首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glomerular filtration rate (GFR) and extracellular volume (ECFV) were measured before, during and after treadmill exercise in 5 trained Thoroughbred horses (mean weight 483 kg). GFR/ECFV was determined by plasma disappearance of Tc-DTPA and ECFV was measured independently as thiocyanate space. Resting GFR averaged 1.6 l/min (3.3 ml/kg/min) and fell by over 40% during exercise, moreover the fall was severe even during the first walk, prior to trotting. The results suggest that rather than being protected, GFR is allowed to fall, even with mild exercise and that this is probably an adaptation to allow greater perfusion of muscle and skin. In man, GFR appears to be more resistant to the effects of exercise but it is hard to compare intensity of exercise between such different species.  相似文献   

2.
BACKGROUND: Glomerular filtration rate (GFR) decreases in the aging human kidney, but limited data exist in dogs. HYPOTHESIS: There is an effect of age and body size on estimated GFR in healthy dogs. ANIMALS: One hundred and eighteen healthy dogs of various breeds, ages, and body weights presenting to 3 referral centers. METHODS: GFR was estimated in clinically healthy dogs between 1 and 14 years of age. GFR was estimated from the plasma clearance of iohexol, by a compartmental model and an empirical correction formula, normalized to body weight in kilograms or liters of extracellular fluid volume (ECFV). For data analysis, dogs were divided into body weight quartiles 1.8-12.4, 13.2-25.5, 25.7-31.6, and 32.0-70.3 kg. RESULTS: In the complete data set, there was no trend toward lower estimated GFR/kg or GFR/ECFV with increasing age. GFR decreased with age in dogs in the smallest weight quartile only. A significant negative linear relationship was detected between body weight and estimated GFR/kg and GFR/ECFV. Reference ranges in different weight quartiles were 1.54-4.25, 1.29-3.50, 0.95-3.36, and 1.12-3.39 mL/min/kg, respectively. Standardization to ECFV rather than kilogram body weight did not produce substantial changes in the relationships between GFR estimates and age or weight. CONCLUSIONS AND CLINICAL IMPORTANCE: Interpretation of GFR results for early diagnosis of renal failure should take into account the weight and the age of the patient for small dogs.  相似文献   

3.
The purpose of the present study was to compare different pharmacokinetic models for estimation of glomerular filtration rate (GFR) in 50 dogs with pyometra. GFR was estimated by plasma clearance (CLplasma) of iohexol by four 1-compartment methods (CL1c), a 2-compartment method (CL2c), and the trapezoidal method (CLtr). Regression analysis was performed to establish correction formulas for prediction of CLtr from the CL1c values and to find optimal times of sampling. Standardization of clearance values to body weight (kg), body surface area (m2) and extracellular fluid volume (ECFV) was compared by ranking of values. CLtr and CL2c values were similar, whereas CL1c overestimated CLtr. CLtr could be predicted from 2 samples at 2 and 3 hours after injection, using the formula CLtr = 4.52 + 0.84CL1c - 0.00080(CL1c)2 (R2 = .97). Similar relationships were found when sampling at 2 and 4 hours or at 2, 3 and 4 hours after injection, whereas predictions from the 3- and 4-hour estimates were not optimal (R2 = .79). The 2-sample methods for calculating GFR/ECFV generally produced unreliable predictions of the complete curve GFR/ECFV values. For some dogs, the choice of standardization procedure substantially changed the apparent level of renal function relative to other dogs in the study. We conclude that by applying an appropriate correction formula, GFR may be estimated using 2 blood samples at 2 and 3, or 2 and 4 hours after injection of iohexol when renal function is normal or moderately reduced. The method of standardizing the analysis with respect to body size may influence interpretation of the results substantially.  相似文献   

4.
The purpose of this study was to describe the pharmacokinetics of bromide in horses and to evaluate the corrected bromide space as an indicator of extracellular fluid volume (ECFV) in horses after the administration of a single dose of bromide by intravenous infusion. Sodium bromide (30 mg/kg of body weight, IV) was administered to 6 clinically healthy mares over a period of 3 minutes. Blood samples were collected before infusion and at intervals between 0.5 hours and 53 days after infusion. Mean elimination half-life (harmonic mean) was 126 hours (5.2 days), clearance was 1.4 +/- 0.09 mL/(kg x h), area under the curve was 17,520 +/- 1,100 microg x h/mL. and volume of distribution (steady state) was 0.255 +/- 0.015 L/kg. The mean corrected bromide space was determined from the volume of distribution (steady state) and the serum concentrations of bromide at equilibration. Corrected bromide space, an estimate of ECFV, was 0.218 +/- 0.01 L/kg. The conclusion was made that ECFV of horses can be estimated by measuring bromide concentrations in a preinfusion serum sample and a sample obtained 5 hours after the administration of bromide.  相似文献   

