首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Effluent pollutant concentrations and volumes were collected from uncovered, intact carcass, dairy cow mortality compost piles subjected to successive simulated 10.2 cm storm events after: (1) composting one cow in fresh sawdust only; (2) turning that pile, adding fresh amendment, adding a second cow, and composting it; and (3) turning the pile again, without an animal tissue addition. Phosphorus leaving an active mortality compost pile in runoff as produced by a 10.2 cm storm simulation ranged from 4.6 grams to 0.1 grams. Total COD in runoff ranged from 94 to 888 grams. Data indicated that the majority of nutrients in effluent leaving a pile from a 10.2 cm storm event infiltrate the soil surface. Total nitrogen mass load infiltrating the soil was estimated to range between 362 and 1778 grams under various management stages. With the exception of NO3, the nutrient concentrations in groundwater at 1.2 m soil profile depth were reduced by nine fold or more when compared to direct pile effluent, indicating that soil provided treatment of infiltrating pile effluent. No significant accumulation of soil nutrients below mortality compost piles occurred during the study. However, pile effluent nutrient characteristics indicate that soil nutrient accumulation may occur over time.  相似文献   

2.
[目的]探究添加酸解氨基酸 (AA) 对不同植物源废弃物堆肥进程、氮素损失阻控、堆肥品质和产品效果的影响.[方法]分别向3种含碳量不同的植物源废弃物 (中药渣、木薯渣和蘑菇渣) 中添加5%、10%和15%(体积质量比) 的酸解氨基酸,以不添加酸解氨基酸处理作为对照,监测堆肥过程中的温度和理化指标.堆肥结束后,以辣椒和茄...  相似文献   

3.
The composting of food waste coupled with urban agriculture presents an opportunity to increase nutrient recycling in urban ecosystems. One potential constraint limiting the expansion of aerobic food waste composting is the availability of carbon-rich recalcitrant materials, such as wood chips. We measured the differences in nutrient retention throughout the compost life cycle for different mixtures of barley mash to wood chips, to assess whether composting using proportionally less wood chips would lead to higher nutrient recycling rates. Nine compost piles (1 m3) were constructed at varying ratios barley mash to wood chips, ranging from 10:90 to 90:10. During the composting process, the 50:50 mixture maintained internal temperatures above 55°C for 30 days, with drop-offs as mixtures diverged in either direction. Food waste content was positively related to internal moisture and CO2, and negatively related to internal O2, throughout the ensuing 3 months. The finished compost was used in raised-bed garden plots during the following summer. Yields of arugula and tomatoes increased with compost barley mash content, saturating at high levels. Across all treatments, <5% of N and <2% of P were recycled from barley mash into new vegetable production. Although the maximum amount of nutrients was recycled using high barley mash compost, these treatments also had lower nutrient recycling efficiency compared to intermediate mixtures. These results indicate that the use of wood chips in composting increases the efficiency nutrient retention from food waste and in turn enhances nutrient recycling in urban environments.  相似文献   

4.
 Four olive mill wastewater (OMW) composts, prepared with three N-rich organic wastes and two different bulking agents, were studied in a pilot plant using the Rutgers system. Organic matter (OM) losses during composting followed a first-order kinetic equation in all the piles, the slowest being the OM mineralisation rate in the pile using maize straw (MS). The highest N losses through NH3 volatilisation occurred in the mixtures which had a low initial C/N ratio and high pH values during the process. Such losses were reduced considerably when MS was used as the bulking agent instead of cotton waste (CW). N fixation activity increased during the bio-oxidative phase before falling during maturation. This N fixation capacity was higher in piles with a lower NH4 +-N concentration. Only the composts prepared with OMW, CW and poultry manure or sewage sludge reached water-soluble organic C (CW) and NH4 +-N concentrations and CW/Norg and NH4 +/NO3 ratios within the established limits which indicate a good degree of compost maturity. Increases in the cation-exchange capacity, the percentage of humic acid-like C and the polymerisation ratio revealed that the OM had been humified during composting. The germination index indicated the reduction of phytotoxicity during composting. Received: 14 June 1999  相似文献   

