首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pharmacokinetic characteristics of the anticonvulsant phenobarbital were studied in seven pony and two Thoroughbred foals aged between four and 10 days. A single, 20 mg/kg bodyweight (bwt) dose of phenobarbital was given intravenously over 25 mins and the serum concentrations of the drug were measured using an EMIT AED assay (coefficient of variation 1.37 per cent at 30 micrograms/ml, n = 7). Phenobarbital elimination was found to follow first order kinetics. The mean (+/- sd) peak phenobarbital serum concentration was 18.6 +/- 2.1 micrograms/ml at 1 h after initiation of infusion with a mean (+/- se) half-life of 12.8 +/- 2.1 h. The mean (+/- se) volume of distribution was 0.86 +/- 0.026 litres/kg bwt and mean (+/- se) total body clearance was 0.0564 +/- 0.0065 litres/kg bwt/h. Sedation was noticed 15 to 20 mins after the beginning of infusion and lasted for up to 8 h. All foals could be aroused and could walk although they were ataxic for the first 1 to 2 h. A degree of delayed hyperexcitability occurred 3 to 8 h after infusion. In equine neonatal seizure disorders it is recommended to use a loading dose of 20 mg/kg bwt of phenobarbital, followed by maintenance doses of 9 mg/kg bwt at 8 h. With this regimen, average steady state serum phenobarbital concentrations should range between approximately 11.6 and 53 micrograms/ml. Phenobarbital serum concentrations should be monitored following the loading dose and 24 h after initiating the maintenance doses to check that levels remain within the suggested (human) therapeutic range of 15 to 40 micrograms/ml.  相似文献   

2.
Six healthy two-day-old foals (3 pony foals and 3 horse foals) were given a single intravenous (iv) injection of trimethoprim (TMP)--sulphamethoxazole (SMZ) at a dosage of 2.5 mg of TMP/kg bodyweight (bwt) and 12.5 mg of SMZ/kg bwt. Serum TMP and SMZ concentrations were measured serially during a 24 hour period. The overall elimination rate constant (K) for TMP in the pony and horse foals was 0.45/h, whereas the K values for SMZ for the pony and horse foals were 0.12/h and 0.07/h, respectively (no significant difference; P greater than 0.05). Based on published minimum inhibitory concentration values for equine pathogens (Adamson et al 1985), the primary indication for the use of TMP/SMZ in foals may be in the treatment of infections caused by gram-positive bacteria. A dosage of 2.5 mg of TMP/kg bwt and 12.5 mg of SMZ/kg bwt, given iv at 12 h intervals would be appropriate.  相似文献   

3.
Healthy mature roosters (n = 10) were given gentamicin (5 mg/kg of body weight, IV) and, 30 days later, another dose IM. Serum concentrations of gentamicin were determined over 60 hours after each drug dosing, using a radioimmunoassay. Using nonlinear least-square regression methods, the combined data of IV and IM treatments were best fitted by a 2-compartment open model. The mean distribution phase half-life was 0.203 +/- 0.075 hours (mean +/- SD) and the terminal half-life was 3.38 +/- 0.62 hours. The volume of the central compartment was 0.0993 +/- 0.0097 L/kg, volume of distribution at steady state was 0.209 +/- 0.013 L/kg, and the total body clearance was 46.5 +/- 7.9 ml/h/kg. Intramuscular absorption was rapid, with a half-life for absorption of 0.281 +/- 0.081 hours. The extent of IM absorption was 95 +/- 18%. Maximal serum concentration of 20.68 +/- 2.10 micrograms/ml was detected at 0.62 +/- 0.18 hours after the dose. Kinetic calculations predicted that IM injection of gentamicin at a dosage of 4 mg/kg, q 12 h, and 1.5 mg/kg, q 8 h, would provide average steady-state serum concentrations of 6.82 and 3.83 micrograms/ml, with minimal steady-state serum concentrations of 1.54 and 1.50 micrograms/ml and maximal steady-state serum concentrations of 18.34 and 7.70 micrograms/ml, respectively.  相似文献   