5.
The purpose of the study was to compare the disposition of pharmacologic markers for cytochrome P-450 (CYP) metabolism, glomerular filtration rate (GFR), and extracellular (ECFV) and total body fluid volumes (TBFV) of Greyhounds and Beagles. Six healthy Greyhound and six healthy Beagle dogs were studied. Antipyrine, a marker for CYP metabolism and TBFV, and inulin, a marker for the GFR and ECFV, were administered i.v. Samples were collected at predetermined times and plasma was analyzed by validated high-pressure liquid chromatography (HPLC) methods. There were no differences in the disposition or pharmacokinetic parameters for inulin between the dog breeds. However, the clearance of antipyrine (mean = 8.33 mL/min/kg) in Greyhounds was significantly slower than Beagles (13.42 mL/min/kg, P = 0.004). The volume of distribution of antipyrine was significantly larger in Greyhounds (0.789 L/kg) than in Beagles (0.644 L/kg, P = 0.01). The half-life of antipyrine was significantly longer in Greyhounds (1.09 h) compared with Beagles (0.55 h, P = 0.002). The in vitro plasma protein binding of antipyrine was significantly less in Greyhounds (28%) compared with Beagles (40.3%, P = 0.008). Greyhounds exhibited significantly slower CYP metabolism, higher TBFV, and lower in vitro protein binding of antipyrine compared with Beagles. No differences in GFR or ECFV were found.  相似文献   

6.
OBJECTIVE: To evaluate the use of multifrequency bioelectrical impedance analysis (MF-BIA) for estimating total body water (TBW), extracellular fluid volume (ECFV), and intracellular fluid volume (ICFV) in horses. ANIMALS: 9 healthy mares. PROCEDURE: TBW and ECFV were measured by use of deuterium oxide and sodium bromide dilution techniques, respectively. Intracellular fluid volume was calculated as the difference between TBW and ECFV. Concurrently, MF-BIA recordings were obtained by use of 4 anatomic electrode positions and 3 measurements of length. Models for MF-BIA data were created for all combinations of length and anatomic electrode position. Models were evaluated to determine the position-length configuration that provided the most consistent estimates of TBW, ECFV, and ICFV, compared with values determined by use of the dilution techniques. RESULTS: Positioning electrodes over the ipsilateral carpus and tarsus and use of height at the tuber sacrale for length provided the closest estimate between values for TBW, ECFV, and ICFV predicted by use of MF-BIA and measured values obtained by dilutional techniques. This model had the narrowest 95% limits of agreement. CONCLUSIONS AND CLINICAL RELEVANCE: MF-BIA techniques have been used to predict changes in TBW, ECFV, and ICFV in healthy and diseased humans. Results reported in this study provide an equine-specific model to serve as the basis for further evaluation of MF-BIA in horses with altered fluid states. The MF-BIA techniques have a number of potential applications for use in horses, including evaluation of exercise physiology, pharmacologic studies, and critical-care management.  相似文献   

7.
BACKGROUND: Multi-frequency bioelectrical impedance analysis (MF-BIA) has been used to evaluate extracellular fluid volume (ECFV), but not fluid fluxes associated with fluid or furosemide administration in horses. If able to detect acute changes in ECFV, MF-BIA would be useful in monitoring fluid therapy in horses. HYPOTHESIS: The purpose of this study was to evaluate the ability of MF-BIA to detect acute fluid compartment changes in horses. We hypothesized that MF-BIA would detect clinically relevant (10-20%) changes in ECFV. ANIMALS: Six healthy mares were used in the study. METHODS: This is an original experimental study. Mares were studied in 3 experiments: (1) crystalloid expansion of normally hydrated subjects, (2) furosemide-induced dehydration followed by crystalloid administration, and (3) acute blood loss followed by readministration of lost blood. MF-BIA measurements were made before, during, and after each fluid shift and compared to known changes in volume calculated based on the intravenous fluids that were administered in addition to urinary fluid losses. Mean errors between MF-BIA estimated change and known volume change were compared using nonparametric analysis of variance. Estimated ECFV pre- and post-fluid administration similarly were compared. The level of statistical significance was set at P < .05. RESULTS: Results of the study revealed a statistically significant change in ECFV and total body water during crystalloid expansion and dehydration. Statistically significant changes were not observed during blood loss and administration. Mean errors between MF-BIA results and measured net changes were small. CONCLUSIONS AND CLINICAL IMPORTANCE: MF-BIA represents a practical and accurate means of assessing acute fluid changes during dehydration and expansion of ECFV using isotonic crystalloids with potential clinical applications in equine critical care.  相似文献   

