首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate at which oxygen is consumed during composting is a measure of aerobic microbial activity and is linked to the rate of organic material decomposition. The rate of loss in mass is a function of the mass of the degradable organic fraction and is related to oxygen uptake rate by the reaction rate coefficient, k. The decomposition of a pig manure and straw mix was investigated at temperatures between 10°C and 70°C using respirometric techniques. The oxygen concentrations in the reactor were measured continuously for about 4 days and then converted to hourly oxygen uptake rates for each incubation temperature, T. The specific oxygen uptake rate was used to calculate the reaction rate coefficient at T, kT, for the observed fast and slow stages of decomposition. The effect of the environmental factors was taken into account using a multiplicative approach and a relationship, which expressed kT for each stage as a function of T, was formulated. The maximum measured rate of activity occurred during the fast stage at 60°C where kT fast = 0.31 day?1. Activity increased exponentially with the temperature in both stages up to about 60°C. At higher temperatures, the activity slowed but most noticeably in the fast stage. The dependence of kT on T during each stage was described by a double power expression, which predicted that activity would cease around 73°C. The relationships may be used to improve a compost model that is based on a first order reaction rate kinetics for the decomposition of organic material.  相似文献   

2.
Efficacy of various compost starter cultures was tested in a bench-scale composting system utilizing a ceiling process temperature of 60°C. Variables tested with time were CO2 and NH3 evolution, conversion of carbon and the succession of microorganisms in the compost. When an initial compost pH of 7.0 was used, a laboratory produced starter culture (Culture A) was much less effective than a commercial culture (Culture B). Low activity in the experiment with Culture A was due to a low pH(<5.5) that developed within 30 h after inoculation. Inoculation of Culture A with a thermophilic strain (HA1) of Bacillus licheniformis isolated from Culture B prevented the decrease in pH and significantly increased the rate of decomposition. It also enhanced populations of other thermophilic bacterial groups during the process.  相似文献   

3.
The fate of organic matter during composting is poorly understood. Therefore, we analysed composts of sewage sludges and green wastes (44 samples representative of 11 stages of biodegradation) by conventional chemical methods: pH, humic (HA) and fulvic acid (FA) content, C, N and organic matter (OM) content, and by 13C CPMAS NMR to assess the decomposition process of the organic matter. Chemical changes clearly occurred in two phases: first, decomposition of OM during the first 2 months was characterized by decreased C/N ratios, OM content and increased pH; and second, a humification process with increased HA/FA ratios. NMR spectrum changes confirmed this pattern, with an increase in aromaticity and a decrease in alkyl C. A decrease of syringyl to guaiacyl ratio (S/G), a sign of lignin transformation, also indicated humification during composting. NMR spectroscopic properties of composts were also studied by means of principal components analysis (PCA) and revealed changes according to the degree of compost maturation. The factorial map presents a chronological distribution of composts on the two first principal components. The influences of eight chemical factors on the PCA ordination of composts as monitored by their evolution by NMR were also studied by multivariate analyses. PCA clearly indicated two phases: the rapid decomposition of organic matter followed by the formation of humic‐like substances. The first phase, that is ‘new’ composts, was strongly correlated with OM contents, pH and C/N ratios whereas the second phase, corresponding to ‘old’ compost, was correlated with pH, HA content and HA/FA ratio. These results confirm that knowledge of the formation of humic substances is indispensable to suitable monitoring of the composting process.  相似文献   

4.
Abstract

Laboratory experiments were conducted to determine the influence of three types of decomposing fresh organic materials [pig manure (PM), Astagalus sinicus (AS), and Alternanthera philoxeroides (AP)] on dissolution of Fe2O3 and ZnO and also the use of a loamy calcareous soil as an alternative source of iron (Fe) and zinc (Zn). Levels of Fe and Zn concentrations in composting solutions changed with composting time. The maximum levels of solution Fe resulting from the decomposition of the three organic materials were 20, 612, and 348 mg L?1 for PM, AS, and AP, respectively, when the soil was supplied as the Fe source, and 17, 32, and 16 mg L?1 when Fe2O3 was supplied as the Fe source. Corresponding maximum levels of solution Zn were 0.9, 0.7, and 1.3 mg L?1 and 35, 171, and 103 mg L?1 when the soil and ZnO was supplied as the Zn source respectively for the same three organic materials.  相似文献   

5.
The aims of this study were to monitor the changes in physicochemical, including spectroscopic, and biological characteristics during composting of green tea waste–rice bran compost (GRC) and to define parameters suitable for evaluating the stability of GRC. Compost pile temperature reflected the initiation and stabilization of the composting process. The pH, electrical conductivity, NO3 -N content, and carbon-to-nitrogen ratio were measured as chemical properties of the compost. The color (CIELAB variables), humification index (the absorption ratio Q 4/6 = A 472 / A 664 of 0.5 M NaOH extracts), absorption at 665 nm of acetone extracts, and Fourier-transform infrared (FT-IR) spectra were measured to evaluate the organic matter transformation; germination of komatsuna or tomato seeds was measured to assess the potential phytotoxicity of composting materials during composting. No single parameter was capable of giving substantial information on the composting process, the nutrient balance, phytotoxicity, and organic matter decomposition. The FT-IR spectra at 3,300, 2,930, 2,852, and 1,065 cm−1 provided information on the molecular transformation of GRC during composting and they decreased over the composting. Most of the assayed parameters showed no further change after about 90 days of composting suggesting that GRC can be used for agricultural purposes after this period.  相似文献   