4.
The disposition and absorption kinetics of gentamicin were studied in healthy, mature male and female turkeys (n = 10). Single doses of gentamicin (5 mg/kg) were injected either i.v. or i.m. with a 30-day rest period between each treatment. Baseline and serial venous blood samples (n = 17) were collected from each turkey. Serum concentrations of gentamicin were determined in duplicate for 24 h after each treatment, using radio-immunoassay. Using nonlinear least-square regression methods, the combined data of the i.v. and i.m. treatments were best described by a two-compartment open model. Kinetic analysis of the data after a single i.v. dose provided the following mean values: t1/2 alpha = 0.170 +/- 0.093 h, t1/2 beta = 2.57 +/- 0.79 h, MRT = 3.62 +/- 0.96 h, Vc = 0.090 +/- 0.017 l/kg, Vd(ss) = 0.172 +/- 0.024 l/kg, Vd(area) = 0.190 +/- 0.030 l/kg, and Clt = 49.8 +/- 9.8 ml/h/kg. After a single i.m. dose, the following mean values were determined: MRT = 5.10 +/- 1.73 h, t1/2abs = 0.74 +/- 0.66 h, tlag = 0.07 +/- 0.19 h, Clt/F = 50.7 +/- 12.5 ml/h/kg, Vd(area)/F = 0.193 +/- 0.044 l/kg, and F = 102 +/- 21%. Kinetic calculations made with the single i.m. data predicted that an i.m. injection of gentamicin at the dosage rate of 3 mg/kg q. every 12 h would provide average steady state serum concentrations of 4.93 micrograms/ml.  相似文献   

5.
The pharmacokinetic behaviour of marbofloxacin, a new fluoroquinolone antimicrobial agent developed exclusively for veterinary use, was studied in mature horses (n = 5) after single-dose i.v. and i.m. administrations of 2 mg/kg bwt. Drug concentrations in plasma were determined by high performance liquid chromatography (HPLC) and data obtained were subjected to compartmental and noncompartmental kinetic analysis. This compound presents a relatively high volume of distribution (V(SS) = 1.17 +/- 0.18 l/kg), which suggests good tissue penetration, and a total body clearance (Cl) of 0.19 +/- 0.042 l/kgh, which is related to a long elimination half-life (t(1/2beta) = 4.74 +/- 0.8 h and 5.47 +/- 1.33 h i.v. and i.m. respectively). Marbofloxacin was rapidly absorbed after i.m. administration (MAT = 33.8 +/- 14.2 min) and presented high bioavailability (F = 87.9 +/- 6.0%). Pharmacokinetic parameters are not significantly different between both routes of administration (P>0.05). After marbofloxacin i.m. administration, no adverse reactions at the site of injection were observed. Serum CK activity levels 12 h after administration increased over 8-fold (range 3-15) compared with pre-injection levels, but this activity decreased to 3-fold during the 24 h follow-up period. Based on the value of surrogate markers to predict clinical success, Cmax/MIC ratio or AUC/MIC ratio, single daily marbofloxacin dose of 2 mg/kg bwt may not be effective in treating infections in horses caused by pathogens with an MIC > or = 0.25 microg/ml. However, if we use a classical antimicrobial efficacy criteria, marbofloxacin can reach a high plasma peak concentration and maintain concentrations higher than MICs determined for marbofloxacin against most gram-negative veterinary pathogens throughout the administration period. Taking into account the fact that fluoroquinolones are considered to have a concentration-dependent effect and a long postantibiotic effect against gram-negative bacteria, a dose of 2 mg/kg bwt every 24 h could be adequate for marbofloxacin in horses.  相似文献   