8.
Effect of endotoxin administration on body fluid compartments in the horse   总被引:1,自引:0,他引:1  
Plasma volume, extracellular fluid volume (ECFV), and total body water (TBW) were measured before and after endotoxin (Escherichia coli) administration in 6 conscious adult horses. Evan's blue dye, sodium thiocyanate, and antipyrine were the test substances used to estimate plasma volume, ECFV, and TBW, respectively. Pharmacokinetic analysis of plasma concentration vs time was used to determine changes in body fluid compartments. The pathophysiologic effects of endotoxin were monitored by clinical evaluation, blood chemical changes, and blood gas determinations. All horses became dyspneic within 15 minutes of endotoxin administration and clinical signs of colic were evident 30 to 45 minutes after endotoxin administration. After endotoxin administration, serum glucose and creatinine concentrations were significantly (P less than 0.05) elevated, and all horses became hypoxic and developed marked metabolic acidosis, and plasma volume decreased approximately 15% (P less than 0.05). A significant change in ECFV or TBW during the 300-minute experimental period was not observed.  相似文献   

9.
Iohexol plasma clearance as a measure of glomerular filtration was determined in 31 dogs and 19 cats after an intravenous (i.v.) bolus injection. All animals were healthy and privately owned. Serial blood samples were taken before and up to 4 h after tracer injection. Iohexol plasma concentration was determined using X-ray fluorescence. A plasma tracer elimination curve was generated and clearance was calculated by dividing the injected dose by the area under the curve estimated using a two-compartment pharmacological model. Clearance was normalized to body weight (BW), body surface area (BSA), and extracellular fluid volume (ECFV). Mean, SD, and coefficient of variation of plasma clearance, before and after normalization, were calculated. Linear regression analyses were performed between body size and normalized plasma clearances. No significant linear relation was found between BSA and clearance normalized to BSA in dogs, and between BSA, BW, ECFV and clearance normalized to BSA, BW, and ECFV in cats. The optimal method for normalization of iohexol plasma clearance in dogs was by using BSA. In cats, all three methods tested were considered satisfactory. Normalization to BSA appears to be superior to normalization to BW and ECFV in dogs, and can be recommended for clinical use.  相似文献   

10.
Glomerular filtration rate (GFR) was measured in 12 clinically normal horses, using the standard inulin clearance method, and values were compared with values for 2 methods, using a single rapid IV injection of 99mTc-labeled diethylenetriaminepentaacetic acid (99mTc-DTPA). The first 99mTc-DTPA method used a 2-compartment model to calculate GFR blood clearance of the tracer. The second method used sequential digital gamma camera images of the kidneys to determine fractional accumulation of the total dose of the tracer in the kidneys (percentage of injected dose, gamma camera) from 0 to 10 minutes after radionuclide administration. Linear correlation among the 3 methods was determined. Mean (+/- SD) GFR, using the inulin clearance method, was 154.67 +/- 42.28 ml/min/100 kg of body weight. Mean GFR, using the 2-compartment blood clearance curve, was 146.92 +/- 27.49 ml/min/100 kg. Mean GFR, using percentage of injected dose (gamma camera method) was 154.7 +/- 22.00 ml/min/100 kg. The percentage of injected dose (gamma camera method) did not correlate significantly to the inulin clearance results. However, a significant (r = 0.666, P less than 0.018) correlation was observed between the inulin method and the 99mTc-DTPA blood clearance method. Significant (P less than 0.0001) difference also was observed in the split function of the equine kidneys, with GFR of the right kidney contributing 60.1 +/- 9.12% of the total function, as determined by 99mTc-DTPA gamma camera imaging. Because the 99mTc-DTPA blood clearance method does not require urine collection, it may be a more practical procedure to measure GFR in the horse.  相似文献   