6.
As interest in food waste composting grows, so does the need for proven composting methods. Stability testing has been proposed as a compost quality assurance tool. We conducted this study to: (i) to evaluate the efficacy of simple outdoor composting methods in producing a compost with a low, stable decomposition rate, and (ii) to determine the reliability of simple, 4-h compost stability evaluation methods. Composting was conducted outdoors in winter and spring in Eugene, Oregon without moisture addition. Mixed food waste was combined with screened dairy solids and ground yard trimmings. Sawdust was used to cover windrows for the first 27 d of composting. Compost windrow temperatures remained above 55°C for 30+ d. Carbon dioxide evolved with several 4-h test methods was strongly correlated (r2 > 0.7) with CO2 evolved using a 48-h test. A limited-turn windrow (LTW) composting system produced compost with slightly greater stability than a passively aerated windrow (PAW) composting system. Food waste compost samples had a low CO2 evolution rate after 71 to 99 d using either composting system. Compost CO2 evolution rate at 25°C decreased with composting time, reaching approximately 1 to 4 mg CO2-C g compost C?1 d?1 for the PAW method and 0.5 to 2 mg CO2-C g compost C?1 d?1 for the LTW method. Putrescible organic matter in food waste was effectively decomposed in outdoor windrows using composting methods that did not employ forced aeration, self-propelled windrow turners, or manufactured composting vessels. Several 4-h stability tests showed promise for implementation as quality assurance tools.  相似文献   

7.
The evolution of organic matter of sludge from vegetable oil refining (50%) mixed with turf (40%) and straw (10%) during 6 months of composting was evaluated by physicochemical and spectroscopy analysis. The intense microbial activity is characterized by a significant increase in temperature (over 67°C) during the thermophilic phase (7 days). The final product is characterized by a decomposition rate of 50, C/N ratio about 12, NH4+/NO3? ratio less than 1, and a neutral pH. The lipid analysis showed that total lipids decreased by 83% as a result of biodegradation of lipid compounds of the composted substrate. The degree of polymerization during composting is of about 16%, which provides information on the success of the process. The spectroscopic analysis showed a decrease of the ratios E4/E6 and E2/E6, which clearly shows the humification of organic matter. The physicochemical and spectroscopy parameters of the mixture show the stability and maturity of the final compost, which is confirmed by the germination index (60% for lettuce and turnips, and 90% for cress and lucerna). The results of the evolution of sludge from vegetable oil refining mixed with green wastes produced a mature product that can be applied in agriculture.  相似文献   

8.
The worldwide production of rice husk, a by‐product and agrowaste that causes serious environmental problems, may reach 116 million t y?1. The objectives of this study were (i) to determine the physicochemical changes of rice husk and its structural chemistry during composting using 13carbon nuclear magnetic resonance (13C NMR) and (ii) to determine the effect of the composted rice husk (CRH) on the properties of Oxisol and cocoa (Theobroma cacao L.) growth under glasshouse conditions. Results showed an active composting phase occurred at the first 53 days as revealed by high carbon dioxide (CO2)‐C (40–71 µg g?1 h?1) production, followed by a matured composting phase occurring at 54–116 days as revealed by decreasing in CO2‐C production (10 µg g?1 h?1). The active composting was accompanied by increases in electrical conductivity (EC), pH, ammonium (NH4 +), and nitrate (NO3), whereas during the matured composting phase, the EC and cation exchange capacity increased but pH, NH4 +, and NO3 ?1 decreased. The ash of the produced compost contains mainly calcium (Ca), potassium (K), sulfur (S), magnesium (Mg), and phosphorus (P) as essential nutrients. The CP/MAS 13C NMR spectra before and after various composting times indicated the dominance of sharp and well‐resolved signal peaks at O‐alkyl C and di‐O‐alkyl C regions (67–73%), which are characteristic of cellulose. The percentage of N‐alky/methoxyl was 23–26% whereas phenolic, carboxyl, and alkyl C types were less than 3% each. The application of the CRH to an Oxisol significantly increased soil pH and Ca, Mg, K, sodium (Na), and silicon (Si) ions of in situ soil solution but decreased the amounts of toxic ions [aluminum (Al), manganese (Mn), and iron (Fe)]. The CRH was found to increase cocoa growth up to 37%.  相似文献   

9.

Purpose

One of the most practical ways to utilise municipal solid waste is composting, thereby producing materials that may be productively used to improve soil properties. Wastes, as well as mature composts, contain hydrophobic substances, including fats, which are more resistant to microbiological decomposition than other constituents. The aim of this work was to determine qualitative and quantitative changes of hydrophobic substances, especially fatty acids, during the course of municipal solid waste composting. This provides new information on intensity of hydrophobic versus other substances decomposition undergoing during these processes.