6.
OBJECTIVE: To determine pharmacokinetics and plasma concentrations of erythromycin and related compounds after intragastric administration of erythromycin phosphate and erythromycin estolate to healthy foals. ANIMALS: 11 healthy 2- to 6-month-old foals. PROCEDURE: Food was withheld from foals overnight before intragastric administration of erythromycin estolate (25 mg/kg of body weight; n = 8) and erythromycin phosphate (25 mg/kg; 7). Four foals received both drugs with 2 weeks between treatments. Plasma erythromycin concentrations were determined at various times after drug administration by use of high-performance liquid chromatography. Maximum plasma peak concentrations, time to maximum concentrations, area under plasma concentration versus time curves, half-life of elimination, and mean residence times were determined from concentration versus time curves. RESULTS: Maximum peak concentration of erythromycin A after administration of erythromycin phosphate was significantly greater than after administration of erythromycin estolate (2.9 +/- 1.1 microg/ml vs 1.0 +/- 0.82 microg/ml). Time to maximum concentration was shorter after administration of erythromycin phosphate than after erythromycin estolate (0.71 +/- 0.29 hours vs 1.7 +/- 1.2 hours). Concentrations of anhydroerythromycin A were significantly less 1 and 3 hours after administration of erythromycin estolate than after administration of erythromycin phosphate. CONCLUSIONS AND CLINICAL RELEVANCE: Plasma concentrations of erythromycin A remained > 0.25 microg/ml (reported minimum inhibitory concentration for Rhodococcus equi) for at least 4 hours after intragastric administration of erythromycin phosphate or erythromycin estolate, suggesting that the recommended dosage for either formulation (25 mg/kg, q 6 h) should be adequate for treatment of R equi infections in foals.  相似文献   

7.
REASONS FOR PERFORMING STUDY: Treatments addressing variously theorised pathophysiological mechanisms of small intestinal adhesions have been reported. This study applied those classes of treatments to the most clinically relevant aetiology of post operative adhesions. HYPOTHESIS: Treatments addressing the pathophysiology of ischaemia-reperfusion induced adhesions would accordingly reduce the incidence of adhesions from this model. METHODS: Four classes of treatments were administered for 72 h to 16 foals subjected to complete ischaemia followed by reperfusion to create peritoneal adhesions. These groups were: 1) FPG group--flunixin meglumine (1.1 mg/kg bwt i.v., divided q.i.d.), potassium penicillin G (22,000 iu/kg bwt i.v., q.i.d.) and gentamicin (2.2 mg/kg bwt i.v., t.i.d.); 2) HEP group--heparin (80 iu/kg bwt subcut., b.i.d.); 3) DMSO group--dimethylsulphoxide (DMSO) (20 mg/kg bwt [diluted in 500 ml normal saline] i.v., b.i.d.); and 4) SCMC group--sodium carboxymethylcellulose (500 ml 3% sterile solution intraperitoneally, administered only at the beginning of surgery). RESULTS: Post operative intestinal obstruction did not occur in any foal. After 10 days, necropsy revealed bowel-to-bowel adhesions in none of the FPG or DMSO groups, in 2/4 of the SCMC group, in 3/4 of the HEP group and 5/6 foals subjected to the procedure without treatment (UIR group). CONCLUSIONS: Inhibition of the inflammation associated with ischaemia and reperfusion in foals treated with FPG or DMSO decreased small intestinal adhesions in foals. POTENTIAL RELEVANCE: Although anti-inflammatory therapy was shown to eliminate bowel-bowel adhesions in this controlled study, it must be remembered that clinical cases are without control. These therapies are advised to improve the result but are unlikely to eliminate the problem.  相似文献   

8.
The serum concentrations of the aminoglycosides neomycin, kanamycin and streptomycin were determined after intravenous (iv) and intramuscular (im) administration. These values were then related to the minimum inhibitory concentrations (MIC) of a number of equine pathogenic bacteria to determine the duration of therapeutic serum concentrations of the aminoglycosides in the horse. Pharmacokinetic analysis of the data using neomycin as the example revealed a mean (+/- sd) peak serum concentration of 23.2 +/- 10.2 micrograms/ml present at 30 mins, and at 8 h the serum concentration was 2.8 +/- 0.8 micrograms/ml. From the pharmacological analysis of concentration-time data it was shown that neomycin was very rapidly absorbed from the im injection site, with an absorption half-time of 0.16 +/- 0.05 and was well absorbed (systemic availability was 73.7 +/- 26.9 per cent). A peak tissue level, which represented 40 per cent of the amount of drug in the body, was obtained at 32 mins after injection of the drug. At 8 h, the fractions of the dose in the central and peripheral compartments of the model were 1.5 per cent and 2.5 per cent respectively, and 96 per cent was the cumulative amount eliminated up to that time. Based on the MIC values of the majority of isolates of Corynebacterium equi, and only a few isolates of Klebsiella pneumoniae, Escherichia coli, Salmonella typhimurium and Streptococcus equi, one would expect a serum concentration of more than 2 micrograms neomycin/ml up to 8 h following im dosage (10 mg/kg) to be therapeutically effective.  相似文献   

