首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A pot experiment evaluated the growth of lettuce (Lactuca sativa L.) and barley (Hordeum vulgar) and accumulation of molybdenum (Mo) in plants and soils following amendments of Mo compost (1.0 g kg?1) to a Truro sandy loam. The treatments consisted of 0 (control), 12.5, 25, and 50% Mo compost by volume. The Mo compost did not affect dry‐matter yield (DMY) up to 25% compost, but DMY decreased at the 50% compost treatment. The 50% compost treatments increased the soil pH an average of 0.5 units and increased the nitric acid (HNO3)–extractable Mo to 150 mg kg?1 and diethylenetriaminepentaacetic acid (DTPA)–extractable Mo to 100 mg kg?1 in the growth medium; the same treatment increased tissue Mo concentration to 569 and 478 mg kg?1 in the lettuce and barley, respectively. Plants grown in the 25% compost produced about 55 mg kg?1 of total Mo in the growth medium; this resulted in tissue Mo concentration of 348 mg kg?1 in lettuce and 274 mg kg?1 in barley without any phytotoxicity. Our results suggested that 55 mg Mo kg?1 soil would be an appropriate limit for Mo loading of soil developed from compost additions, a value which is presently greater than the Canadian Council for Ministers of the Environment (CCME) Guidelines for the use of type B compost in Canada.  相似文献   

2.
正Dear Editor,Pinus sylvestris L.is one of the most popular and predominant tree species in Central Europe and Scandinavia.Its cultivation depends on atmospheric conditions,soil fertility,use of fertilizers,and individual characteristics of the trees.Pinus sylvestris L.wood,roots,and needles are used for energy production.Pi-  相似文献   

3.
A pot trial was conducted to investigate the single, dual, and triple inoculation of earthworms or plant growth–promoting rhizobacteria (PGPR), including nitrogen-fixing bacteria (NFB) (Azotobacter chroococcum HKN-5) and phosphate-solubilizing bacteria (PSB) (Bacillus megaterium HKP-1), on the growth of Brassica parachinenesis and nitrogen (N) and phosphorus (P) availability in soils. All of the five inoculation treatments significantly (P < 0.05) increased the shoot growth of B. parachinenesis. The greatest shoot and root biomass were recorded in the triple inoculation of earthworm, NFB, and PSB. All of the five inoculation treatments significantly (P < 0.05) increased the concentrations of ammonium (NH4 +)-N, NOx-N, and sodium bicarbonate (NaHCO3)–extractable P in soils. Based on plant growth and availability of N and P in soils, the present study suggested that the triple inoculation may be a promising approach for reducing the need for chemical fertilizers in growing vegetables.  相似文献   

4.
Reforestation of saline sodic soil is increasingly undertaken as a means of reclaiming otherwise unproductive agricultural land. Currently, restoration of degraded land is limited to species with high tolerances of salinity. Biochar application has the potential to improve physical, biological and chemical properties of these soils to allow establishment of a wider range of plants. In a glasshouse trial, we applied biochar made from Acacia pycnantha (5 Mg ha−1) or no biochar to either a low (ECe 4·75 dS m−1, ESP 6·9), a moderate (ECe 27·6 dS m−1, ESP 29·3) or a high (ECe 49·4 dS m−1, ESP 45·1) saline sodic soil. The regional common reforestation species Eucalyptus viminalis and Acacia mearnsii were planted as tubestock in to the soils. Early establishment indicators, including growth, plant condition and nutrition, were assessed at the end of a simulated growing season, 108 days after biochar application. Application of biochar increased height, and decreased root : shoot and the concentration of Mn, N and S in plants of E. viminalis when grown in the highly saline sodic soil. Biochar application increased the concentration of B in leaves of E. viminalis and increased the concentration of P, K and S in leaves of A. mearnsii when grown in the low saline sodic soil. The results confirm that there is potential for biochar to assist in reforestation of saline sodic soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Degrading soil quality and productivity are major global challenges exacerbated by climate change and management practices. The dwindling global economy calls for other cost-effective approaches to address these challenges. This study reviewed a number of literatures on degraded soils, conservation agriculture (CA), and biochar soil amendment. The aim is to establish a base for more appropriate policy decisions and support for research on CA and biochar soil amendment nexus, which will enable the design of profitable and sustainable farming systems. Studies have highlighted the positive effects of CA practice, yet the adoption is low and some shortfalls have been reported. Likewise in the application of biochar as soil amendment, positive soil transformations have been recorded and some lapses. It is therefore imperative to explore the possibility of merging the two practices to see if the effects are complimentary, additive, or opposing in which case the positive values could be lost.  相似文献   