11.
Comparison of standard and radionuclide methods for measuring glomerular filtration rate (GFR) and effective renal blood flow (ERBF) was performed in 8 healthy female horses. Inulin and p-aminohippurate solutions were administered IV as a bolus, followed by sustained administration. Urine and plasma inulin and p-aminohippurate concentrations and urine volume were measured. Glomerular filtration rate and ERBF were calculated on the basis of these measurements. Glomerular filtration rate and ERBF were measured on the basis of plasma clearance of the radiopharmaceuticals, 99mTc-labeled diethylene-triaminepentaacetic acid (99mTc-DTPA) and [131I]-o-iodohippuric acid (131I-OIH), respectively. Mean +/- SEM GFR, using inulin, was 1.83 +/- 0.21 ml/min/kg of body weight. Mean GFR, using 99mTc-DTPA was 1.79 +/- 0.18 ml/min/kg. Mean ERBF, using p-aminohippurate, was 15.13 +/- 1.28 ml/min/kg. Mean ERBF, using 131I-OIH, was 18.42 +/- 1.57 ml/min/kg. Analysis of variance indicated no significant difference between mean values for GFR and ERBF. Radionuclide measurement of GFR and ERBF compared well with standard methods and is an alternative technique to the cumbersome standard methods for determination of GFR and ERBF in horses.  相似文献   

12.
To estimate the glomerular filtration rate (GFR) in horses, an optimum dose of the nonionic contrast medium iodixanol as a tracer was assessed with blood-sample times. Iodixanol was administered intravenously at 10–40 mg I/kg to geldings and mares, and blood was collected 30, 60, 90, 120, 150, and 180 min later. Serum iodixanol concentration was determined by high-performance liquid chromatography (HPLC), and serum urea nitrogen (UN) and creatinine concentrations were also measured. The combination of 20 mg I/kg iodixanol and sampling times of 60, 90, and 120 min after injection was considered to be appropriate for practical use. In clinically healthy horses, the reference values were determined to be 1.90 ± 0.03 ml/min/kg (150.8 ± 2.94 ml/min/m2), consistent with historical data using different tracers. The result suggests that serum clearance of iodixanol is a ready-to-use tool for a screening of alterations in the equine GFR, although it is necessary to perform a more longitudinal study using horses with a variety of renal functions.  相似文献   

13.
Glomerular filtration rate (GFR) is estimated by means of clearance, defined as the volume of plasma that has been cleared of a particular substance per unit time. Glomerular filtration rate may be estimated by measuring the renal clearance of a filtration marker using data from both urine and plasma or by plasma clearance using only plasma data. Several alternative pharmacokinetic models are used for the calculation of clearance using various filtration markers with slightly different pharmacokinetic properties. The purpose of this article is to discuss how the choice of marker and pharmnacokinetic model may influence estimated GFR values and to elucidate commonly used methods and reported GFR values in the dog.  相似文献   

14.
OBJECTIVE: To compare glomerular filtration rate (GFR) measured via urinary clearance of inulin (UCI) with plasma clearance of technetium Tc 99m pentetate (99mTc-pentetate) and creatinine in dogs. ANIMALS: 6 healthy Beagles and 18 Beagles with reduced renal function. PROCEDURE: 13 blood samples were obtained between 5 and 600 minutes after i.v. bolus injections of (99m)Tc-pentetate and creatinine. Plasma clearance of (99m)Tc-pentetate was computed on the basis of 1, 2, or 13 samples, and plasma clearance of creatinine was computed on the basis of 2, 5, or 13 samples. During plasma clearance procedures, constant i.v. infusion of carboxyl carbon 14 inulin was begun and UCI was determined in urine collected from 90 to 120, 120 to 180, and 180 to 240 minutes. Clearance procedures were repeated in 12 dogs to evaluate reproducibility of results. RESULTS: Significant association between UCI and plasma clearance was determined via all methods. However, plasma clearances were moderately to markedly different from UCI, depending on test substance, GFR, and sample numbers used for plasma clearance computations. Comparisons were particularly discordant when some methods of limiting samples were used to define plasma clearance. CONCLUSIONS AND CLINICAL RELEVANCE: Values derived from plasma clearance methods for (99m)Tc-pentetate and creatinine were not interchangeable with UCI results, which raises questions about their reliability as clinical research tools for measurement of GFR. Plasma clearance methods that are relative indices of renal function should not be interpreted as accurate measures of GFR without validation.  相似文献   