9.
REASON FOR PERFORMING STUDY: Administration of omeprazole paste per os to healthy neonatal foals has been shown to effectively increase intragastric pH, but has not been evaluated in sick neonatal foals. OBJECTIVES: To determine the effect of orally administered omeprazole paste on intragastric pH in clinically ill neonatal foals requiring nasogastric intubation. METHODS: Intragastric pH was measured continuously for 24 h using an indwelling electrode and continuous data recording system in hospitalised neonatal foals age < or =2 days. Intragastric pH was measured for 12 h prior to (pretreatment period) and 12 h following (post treatment period) treatment with omeprazole paste (4 mg/kg bwt per os). All foals displayed periods of acidity (pH <4) prior to treatment. Statistical analysis compared pre- and post treatment mean and median intragastric pH, and percentage of time below pH 4. RESULTS: Eight foals were evaluated age 1-3 days, a gestational age of at least 320 days or reported to be full term. The mean (3.19 +/- 1.50 vs. 6.20 +/- 0.93) and median (4.6 +/- 1.7 vs. 6.86 +/- 0.89) pH were significantly higher and the percentage of time below pH 4 (32.25 vs. 1.1%) was significantly lower in the post treatment compared to the pretreatment period. CONCLUSION: Omeprazole paste effectively increases intragastric pH in clinically ill neonatal foals after one dose at 4 mg/kg bwt orally.  相似文献   

10.
Five foals from two to three days old were given a single oral dose of ampicillin trihydrate (20 mg/kg bodyweight [bwt]). Serum ampicillin concentrations were measured serially over a 24 h period. The study was repeated in the same foals at 16 to 21 days old. The mean peak serum ampicillin concentration at two to three days old was 5.0 micrograms/ml at 1 h after treatment; the mean peak serum concentration at 16 to 21 days old was 2.7 micrograms/ml at 2 h. The concentrations steadily declined and ampicillin was not detected in the serum from any of the foals by 24 h. Serum clearance averaged 17.7 ml/min/kg at two to three days and 35.8 ml/min/kg at 16 to 21 days.  相似文献   

11.
The pharmacokinetics of gentamicin was studied in lambs, calves and foals, respectively after single intravenous (i.v.) injections of 5 mg kg(-1) body weight. The plasma concentration-time curves of gentamicin sulphate were best fitted to follow a two-compartment open model in calves and foals and a three-compartment open model in lambs. Gentamicin showed high plasma level at 5 min post-injection. Then its concentration decreased gradually until its minimum detectable level at 10 and 12 h post-injection in foals and calves, respectively, was reached. In contrast, the plasma concentrations were much higher in lambs and persisted up to 48 h from the onset of injection. Values of pharmacokinetic parameters for gentamicin sulphate in different animals after i.v. injections were calculated. Pharmacokinetic data in lambs demonstrated a triphasic decline in plasma gentamicin concentration with slow terminal elimination phase (washout phase) with (t(1/2y)) of 7.7 h. Gentamicin showed a small volume of distribution Vd(ss) (80.3 ml kg(-1)) in lambs indicating that the drug is slightly distributed in extra-vascular tissues. The overall rate of total body clearance ClB in lambs was (0.46 ml kg(-1)) slower than in calves (1.5 ml kg(-1)) and foals (2.7 ml kg(-1)). In vitro protein binding per cent of gentamicin sulphate in plasma were 16.80, 11.03 and 7.98% in lambs, calves and foals. The results of this study emphasize the importance of determining the pharmacokinetics of gentamicin in each species of young animals separately.  相似文献   