7.
The relationships between potential laboratory indices for plant‐available nitrogen (N) and the plant N uptake in a pot experiment with ryegrass were assessed for 13 mineral soils and 2 peat soils. The methods included aerobic soil incubation, soil incubation in a bioreactor, hot potassium chloride (KCl)–extractable mineral N, 0.01 M calcium chloride (CaCl2)–extractable N, and N loss at heating. The indices for total plant‐available N accounted for 63–93% of the variance in N uptake in a statistical analysis with all soils (n = 15) and 27–89% for the mineral soils (n = 13). Most indices were not a direct quantitative measure of the plant N uptake. The N mineralization indices accounted for 57–86% of the variance in N mineralization for all soils and 5–50% for the mineral soils. Hot KCl‐extractable mineral N and 0.01 M CaCl2–extractable N were the most promising rapid indices for plant‐available N.  相似文献   

8.
Results of a 10-year decomposition experiment indicated that the annual mineralization rate of organic N in newly-formed humus varied with the type of original plant materials and the water regimes for decomposition,ranging from 0.028 to 0.074.The mineralization rate under waterlogged conditions was higher than that under upland conditions.The proportion of α-amino acid N in humus newly-formed under waterlogged conditions was slightly higher than that under upland conditions.It decreased gradually with time,while the proportion of nonhydrolyzable N showed no consistent trend,irrespective of the water regines for decomposition.The distribution of amino acids in humus newly-formed from different plant materials under various water regimes was quite similar with that in original plant materials,and only minor differences could be found among them.For example,in comparison to original plant materials,the newly-formed humus contained higher proportions of isoleucine,cysting,γ-amino-butyric acid and ornithine,and lower proportions of phenylalanine and proline.Moreover the proportion of phenylalanine was higher in the humus newly-fored under waterlogged conditions than that under upland conditions.  相似文献   

9.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

10.
Plant availability of potassium (K) in soils is controlled by dynamic interactions among its different pools. Potassium quantity–intensity (Q/I) parameters were determined to relate them to bean plant indices in a pot experiment. The results showed that the activity ratio at equilibrium (ARk) ranged from 0.015 to 0.358 (mmol L?1)0.50, the potential buffering capacity (PBC) ranged from 7.54 to 26.32 mmol kg?1/(mmol L?1)0.50, the labile K (Δk°) ranged from 9.1 to 112.2 mg kg?1, and the K adsorbed at specific sites (Kx) ranged from 6.51 to 69.69 mg kg?1. The results of pot experiment showed that some K Q/I parameters were significantly correlated with some plant indices. Also, the correlation study showed that readily exchangeable K was significantly correlated with K Q/I parameters except Kx. The results of this research show that the K Q/I method can be used for estimating of soil K availability for bean.  相似文献   

11.
Abstract

Research on fly‐ash utilization in dryland Alfisols in semi‐arid tropical India may help successful establishment of agroforestry systems. A field study was conducted during 2001–2004 with the objective of evaluating fly-ash using different levels (0, 17, 33, and 66% v/v) in tree microsites along with compost and tank silt mixtures. Specifically, the focus was to find the optimum dose of fly‐ash mixtures for tree growth and nutrient release with time of both essential and heavy elements in fly-ash and soil: phosphorus (P), potassium (K), calcium (Ca), sodium (Na), aluminium (Al), zinc (Zn), and cadmium (Cd) and their effect on plant tissues with respect to copper (Cu), Zn, Cd, nickel (Ni), chromium (Cr), and lead (Pb). The changes in plant‐available or extractable status of elements and the growth of two major tree species [viz., teak (Tectona grandis) and leucaena (Leucaena leucocephala)] were monitored at 6‐month intervals during 2002–2004 in an agrisilvicultural system. Pit mixtures with 66% fly‐ash by volume of pit significantly increased the tree growth of teak throughout the study period. For leucaena, it positively influenced the growth at initial stages. The dose increased the status of available P, K, Ca, and Na during the study period. The exchangeable Al and available Zn content of microsites corresponding to the dose significantly increased during 2001–2003 but the levels were less than the toxic limits. The available Cd content showed an increase only during the initial stage of the study period. The variation in heavy‐metal content (Cu, Cd, Cr, Ni, Pb, and Zn) in plant tissues among the different treatments was found to be nonsignificant.  相似文献   