5.
Abstract

Leaf composting is an essential technique in organic farming; it improves the physicochemical properties of soil such as texture, structure, water-holding capacity, and nutrient content. However, the use of leaf compost is prohibited in the Fukushima and Ibaraki prefectures because large areas of the Fukushima and Ibaraki forests were contaminated by radiocesium (134Cs and 137Cs) after the Fukushima Daiichi nuclear power plant (FDNPP) accident. We examined the changes in radio Cs concentration and other physicochemical properties in leaf compost made from Ibaraki and Fukushima forest leaves. At the beginning of the composting process, rice bran-treated compost showed 25%–32% lower radio Cs concentration than the leaf-only compost; however, 2?years after composting, the difference in concentration between these treatments had increased to 35%–63%. Moreover, the incorporation of rice bran significantly increased the compost temperature, moisture, electrical conductivity, bulk density, and total nitrogen during the composting process. Plant uptake of radio Cs was significantly lower in rice bran-treated compost than the leaf-only compost at each level of application; furthermore, the levels of soil radio Cs showed a similar trend. Potassium application combined with leaf compost resulted in a significant reduction of radio Cs plant uptake. Our data revealed that adding rice bran to leaves positively affects radio Cs reduction in leaf compost and also reduces its uptake by plants. Our findings may improve the management of leaf composting after the FDNPP accident.  相似文献   

6.
An experiment comparing the effectiveness of three different bulking agents in the composting of fish processing wastes was carried out using small-scale composters operated at ambient temperatures. Fish offal was mixed with each of peat moss, sawdust and wood shavings in a 5:1 ratio by weight. The mixed materials were left undisturbed in the composters for an initial 55 days. They were then mixed and reloaded into their respective composters for a further 95 days of composting. Temperatures were monitored throughout the experiment, while serial physical and chemical analyses of the compost materials were initiated after the mixing. Headspace-gas chromatography was also used to determine the levels of phytotoxic organic acids and phenol. All the compost piles reached thermophilic temperature levels (40–70°C). Due to insufficient pile mass, temperatures over 55°C were not sustained for a sufficient length of time to satisfy the EPA requirements for pathogen reduction. The temperature profiles suggest that ambient temperatures near the freezing point can significantly influence the temperature of compost piles with volumes of 63 liters or less. The results reaffirm the potential of composting as a viable option for utilizing fish processing wastes and the suitability of peat moss, sawdust, and wood shavings as bulking materials. The physical and chemical qualities of the 150-day old composts were comparable to other seafood compost products. Peat moss gave the best results in terms of nitrogen conservation, but is the most expensive option. Monitoring the concentrations of phytotoxic organic acids and phenol using headspace-gas chromatography proved to be a useful method for establishing compost maturity.  相似文献   

7.
Field trials demonstrated that agricultural wastes could be successfully composted in the winter with the passively aerated windrow system. Three small windrows were constructed. One pile contained a sheep manure-straw mixture, while the other two piles contained varied amounts of horse manure, cow manure, and bedding materials (straw, wood chips). The piles were constructed on a porous base of wood chips. Standard four-inch (10 cm) perforated pipes were placed approximately three feet apart in the porous base, perpendicular to the length of the windrow. Piles were covered with 15 to 20 centimeters of finished compost. A commercial compost covering fabric permeable to gases and water vapor but impermeable to liquid water was used for additional insulation and protection against high winds. Ambient temperatures ranged from ?27°C to 15°C during the trials. Initially, all three piles froze. Then the ends of the piles began to heat up, with the southern ends which received the most sunlight heating up first. Plugging the pipes seemed to help the piles heat up faster, but did not appear to be necessary. Thermophilic temperatures were attained and the composting cycle took 50 to 80 days after the piles heated up. Oxygen levels were highest at the bottom of the pile, and decreased as one moved to the top of the pile. The biggest practical problem encountered was the snow drifts that periodically formed at the windrow base, covering the pipe openings.  相似文献   

8.
[目的]综合考虑梯田土壤性质、梯田形态及降雨雨型的差异,构建梯田蓄水保水效益的估算方法及框架。[方法]运用土壤水库计算模型与入渗模型,探讨蓄满产流和超渗产流模式下梯田土壤水分的预测方法;基于Richards方程,分析不同田坎边界的土壤水分入渗二维分异。在此基础上,进一步对前峰型、均匀型、后峰型、阶梯型4种降雨雨型下产生的单一产流模式或2种产流模式均存在时土壤水分运动进行情景分析。[结果](1)提出梯田蓄水效益分布式估算方法,计算单个梯田田块土壤最大蓄水容量(WM);(2)对不同田坎类型的梯田而言,浆砌石坎梯田防侧渗效果最好,土坎梯田防侧渗效果最差,且孔隙大、密度小、修筑时间短的新土坎梯田比修筑时间长的土坎梯田在发生侧渗时损失水分更多;(3)得出不同雨型下蓄满产流的临界时间(t)。[结论]该估算方法可大幅度降低对野外设施、设备的依赖程度,降低投入成本,借助野外调查采样,基于模型模拟估算梯田蓄水效益。此外,该方法可根据单个梯田田块蓄水效益分布式计算数据,在区域尺度上估算梯田蓄水保水效益,以期为不同区域梯田的蓄水效益估算提供参考。  相似文献   