12.
Healthy mature pony mares (n = 6) were given a single dose of gentamicin (5 mg/kg of body weight) IV or IM 8 days apart. Venous blood samples were collected at 0, 5, 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, 30, 36, 40, and 48 hours after IV injection of gentamicin, and at 10, 20, 30, and 45 minutes and at 1, 1.5, 2, 2.5, 3, 4, 6, 8, 10, 12, 18, 24, and 30 hours after IM injection of gentamicin. Gentamicin serum concentration was determined by a liquid-phase radioimmunoassay. The combined data of IV and IM treatments were analyzed by a nonlinear least-square regression analysis program. The kinetic data were best fitted by a 2-compartment open model, as indicated by residual trends and improvements in the correlation of determination. The distribution phase half-life was 0.12 +/- 0.02 hour and postdistribution phase half-life was 1.82 +/- 0.22 hour. The volume of the central compartment was 115.8 +/- 6.0 ml/kg, volume of distribution at steady state was 188 +/- 9.9 ml/kg, and the total body clearance was 1.27 +/- 0.18 ml/min/kg. Intramuscular absorption was rapid with a half-life for absorption of 0.64 +/- 0.14 hour. The extent of absorption was 0.87 +/- 0.14. Kinetic calculations predicted that IM injections of 5 mg of gentamicin/kg every 8 hours would provide average steady-state serum concentrations of 7.0 micrograms/ml, with maximum and minimum steady-state concentrations of 16.8 and 1.1 micrograms/ml, respectively.  相似文献   

13.
Pharmacokinetic values of sodium amoxicillin (22 mg/kg of body weight) in foals were determined after a single IM injection in 6 Quarter Horse foals at 3, 10, and 30 days of age. Serum amoxicillin concentrations were measured serially over a 24-hour period. The absorption of amoxicillin was rapid and followed a 1st-order elimination. Mean peak serum concentrations occurred 30 minutes after the injection in foals at all ages and were 17.31 +/- 9.59 micrograms/ml when the foals were 3 days old, 23.28 +/- 9.86 micrograms/ml when the foals were 10 days old, and 21.35 +/- 6.39 micrograms/ml when the foals were 30 days old. Serum samples collected beyond 8 hours after administration contained amoxicillin concentrations less than 0.05 micrograms/ml. The elimination rate constant increased with increasing age (0.5265 +/- 0.0891 hour-1 when the foals were 3 days old, 0.6494 +/- 0.1114 hour-1 when the foals were 10 days old, and 0.7112 +/- 0.1016 hour-1 when the foals were 30 days old). Serum clearance increased with increasing age (498.4 +/- 82.6 ml/hr/kg at 3 days, 631.6 +/- 170.5 ml/hr/kg at 10 days, and 691.2 +/- 127.3 ml/hr/kg at 30 days). Serum half-life decreased with increasing age (1.34 +/-0.243 hour at 3 days, 1.10 +/- 0.239 hour at 10 days, and 0.991 +/- 0.139 hour at 30 days), whereas the extrapolated concentration at time zero and apparent volume of distribution did not change during the first 30 days of age.  相似文献   

14.
Pharmacokinetics of marbofloxacin in horses   总被引:3,自引:0,他引:3  
Marbofloxacin is a fluoroquinolone antibiotic expected to be effective in the treatment of infections involving gram-negative and some gram-positive bacteria in horses. In order to design a rational dosage regimen for the substance in horses, the pharmacokinetic properties of marbofloxacin were investigated in 6 horses after i.v., subcutaneous and oral administration of a single dose of 2 mg/kg bwt and the minimal inhibitory concentrations (MIC) assessed for bacteria isolated from equine infectious pathologies. The clearance of marbofloxacin was mean +/- s.d. 0.25 +/- 0.05 l/kg/h and the terminal half-life 756 +/- 1.99 h. The marbofloxacin absolute bioavailabilities after subcutaneous and oral administration were 98 +/- 11% and 62 +/- 8%, respectively. The MIC required to inhibit 90% of isolates (MIC90) was 0.027 microg/ml for enterobacteriaceae and 0.21 microg/ml for Staphylococcus aureus. The values of surrogate markers of antimicrobial efficacy (AUIC, Cmax/MIC ratio, time above MIC90) were calculated and the marbofloxacin concentration profiles simulated for repeated administrations. These data were used to determine rational dosage regimens for target bacteria. Considering the breakpoint values of efficacy indices for fluoroquinolones, a marbofloxacin dosage regimen of 2 mg/kg bwt/24 h by i.v., subcutaneous or oral routes was more appropriate for enterobacteriaceae than for S. aureus.  相似文献   