15.
The purpose of this project was to establish a procedure and reference values for glomerular filtration rate (GFR) using contrast-enhanced computed tomography (CT) in eight healthy dogs. A single section of the kidney was scanned sequentially after bolus injection (3 ml/s) of iohexol (300 mg/kg). Time-attenuation curves were constructed and the GFR per volume of kidney was calculated using Patlak graphical analysis software. The GFR was then converted from contrast clearance per unit volume (ml/min/ml) to contrast clearance per body weight (ml/min/kg). Individual kidney and global GFR were calculated using both CT and nuclear scintigraphy. Global GFR for each dog was also determined by plasma iohexol clearance. Contrast-enhanced CT underestimated the global GFR compared with the other two methods. The average global GFR was 2.57 +/- 0.33 ml/ min/kg using functional CT and 4.06 +/- 0.37 ml/min/kg using plasma iohexol clearance. There was significant (P < 0.05) interobserver variability of CT GFR of the right kidney and total GFR. There was decreased interobserver variability for the left kidney. There was no difference in the intraobserver variability for CT-determined individual kidney and global GFR. There was no difference between the motion corrected and nonmotion corrected values for individual and global CT GFR. Nuclear scintigraphy produced a slightly higher coefficient of variation than contrast-enhanced CT, 2.9% and 1.0%, respectively. It is hypothesized that altered renal blood flow, hematocrit of the small vessels, and nephrotoxicity play a role in the underestimation of GFR by contrast-enhanced CT.  相似文献   

16.
The effectiveness of technetium 99m-labeled diethylenetriaminepentaacetic acid (99mTc DTPA) to assess renal function in 13 dogs with suspected renal disease was evaluated. Glomerular filtration rates (actual GFR) were determined on the basis of endogenous creatinine clearance. Predicted GFR were determined by using 99mTc DTPA within 72 hours after the determination of creatinine clearance. The percentage of an IV administered dose of 99mTc DTPA in the kidneys (percentage dose) was determined. Two equations were used to calculate predicted GFR, which were derived from previously reported linear regression analysis of inulin (In) and creatinine (Cr) GFR vs percentage dose 99mTc DTPA in dog kidneys. The correlations of actual GFR vs predicted GFR (In) and actual GFR vs predicted GFR (Cr) were both r = 0.92. The dogs' mean actual GFR was 1.73 +/- 1.35 ml/min/kg. Their mean predicted GFR (In) and predicted GFR (Cr) were 1.92 +/- 1.42 ml/min/kg and 1.85 +/- 1.27 ml/min/kg, respectively. Therefore, 99mTc DTPA can be used with high accuracy as an agent to predict GFR in dogs with suspected renal disease. The procedure for determining GFR by use of nuclear medicine was rapid and noninvasive and appeared to induce little stress in the animals evaluated.  相似文献   

17.
Creatinine in the dog: a review   总被引:2,自引:1,他引:1  
Creatinine is the analyte most frequently measured in human and veterinary clinical chemistry laboratories as an indirect measure of glomerular filtration rate (GFR). Although creatinine metabolism and the difficulties of creatinine measurement have been reviewed in human medicine, similar reviews are lacking in veterinary medicine. The aim of this review is to summarize information and data about creatinine metabolism, measurement, and diagnostic significance in the dog. Plasma creatinine originates from the degradation of creatine and creatine phosphate, which are present mainly in muscle and in food. Creatinine is cleared by glomerular filtration with negligible renal secretion and extrarenal metabolism, and its clearance is a good estimate of GFR. Plasma and urine creatinine measurements are based on the nonspecific Jaffé reaction or specific enzymatic reactions; lack of assay accuracy precludes proper interlaboratory comparison of results. Preanalytical factors such as age and breed can have an impact on plasma creatinine (P-creatinine) concentration, while many intraindividual factors of variation have little effect. Dehydration and drugs mainly affect P-creatinine concentration in dogs by decreasing GFR. P-creatinine is increased in renal failure, whatever its cause, and correlates with a decrease in GFR according to a curvilinear relationship, such that P-creatinine is insensitive for detecting moderate decreases of GFR or for monitoring progression of GFR in dogs with severely reduced kidney function. Low sensitivity can be obviated by determining endogenous or exogenous clearance rates of creatinine. A technique for determining plasma clearance following IV bolus injection of exogenous creatinine and subsequent serial measurement of P-creatinine does not require urine collection and with additional studies may become an established technique for creatinine clearance in dogs.  相似文献   