9.
Alternate technologies of compost manufactured from poultry litter (manure) were studied as a means of producing a value-added product for the landscape and nursery industry. Static pile and turned windrow technologies were investigated on a commercial scale with the composting of nearly 300 tons of material. The major difference between the technologies is the amount of energy and labor required. Static pile systems require less energy but more time than windrow turned systems. There was no process advantage found for passively aerated static piles over static piles but costs of passive aeration for pipes and labor were higher than for static piles. Machine turned windrows completed active temperature production within 100 days while portions of both the static and passively aerated piles continued to actively compost past 300 days. Process operational costs and compost quality were similar among the compost methods studied. Production operational cost is driven by the cost of compost ingredients and accounted for 60 to 70% of the cost in the pilot study. Ingredients were poultry litter, wood chips and sawdust. Screened compost was produced at an operational cost of $30 while unscreened compost could be produced for $20 per ton of compost. A production scheme where poultry litter is static pile composted on farms for later transport to regional processing centers appears feasible. This two-part composting procedure will eliminate the transport of raw litter and improve poultry biosecurity. Most likely, a private compost business would provide the expertise, on-farm compost procedures and operate the regional facility.  相似文献   

10.
Because of its agronomic benefits, farm-scale composting is an efficient means of recycling agricultural waste. Composting process is an aerobic degradation of fresh organic matter in mature compost. Nevertheless, according to the literature, composting may induce some environmental problems. The environmental impacts of composting will be described, along with an assessment of farm-scale composting practices which play a major role in pollution. The main environmental components potentially affected by composting pollution are air and water. Various gases released by composting, such as NH3, CH4 and N2O, can impact air quality and are therefore studied because they all have environmental impacts and can be controlled by composting management. The effect on water quality can be evaluated by considering loss of NO3 -, NH4 +, organic compounds and PO4 3-. Technical evaluation criteria for the impact of farm-scale composting on the air are determined from the physical and chemical characteristics of the raw materials, the use of additives, the turning method and frequency and the duration of the composting operations. Regarding water, the weather conditions at the beginning of the composting operation, the location of the heap, the protection against rain, the water addition during the process, the use of covers and the recovery of leaching and runoff water are also taken into account. The two main practices which control the air and water pollution from composting are: the choice of the raw material which influences gas emissions and the choice of composting location which have an high effect on losses by leaching and runoff.  相似文献   

11.
In this study, medlar pruning waste (MPW) was composted with and without cattle manure (CM). Two piles were prepared: one contained only MPW (pile 1) and one contained MPW augmented with CM (pile 2). Both piles were composted in an enclosed composting vessel with passive aeration and aeration by turning. During the composting process, temperature, pH, electrical conductivity (EC), organic matter (OM), OM losses, total organic carbon (Corg), total nitrogen (NT), Corg/NT ratio, and germination index (GI) were measured. Pile 2 produced a faster increase of the temperature and had a longer thermophilic phase than pile 1. However, the rate of OM degradation was faster in pile 1 than in the pile containing CM (pile 2). The addition of CM also resulted in an increased pH and salt content. In both piles, C/N ratio decreased throughout the process, presumably as a result of the faster organic carbon degradation compared to N mineralization. However, only pile 2 had a final C/N ratio <20, the limit accepted for compost by the Spanish legislation on fertilizer. Also, both composts had GI > 50 percent, indicating an absence of phytotoxicity.  相似文献   

12.
The disintegration of Biopol-coated cardboard, polylactide fabric and film was studied using three different procedures: adding the samples directly to the compost pile, and placing them in the pile in nylon bags as well as in steel frames. Cellulose-based sausage casing, polyethylene and Mater-Bi ZF03U were also tested in steel frames as reference samples. Direct addition of the samples to the compost pile had no detrimental effect on the decomposition of compost biowaste. The use of steel frames proved to be good a method for testing samples like packaging materials. Both polylactide samples and Biopol-coated cardboard degraded completely in the steel frames. The results showed that composting activity parameters should be followed during composting before any conclusions can be made about the compostability of the samples. The compost produced from the polymer samples showed no toxicity in the plant growth test with barley and radish seeds performed at the end of the experiment.  相似文献   