15.
After IV, IM, and subcutaneous injection of single dosages of amikacin (5, 10, and 20 mg/kg of body weight) in each of 4 dogs, the elimination kinetics of amikacin were determined. The pattern of urinary excretion and cumulative amount excreted unchanged in 24 hours were also determined. Amikacin had a short half-life (approx 1 hour) that was independent of the dosage. Intravenous injection of 10 mg/kg gave apparent volume of distribution of 226 +/- 37 ml/kg and body clearance of 2.64 +/- 0.24 ml/min.kg (mean +/- SD, n = 4). Within 6 hours, greater than 90% of the antibiotic was excreted in the urine, regardless of the route of administration. For isolates of common bacterial species from the canine urinary tract, minimum inhibitory concentrations of amikacin, gentamicin, tobramycin, and kanamycin were determined in vitro. Cumulative percentages were approximately the same for urinary isolates of Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, and coagulase-positive staphylococci that were susceptible (minimum inhibitory concentrations less than or equal to 32 micrograms/ml) to increasing concentrations of amikacin, gentamicin, and tobramycin, in vitro. Klebsiella pneumoniae was significantly more susceptible to amikacin than were the other bacteria evaluated. Widest variations in susceptibility to aminoglycosides were found with urinary isolates of streptococcal species. For dogs with normal renal function, an amikacin dosage of 10 mg/kg (IM or subcutaneously) is recommended every 8 hours for treatment of systemic infections, and every 12 hours for treatment of urinary tract infections caused by susceptible bacteria.  相似文献   

16.
Gentamicin pharmacokinetics has not been studied in horses. Pharmacokinetics of gentamicin C1, C1a and C2 components following i.v. administration of total gentamicin at 6.6 mg/kg bwt to 6 healthy mature horses was determined. Significant differences in clearance, half-life (t 1/2), and mean residence time (MRT) between the gentamicin Cia and the 2 other components were found. The total body clearance (CL) of gentamicin C1a was 1.62 +/- 0.50 ml/min x kg and similar to the glomerular filtration rate (GFR) reported for horses. The CL of gentamicin C1 and C2 were 1.03 +/- 0.08 ml/min x kg and 1.10 +/- 0.15 ml/min x kg, respectively, and significantly slower than that of gentamicin C1a. The values of apparent volume of distribution at steady state were 0.22 +/- 0.05, 0.26 +/- 0.12 and 0.23 +/- 0.05 l/kg for gentamicin C1, C1a and C2, respectively. The MRT values were mean +/- s.d. 3.6 +/- 0.5, 2.7 +/- 0.3 and 3.5 +/- 0.4 h and the t 1/2 values were 3.1 (2.5-4.0), 2.4 (2.0-3.2) and 33 (2.4-4.3) h (harmonic mean and range) for gentamicin C1, C1a and C2, respectively. The MRT and t 1/2 values for gentamicin C1a were significantly shorter than those of gentamicin C1 and C2. It was concluded that the difference in pharmacokinetics between the gentamicin components has potential pharmacological and toxicological implications.  相似文献   

17.
The pharmacokinetics of flumequine, administered intravenously and intramuscularly at a single dose of 20 mg/kg, was investigated in healthy goats. After intravenous injection, flumequine distributed rapidly (t1/2alpha = 0.87+/-0.15 h) but was eliminated slowly (t1/2beta = 7.12+/-1.27 h); mean clearance (Cl) and volume of distribution (Vdss) were 0.32+/-0.03 (L/(h x kg) and 1.22+/-029 (L/kg), respectively. After intramuscular administration, the peakserum concentration (Cmax = 7.40+/-0.5 microg/ml) was reached in about 1.5 h (Tmax) and bioavailability was about 93%. Estimated flumequine serum levels following repeated intramuscular administration of the aqueous suspension used in the study (7.23+/-0.7 microg/ml and 4.82+/-0.47 microg/ml at intervals of 8 and 12 h, respectively) indicated that to maintain serum levels above MIC values for susceptible bacteria a dosage regimen of 20 mg/kg every 12 h is necessary by the intramuscular route.  相似文献   