12.
13.
14.
A greenhouse pot experiment was conducted using a complete random design with six replications. A pressure-volumecurve analysis was employed to study the effects of organic fertilizers on plant water relations in sweet corn (Zea mays L. cv.Honey-bantam) in terms of leaf osmotic concentration (Cs), osmotic potentials at full turgid status (лFT) and at incipientplasmolysis (Trip), and of symplastic (Ssym) and apoplastic (Sapo) fractions in the tissue water compartment in relation tophotosynthetic capacity (Pc) and dry mass accumulation. At the seedling stage (day 15), plants with chemical fertilizer treatments showed lower лFT, лIp and Sapo and higher Cs,Compared to Pc and relative growth, where values from day15 to day 75 were first lower for organic treatments and then higher, Saym and Cs values were similar, while лFT and лIp were opposite being higher then lower. Dry mass productionwith organic fertilizer was higher than or close to the chemical fertilizer treatments in the later growth stage (day 75),though dry mass production with chemical fertilizers was much higher in the early and middle growing stages (days 15 and 45). Increased photosynthesis and dry mass production in later growth stages due to organic fertilizers were associatedwith increased osmotic concentration in the tissue and the symplastic fraction of the tissue water compartment. Thesemight favor stomatal opening and biochemical activities.  相似文献   

15.
Molybdenum (Mo) is critical for the function of enzymes related to nitrogen cycling. Concentrations of Mo are very low in sandy, acidic soils, and biologically available Mo is only a small fraction of the total pool. While several methods have been proposed to measure plant-available Mo, there has not been a recent comprehensive analytical study that compares soil extraction methods as predictors of plant Mo uptake. A suite of five assays [total acid microwave digestion, ethylenediamenetetraaacetic acid (EDTA) extraction, Environmental Protection Agency (EPA) protocol 3050B, ammonium oxalate extraction, and pressurized hot water] was employed, followed by the determination of soil Mo concentrations via inductively coupled mass spectroscopy. The concentrations of soil Mo determined from these assays and their relationships as predictors of plant Mo concentration were compared. The assays yielded different concentrations of Mo: total digest > EPA > ammonium oxalate ≥ EDTA > pressurized hot water. Legume foliar Mo concentrations were most strongly correlated with ammonium oxalate–extractable Mo from soils, but an oak species showed no relationship with any soil Mo fraction and foliar Mo. Bulk fine roots in the 10- to 30-cm soil horizon were significantly correlated with the ammonium oxalate Mo fraction. There were significant correlations between ammonium oxalate Mo and the oxides of iron (Fe), manganese (Mn), and aluminum (Al). Results suggest that the ammonium oxalate extraction for soil Mo is the best predictor of plant-available Mo for species with high Mo requirements such as legumes and that plant-available Mo tracks strongly with other metal oxides in sandy, acidic soils.  相似文献   

16.
Two maize cultivars, Shaandan 9 (S9) and Shaandan 911 (S911), were investigated to explore the ameliorating effects of nitrogen (N) addition on their growth, water status, and N metabolism under long-term drought stress (DS). Elevated N rate increased dry matter, grain yield, relative water content, nitrate reductase activity, soluble protein concentration, and concentrations of free proline and endogenous glycinebetaine (main contributors to osmoregulation) of both cultivars under DS than control. The responses under DS were more significant for S911 than those for S9, especially at high N rate. Additionally, S9 maintained greater evaluated parameters than S911 with no N addition under DS, and these differences decreased with N application. Correlations were more evident among all parameters under DS than those under control. Thus, moderate N plays an evident physiological role in alleviation of DS effects on plant growth by improving water status and N metabolism, especially for drought-sensitive cultivars.  相似文献   