13.
Abstract

The effective cation exchange capacity (ECEC) of manure composts, at the start and during the composting process, were determined. During this study we developed a new saturation‐displacement principle based method for compost samples. It was clearly demonstrated that ECEC of manure compost, as analyzed from three successive composting series, profoundly increased as compost matured. In addition, the ECEC values were highly repeatable, due to the proper mixing of the matrix with the saturation, washing, and displacement solutions, as well as to the preventing of any matrix losses with the separation of the matrix from those solutions with careful centrifugation‐filtration procedure.  相似文献   

14.
The use of leaf amendment in woodchips/sludge composting was studied in pilot-scale and full-scale operations. Use of leaves at a rate of 20 percent by volume was compatible with present practices and equipment at the Columbus Compost Facility, but higher rates caused materials handling and curing problems and would necessitate system modifications. Only very slight reduction in new woodchip usage was observed for the 20 percent leaf amendment, but output of sieved-finished compost was doubled. Leaf usage increased airflow requirement per unit dry matter during the initial stage of composting but decreased ammonia release throughout the composting process. On the other hand, use of recycled materials, compost and sieved woodchips, increased ammonia release. Adequate moisture and periodic turning in the pilot-scale studies enhanced composting for all treatments. Leaf usage may necessitate forced aeration during curing to keep full size piles aerobic. In addition, leaf usage increased the total materials handling requirement for operating the full-scale system by 16 percent, and it was concluded that careful consideration of materials handling is the major concern for a system's operating efficiency.  相似文献   

15.
The changes in population size of different microbial groups (total aerobic heterotrophs, actinomycetes, fungi, fecal coliforms, ammonium- and nitrite-oxidizing bacteria, and denitrifying bacteria) and the activities of 19 different enzymes (three phosphatases, three esterases, two proteases, three amino-peptidases, and eight glycosyl-hydrolases) were examined during cocomposting of poultry litter (a mixture of poultry manure, waste feed, feathers, and wood shavings) and yard trimmings (a mixture of grass clippings, leaves, and wood barks). Three piles with forced aeration were established by mixing 2:1 (v/v) ratio of poultry litter and yard trimmings. During composting, samples were taken at three different locations (top, middle, and bottom) of the forced aeration piles for microbial and enzyme analyses. Results demonstrated that population size of different microbial groups was not a limiting factor in this composting process as the microorganisms in the poultry litter + yard trimmings compost are in great abundance. Although the numbers of these microbial groups were reduced by high temperature, their populations multiplied rapidly as composting progressed. Fecal coliforms were eliminated by day 49, suggesting that the poultry litter + yard trimmings compost showed an overall increase in diversity and relative abundance of extracellular enzymes present as composting progressed. The population of fungi and actinomycetes (microorganisms active in degradation of cellulose, hemicellulose, and lignin) were positively correlated with esterase, valine amino-peptidase, α-galactosidase, β-glucosidase, and lipase. Of all 19 enzymes examined, ß-galactosidase (enzyme involved in the hydrolysis of lactose) had the most significant positive correlation with microbial populations, such as total aerobic heterotrophs, ammonium- and nitrite-oxidizing bacteria, denitrifying bacteria, and fecal coliforms. Cystine amino peptidase, chymotrypsin, and trypsin showed no evidence of activity during the entire period of composting. This composting process represented a combined activity of a wide succession of environments in the compost pile as one microbial group/enzyme overlapped the other and each emerged gradually as a result of the continual change in temperature as well as moisture content, O2 and CO2 level, and progressive breakdown of complex compounds to simpler ones.  相似文献   

16.
Two types of compost, consisting of sweet sorghum bagasse with either sewage sludge or a mixture of pig slurry and poultry manure, were studied in a pilot plant using the Rutgers system. The total degradation of the piles as determined by the weight loss of organic matter during the bio-oxidative and maturation phases accounted for 64% of the organic matter applied and followed a first-order kinetic function. Concentrations of total and organic N increased during the composting process as the degradation of organic C compounds reduced the compost weight. Losses of N through NH3 volatilization were low, particularly in the compost with sewage sludge due to pH values of <7.0 and the low temperatures reached in the compost during the first 2 weeks. The C:N ratio in the two composts decreased from 24.0 and 15.4 to values between 12 and 10. Increases in cation exchange capacity and in fulvic and humic acid-like C revealed that the organic matter had been humified during composting. The humification index, the C:N ratio, fulvic:humic acid-like C, and cation exchange capacity proved to be the most suitable parameters for assessing the maturity of these composts.  相似文献   