18.
Comparison of four methods of estimating glomerular filtration rate in cats   总被引:2,自引:0,他引:2  
Four methods of evaluating renal function were performed in 6 cats anesthetized with halothane in oxygen. Glomerular filtration rate (GFR) was measured simultaneously in each cat by exogenous creatinine clearance (ECC), bolus inulin clearance, and 99mTc(Sn)-diethylene-triaminepentaacetic acid (DTPA) clearance determined by 2 different methods. In the first DTPA clearance method (DTPA-1), we measured radioactivity in serial blood specimens to construct plasma disappearance curves for calculation of GFR. In the second DTPA clearance method (DTPA-2), we used serial external head counts of radioactivity and a single blood specimen to construct plasma disappearance curves for calculation of GFR. Bolus inulin clearance was calculated from plasma disappearance curves using a 1-compartment open pharmacokinetic model (IN-1) and a 2-compartment open pharmacokinetic model (IN-2). Glomerular filtration rates were measured over 3 hours, for creatinine and DTPA methods, and over 4 hours for the inulin methods. The GFR obtained with the reference method (ECC) was 2.56 +/- 0.61 ml/min/kg of body weight (mean +/- SD). Values for GFR determined by ECC and DTPA-1 were significantly correlated (r = 0.852; P less than or equal to 0.05). Correlation between ECC and DTPA 2 was not as good (r = 0.783; P less than or equal to 0.10), but the 2 DTPA methods significantly correlated with one another (r = 0.897; P less than or equal to 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
OBJECTIVE: To assess sensitivity of scintigraphic alveolar clearance rate as an indicator of alveolar epithelium damage in horses. ANIMALS: 5 healthy horses (group A) and 5 with chronic obstructive pulmonary disease (COPD; group B). PROCEDURE: Horses underwent clearance rate (k [%/min]) determination. Clearance rate of group-B horses was determined after remission of the disease following 2 months at pasture (remission 1), stabling in a controlled environment (remission 2), and during crisis induced by exposure to moldy hay and straw. Methacholine challenge test was performed at each investigation period to determine nonspecific pulmonary airway hyperresponsiveness. Pulmonary function tests (PFT) also were performed, and cell populations in bronchoalveolar lavage (BAL) fluid were determined on another occasion. RESULTS: Group-B horses had significantly faster mean clearance rate during crisis (k = 4.30+/-0.95%/min), compared with that for remission 1(k = 1.98+/-0.55%/min), which did not differ from the rate in group-A horses (k = 1.95+/-0.33%/min). Despite lack of clinical signs of COPD during remission when stabled in a controlled environment, an intermediate value was found (k = 3.20+/-0.72%/min). CONCLUSIONS: This technique allowed grading of lung damage induced by COPD, whereas use of PFT and determination of BAL fluid cell populations failed to differentiate between remission 1 and remission 2. CLINICAL RELEVANCE: Determination of alveolar clearance rate by use of scintigraphy is a sensitive indicator of lung damage. A modified clearance rate was found despite the lack of clinical and functional changes.  相似文献   

20.
Tracheal mucociliary clearance was determined in horses by measuring the rostrad transport of the radiopharmaceutical 99mtechnetium-sulphur colloid following deposition on the tracheal epithelium by intratracheal injection. The effects of head position (head elevated to normal standing position vs head lowered) and of accumulated purulent secretions on tracheal mucociliary clearance were evaluated for the first time in the horse. In normal horses tracheal mucociliary clearance was greatly accelerated by lowering the head so that the cranial trachea was lower than the caudal trachea. Horses confined with their heads elevated for 24 hours developed an accumulation of purulent airway secretions (and associated increased numbers of bacteria) in the lower respiratory tract and showed a decrease in tracheal mucociliary clearance when compared with their previously measured rate when the lower airway contained only normal secretions. These findings have implications for management practices where horses are prevented from lowering their heads, such as transportation and cross-tying, which may therefore contribute to lower respiratory tract disease in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号