 11.2% in spring wheat (Triticun aestivum L.) is an indicator of N deficiency. The mean of maximum grain yield obtained was 4655 kg ha?1 when grain protein concentration exceeded 11.2%. The estimation of plant tissue N content could be an effective diagnostic tool for identifying N status in the early growth stages of spring wheat. To address the feasibility of this test, the present study was conducted in 1990-91 to determine the critical plant tissue N concentrations of three plant parts at the early double-ridge stage (Stage 2), at the stage when stigmatic branches of the carpel begin to form (Stage 7) and at pollination (Stage 10). Nitrogen was applied at rates of 0 and 110 kg N ha?1 as granular ammonium nitrate and granular slow-release-nitrogen fertilizers to establish a wide range of plant tissue N levels, grain yields and grain protein concentrations. Critical plant N levels were calculated for the different plant parts using the Cate-Nelson procedure. From this study it can be concluded that the critical N level recommended for Stage 2 is 43 g of N kg?1 dry matter of the whole plant. Critical N levels recommended for Stage 7 are 28 g of N kg?1 dry matter of the whole plant, 30 g of N kg?1 of the leaves and 13 mg total N in dry matter. Critical N levels recommended for Stage 10 are 12 g of N kg?1 of the whole plant, 23 g of N kg?1 of the leaves and 15 mg total N in dry matter.  相似文献   

12.
本文运用同位素15N,对冬小麦不同追肥时期的效果 ,氮肥的利用率 ,氮素在秸杆、籽粒中的分配、土壤残留、挥发损失进行了研究。结果表明 :拔节期追肥一次 ,再加上追施穗肥一次效果最好 ;前期追肥 ,秸杆对 N的利用率高 ,籽粒对 N的利用率低 ;后期追肥 ,籽粒对 N的利用率高 ,秸杆对 N的利用率低 ;前后期结合追肥比一次追肥土壤氮素残留量高 ,损失较少。  相似文献   

13.
The use of a new controlled-loss-fertilizer (CLF) to reduce nitrogen loss from the Danjiangkou Reservoir of China was explored. Specifically, a three-year experiment was conducted to identify the optimum fertilizer rate for CLF used in wheat production. The treatments included four CLF levels, 20% (20% F), 35% (35% F), 50% (50% F), and 100% (100% F), of the local recommended fertilization dose (LRFD), and traditional fertilizers with the same dose as 50% F as the control (CF). Treatment 50% F with an equivalent fertilizer rate decreased nitrogen (N) runoff loss and leaching loss by 21.6% and 24.5%, while leading to a 9.8% increase in soil residual mineral N when compared to CF. Treatments 50% F and 100% F produced higher wheat yield than the other treatments. At the same fertilizer rate, the grain yield of the 50% F treatment was 5.5% higher than that of CF. Regression analysis of the yield relative to the CLF rate revealed that the optimum CLF rate was about 77% of the LRFD. Overall, the results indicate that CLF with 77% of the LRFD could be the optimum rate for minimizing nitrogen loss and increasing yield and should be considered for wheat production in the area.  相似文献   

14.
优良的品种与科学合理的种植密度是提高小麦产量的基础。试验以3个不同年代在黄土高原半干旱地区大面积推广的冬小麦品种为试验材料,设置了3个种植密度(100万株/hm2、250万株/hm2、350万株/hm2),通过田间小区实验研究了种植密度对其根系生长,产量及其水分利用效率的影响。结果表明:不同年代冬小麦品种的根系生长,水分利用效率及其产量对种植密度的响应不同。1960s品种(丰产3号)的根系生长、产量及水分利用效率随种植密度的增加而降低;1980s品种(小偃6号)在中密度时根系生长,产量及水分利用效率最大,低密度次之,高密度最小;现代品种(长旱58)根系生长,产量及水分利用效率随种植密度的增加而提高。在本实验条件下,现代品种较前品种的最高水分利用效率和最高产量均显著增加,而相应的根重密度和根长密度却显著降低。这表明在黄土高原半干旱地区小麦品种更替过程中,小麦的根系生长可能存在对其产量和水分利用效率不利的冗余,只不过这种根系生长的冗余随品种的更替而降低,并因此提高了其水分利用效率和产量。  相似文献   

15.
本文运用同位素15N,对冬小麦不同追肥时期的效果,氮肥的利用率,氮素在秸杆、籽粒中的分配、土壤残留、挥发损失进行了研究.结果表明拔节期追肥一次,再加上追施穗肥一次效果最好;前期追肥,秸杆对N的利用率高,籽粒对N的利用率低;后期追肥,籽粒对N的利用率高,秸杆对N的利用率低;前后期结合追肥比一次追肥土壤氮素残留量高,损失较少.  相似文献   

16.
A single wheat class or blended wheats from two wheat classes are usually milled in a flour mill. A near‐infrared (NIR) reflectance spectrometer, previously evaluated as granulation sensor for first‐break ground wheat from six wheat classes, was evaluated for a single wheat class, hard red winter (HRW) wheat, using offline methods. The HRW wheats represented seven cultivars ground by an experimental roller mill at five roll gap settings (0.38, 0.51, 0.63, 0.75, and 0.88 mm) which yielded 35 ground wheat samples each for the calibration and validation sets. Granulation models based on partial least squares regression were developed with cumulative mass of size fractions as a reference value. Combinations of four data pretreatments (log 1/R, baseline correction, unit area normalization, and derivatives) and subregions of the 400–1,700 nm wavelength range were evaluated. Models that used pathlength correction (unit area normalization) predicted well each of the four size fractions of first‐break ground wheat. The best model, unit area normalization and first derivative, predicted all the validation spectra with standard errors of performance of 3.80, 1.29, 0.43, and 0.68 for the >1041, >375, >240, and >136 μm size fractions, respectively. Ground HRW wheats have narrower particle size distribution and better sieving properties than ground wheat from six wheat classes. Thus, HRW wheat granulation models performed better than the previously reported models for six wheat classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号