17.
ABSTRACT

Many companies, restaurants, colleges, as well as individual homeowners, have initiated green marketing campaigns, and the composting of food and yard wastes has become commonplace. Thus, it is essential to obtain a more complete understanding of the microbial populations present in such composting processes. The focus of this study was to identify bacterial populations in a static windrow compost pile initiated on a college campus containing food trim and tree debris. Given that the compost pile was initiated during the winter it was uniquely characterized by a pre-mesophilic stage in addition to the characteristic mesophilic, thermophilic, and cooling/maturation stages. Bacteria were cultured from each stage and were identified by sequencing the 16S rRNA gene. Dominating the numbers throughout the study were bacteria within the Bacillus and Bacillus-like genera. Actinobacteria were found primarily within the pre-mesophilic stage. The mesophilic and beginning thermophilic stages displayed the most diversity, characterized by several different genera within the Proteobacteria phylum. In contrast, during the late thermophilic stage, only bacteria within the Bacillus and Brevibacillus genera were cultured. Overall, 49 different species within 27 different genera, 13 families, and 4 phyla, were identified and several genera that have not been commonly associated with household compost. Thus, this study supports a role for the continuation of culture-dependent studies to more completely define the bacterial flora involved in various composting processes.  相似文献   

18.
An industrial-scale composting plant has been designed for producing organic fertilizers from olive mill waste using the windrow pile system. Materials to be composted, two phase olive mill waste (TPOMW) and sheep litter (SL), were characterized and made into three piles consisting of different proportions of each. Throughout the composting process, temperature (T), moisture (M), organic matter (OM), total organic carbon (Corg), total nitrogen (NT), germination index (GI), pH and electrical conductivity (EC) were monitored. The potential agronomic value of the final composts was ascertained by analyzing the bulk density, OM and Corg concentration, pH, EC, macro and micronutrient content (N, P, K, Ca, Mg, Fe, Cu, Mn, Zn, B), the concentration of humic and fulvic acids and inorganic nitrogen (NH4+,NO2?,NO3?). Each compost was applied to an area of one hectare within a six year-old olive plantation. Four months after application, the soils showed an increased OM concentration and cationic exchange capacity (CEC).  相似文献   

19.
The rising cost of peat and pine bark has boosted the demand for alternative organic materials for container growing media. Here, composts of invasive acacia (Acacia longifolia and Acacia melanoxylon) residues were evaluated as alternative organic materials for horticultural substrates. Compost bulk density was less than 0.4 g cm?3 and total pore space was more than 85 percent of the total volume, as established for an ideal substrate. The matured acacia compost air capacity, easily available water, buffering capacity, and total water-holding capacity were also within acceptable recommended values. With increased composting time the physical characteristics of the composts were improved, but the same was not true for chemical characteristics such as pH and electrical conductivity. The replacement of pine bark compost by acacia compost in a commercial substrate did not negatively affect either lettuce emergence or lettuce growth, suggesting that acacia compost can be successfully used as an alternative component for horticultural substrates.  相似文献   

20.
Shredded straw of Miscanthus ogiformis Honda ‘Giganteus’ was composted with addition of water or aqueous solutions with 3, 10, 30 or 100% pig slurry. After 3, 6, 9, 12 and 15 months of composting the composts were tested as pot plant growth substrates for Hedera helix L. in comparison with enriched and nonenriched peat substrates. During the first week of composting temperatures rose to higher levels with stronger pig slurry solution except for the compost made with 100% pig slurry solution which suffered from oxygen depletion. Plants grown in compost substrates made with M. ogiformis and 10 or 30% pig slurry solution produced the same shoot lengths and dry matter as plants grown in enriched or nonenriched peat substrates. Plants in compost substrates made with water or 3% pig slurry solution produced slightly shorter shoots and less dry matter. Many plants in the compost substrate made with 100% pig slurry solution failed to grow, and for the remaining plants in that treatment, shoot and dry matter production was very low at all five ages of compost. Nutrient concentrations were suboptimal for compost substrates made with water or 3% pig slurry solution, near optimal with 10% pig slurry solution, above recommended concentrations with 30% pig slurry solution and supraoptimal with 100% pig slurry solution. The pig slurry concentration had little effect on water retention in 6 months old compost substrates while in older compost substrates increasing pig slurry concentration increased the water retention capacity. In six month old compost substrates water retention was lower than in peat substrates while in 12 months old composts the water retention was greater in the compost substrates than in the peat substrates. Total porosity was above 92% and similar for all substrates. Air volume was greater in compost substrates than in peat substrates. It is concluded that compost substrates made of Miscanthus ogiformis straw and diluted pig slurry can be used successfully as a substitute for peat substrates. An aqueous solution of 10 to 30% pig slurry solution added as nitrogen source before composting is optimal. Three months of composting is sufficient for optimal plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号