18.
Gentamicin was administered to six cats at a dosage of 3 mg/kg of body weight intravenously every 8 h for five days. Peak and trough serum gentamicin concentrations were measured after each injection. Gentamicin elimination rate and serum half-life were calculated. Serum urea nitrogen, creatinine, biochemistry profile, electrolyte, glucose, total protein, and albumin concentrations were measured daily. Urinalyses were performed before and after the five-day experimental period. The mean +/- SD peak serum gentamicin concentration was 7.19 +/- 1.10 micrograms/mL, and the trough concentration was 0.59 +/- 0.09 microgram/mL. These concentrations are known to be effective against most gentamicin-sensitive bacteria. The mean +/- SD gentamicin elimination rate was 0.0065 +/- 0.0004 min-1. The harmonic mean +/- pseudo standard deviation serum half-life of gentamicin was 107.21 +/- 12.79 min. There were no significant increases (P greater than 0.05) in clinicopathological variables. Microscopic examination of renal sections did not disclose pathological lesions. Signs of vestibular impairment were not observed. A dosage of 3 mg gentamicin/kg given intravenously every 8 h for five days was determined to be safe and to produce therapeutic blood levels in cats.  相似文献   

19.
The objectives of this study were to determine the pharmacokinetics and tissue concentrations of doxycycline after repeated intragastric administration, and to determine the minimum inhibitory concentrations (MIC) for equine pathogenic bacteria. In experiment 1, 2 mares received a single intragastric dose of doxycycline hyclate (3 mg/kg bwt). Mean peak serum concentration was 0.22 microg/ml 1 h postadministration. In experiment 2, 5 doses of doxycycline hyclate (10 mg/kg bwt), dissolved in water, were administered to each of 6 mares via nasogastric tube at 12 h intervals. The mean +/- s.e. peak serum doxycycline concentration was 0.32+/-0.16 microg/ml 1 h after the first dose and 0.42+/-0.05 microg/ml 2 h after the fifth dose. The mean trough serum concentrations were > 0.16 microg/ml. Highest mean synovial concentration was 0.46+/-0.13 microg/ml and highest mean peritoneal concentration was 0.43+/-0.07 microg/ml, both 2 h after the fifth dose. Highest urine concentration was mean +/- s.e. 145+/-25.4 microg/ml 2 h after the last dose. Highest endometrial concentration was mean +/- s.e. 1.30+/-0.36 microg/ml 3 h after the fifth dose. Doxycycline was not detected in any of the CSF samples. Mean +/- s.e. Vd(area) was 25.3+/-5.0 l/kg and mean t1/2 was 8.7+/-1.6 h. In experiment 3, minimum inhibitory concentrations of doxycycline were determined for 168 equine bacterial culture specimens. The MIC90 was < or = 1.0 microg/ml for Streptococcus zooepidemicus and 0.25 microg/ml for Staphylococcus aureus. Based on drug concentrations achieved in the serum, synovial and peritoneal fluids and endometrial tissues and MIC values determined in the present study, doxycycline at a dose of 10 mg/kg bwt per os every 12 h may be appropriate for the treatment of infections caused by susceptible (MIC < 0.25 microg/ml) gram-positive organisms in horses.  相似文献   

20.
The pharmacokinetics of amikacin were studied in healthy mature female chickens (n = 6). Single doses of amikacin were injected as an i.v. bolus (10 mg/kg) and i.m. (20 mg/kg) into the same birds with a 30-day rest period between treatments. Amikacin was determined by the fluorescence polarization immunoassay method. The i.v. pharmacokinetics could be described by a two-compartment model with a t1/2 alpha of 0.150 +/- 0.064 h and a t1/2 beta of 1.44 +/- 0.34 h. The total body clearance was 0.109 +/- 0.017 1/h/kg and the volume of distribution at steady-state was 0.193 +/- 0.060 l/kg. Following a single i.m. injection, the peak plasma concentration (Cmax) was 50.79 +/- 4.05 micrograms/ml and occurred at 0.50 +/- 0.26 h. The i.m. extent of absorption was 91.2 +/- 17.6%. Simultaneous modeling of i.v. and i.m. results provided estimates of an absorption half-life of 0.480 +/- 0.158 h. The i.m. pharmacokinetics after repeated administration were studied following the tenth dose (20 mg/kg, every 8 h). The Cssmax was 38.58 +/- 6.96 micrograms/ml and occurred at 0.79 +/- 0.37 h, and the biological half-life of amikacin was 1.86 +/- 0.47 h. The multiple dosing yielded peak concentrations of 39 micrograms/ml and trough concentrations of 3.26 micrograms/ml. Based on these data, the recommended amikacin dosage in chickens is 20 mg/kg body weight every 8 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号