17.
The genetic characterization of soils developed from alluvial and proluvial deposits in the Gr?ndalselva River valley (West Spitsbergen) is presented. These soils are compared with analogous soils formed on marine terraces along the coasts of Isfjord and Gr?nfjord. Gray-humus (soddy) soils with an O-AY-C profile have been described on parent materials of different origins, including alluvial and proluvial sediments. The texture of the soils in the Gr?ndalselva River valley varies from medium to heavy loam and differs from the texture of the soils on other geomorphic positions in the higher content of fine particles. The soils developed from the alluvial deposits are characterized by their richer mineralogical and chemical composition in comparison with the soils developed from proluvial deposits, marine deposits, and bedrocks. All the deposits are impoverished in CaO. No differentiation of the chemical composition of the soils along the soil profiles has been found in the soils of the coastal areas and the river valley. Some accumulation of oxalate-soluble Al and Fe compounds takes place in the uppermost mineral horizon. The soils of all the geomorphic positions have a high humus content and a high exchange capacity.  相似文献   

18.
The transformation and availability of various forms of Zn applied into a cinnamon soil and a carbonate meadow soil as well as the effects of fertillizer-P on them were studied by using the field experiment method and chemically sequential extraction procedure.Zn added into the soils was found to be rapidly transformed into the various forms. In the cinnamon soil,the amount of Zn transformed into the carbonate bound form was the highest,and the carbonate bound form was proven by the analyses of intensity factor and capacity factor to be the primary available Zn pool.But in the carbonate meadow soil,the Zn transformed was relatively homogeneously distributed in the various forms though the amount of Zn transformed into the Mn-oxide bound form was relatively high,and the organically bound,Mn-oxide bound and amorphous Fe-oxide,bound forms were found to be the main available Zn pool.Fertilizer-P took part in the regulation and control of available Zn in the soils to a certain degree.In the carbonate meadow soil,application of P fertilizer probably aggravated Zn deficiency at low Zn rate,while it was favorable to the storage of available Zn in the case of high Zn rate.  相似文献   

19.
Two kinds of common turfgrass, fescue and ryegrass, were grown in soils amended with 20?×?80% sludge compost (SC) in this research. The effects of SC on two kinds of soil and response of fescue and ryegrass to the SC amendment were studied. The results showed that urease activity, extractable content of Cu and Zn and Electrical conductivity of both soils increased while pH decreased with the increase of SC amendment. However, the change of these parameters also depended strongly on soil characteristics. Sludge compost at the ≤40 and ≤60% levels can improve growth of fescue and ryegrass, respectively. The biomass of fescue grown in substrate with 40% SC increased 27% in a red soil and 44% in a yellow loamy soil compared to the control. The biomass of ryegrass grown in substrate with 60% SC increased 120% in the red soil and 86% in the yellow loamy soil. Sludge compost amendment at these levels did not significantly affect soluble salt contents of soil or Cu and Zn in plant tissue. Therefore, rational use of sludge compost can take advantage of its beneficial effect as a nutrient source for plant production while avoiding the potential deleterious effects on soil and plant.  相似文献   

20.
ABSTRACT

A pot experiment was conducted in a greenhouse on a calcareous soil (fine, mixed, mesic, Fluventic Haploxerepts) to study the interaction of zinc (Zn) and boron (B) on the growth and nutrient concentration of corn (Zea mays L.). Treatments consisted of a factorial arrangement of seven levels of B (0, 2.5, 5, 10, 20, 40, and 80 mg kg? 1as boric acid), two sources of Zn [zinc sulfate (ZnSO4 · 7H2O) and zinc oxide (ZnO)], and three levels of Zn (0, 5, and 10 mg kg? 1) in a completely randomized design with three replications. Plants were grown for 70 d in 1.6 L plastic containers. Applied Zn significantly increased plant height and dry matter yield (DMY) of corn. Source of Zn did not significantly affect growth or nutrient concentration. High levels of B decreased plant height and DMY. There was a significant B × Zn interaction on plant growth and tissue nutrient concentration which were rate dependent. In general, the effect of B × Zn interaction was antagonistic on nutrient concentration and synergistic on growth. It is recommended that the plants be supplied with adequate Zn when corn is grown in high B soils, especially when availability of Zn is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号