Materials and methods

Raw materials, prepared according to MUT-DANO technology, were composted in a pile, and samples were taken after 1, 14, 28, 42, 56, 90 and 180 days of the composting. Temperature, moisture, total organic carbon, hydrophobic substances carbon (HSC) and fatty acid carbon (FAC) contents were determined in all samples. Hydrophobic substances were extracted with 1:2 (v/v) mixture of ethanol/benzene, while fats were extracted with petroleum ether and determined by GC analysis after transesterification with BF3 in methanol.

Results and discussion

The HSC decreased from 27.8 to 9.3 g kg?1 during first 90 days of composting, and thereafter remained constant. Similarly, the highest content of FAC was in raw compost, while the lowest was after 90 days. Octadecenoic acid predominated in the raw compost and decreased from 56 to 23 % FAC after 180 days. During the composting processes, domination of octadecenoic acid was replaced by hexadecanoic and octadecanoic acids, which increased from 18.8 to 36.7 % and 8.3 to 19.4 % FAC, respectively. The share of hexadecanoic, eicosanoic and docosanoic acids increased after the thermophilic phase. The presence of odd-numbered fatty acids (pentadecanoic and heptadecanoic) was noted, which are known to be products of the bacterial transformation-synthesis of lipid substances.

Conclusions

The extent of decomposition of hydrophobic substances, especially fatty acids, is greater than other components in composted municipal solid waste, and intensity of the biotransformation is significantly correlated with composting parameters, mainly temperature and time. During the thermophilic phase of municipal solid waste composting, the decrease in total content of hydrophobic substances is approximately fivefold, while the reduction in fatty acids can be about tenfold. Unsaturated fatty acids are more intensively decomposed during the composting processes, while saturated fatty acids are more resistant. Moreover, transformation of fatty matter may result in the creation of specific isomers with odd numbers of carbon atoms.  相似文献   

10.
ABSTRACT

Lantana camara is an evergreen, which is the most notorious toxic weed of the terrestrial ecosystem. It is native to subtropical and tropical America, but a few taxa are indigenous to tropical Asia and Africa. An enormous quantity of green foliage is produced by this weed, which cannot be used as livestock feed due to its toxic properties. Management through utilization seems the only sustainable option for this problem. In this study, the composting of Lantana biomass was done and changes in chemical characteristics of waste biomass were measured. The composting caused decreases in pH, organic carbon, C:N ratio totK and totC by 2.0-, 1.25-, 1.66-, and 19-fold, respectively, but increases in electrical conductivity (EC), ash content, totN, totP, totZn, and totMg of 2.0-, 1.11-, 3.36-, 1.76-, 1.28-, and 1.70-fold, respectively. The C/N ratio (20.1) and soil respiration rate (47.12–66.20 mg CO2-C/100 g) suggested the compost maturity at 52 days. The high bacterial (38.67 CFU × 10?7 g?1), fungal (30.0 CFU × 10?3 g?1), and actinomycetes (32.0 CFU × 10?5 g?1) population in composted material suggested the suitability of compost for agronomic purposes. Phytotoxity measured through compost:water extract and compost pot trial suggested the germination index (GI) in the ranges of 52.3%–122.3% and 74.5%–166.9%, respectively. The high ranges of chlorophyll, protein, and carotenoids in seedling than control suggested the non-toxicity of ready materials. Results suggested that composting can be a potential technology to manage Lantana biomass for sustainable land fertility management programs.  相似文献   

11.
ABSTRACT

Humic (HA) and fulvic (FA) acids improve the nutrient availability and uptake by plants but some aspects of their agronomic use still need to be clarified. The effects of HA soil application and FA foliar application on the growth, Zn and B uptake by coffee seedlings were evaluated. HA was added to an Oxisol at concentrations 0, 10, 25, 50, 75 and 100 mg kg?1 (C-HA), in both limed (pH 6.2) and overlimed (pH 7.2) conditions. FA (0, 0.2, 0.5 and 1 g L?1 C-FA) was applied to coffee leaves in three different application modes (M): with 0.3% Zn and 0.6% B supplied via foliar (M1), 0.6% B and 1.2% Zn supplied via foliar (M2) and 1.2 mg kg?1 B and 6 mg kg?1 Zn supplied via soil (M3). HA addition in soil significantly (p < 0.05) reduced leaf B and Zn accumulation and coffee growth in both pH conditions. In the M1 and M2, FA application significantly (p < 0.05) increased the shoot growth at 0.59 and 0.45 g L?1 and B accumulation at 0.96 and 0.45 g L?1 C-FA. Foliar application of C-FA, instead soil application of C-HA, is a suitable practice to improve coffee seedlings growth and nutrition on Oxisol.  相似文献   

12.
ABSTRACT

The objectives of the present study were to determine the promotional effect of chemical additives on quality of peanut straw decomposition products and to evaluate the influence of the resulting products on soil biological properties. Straw was mixed with or without chemical additives, such as iron(II) sulfate (FeSO4), alkali slag, or FeSO4 combined with alkali slag, and decomposed for 50 days. The decomposition products were used as organic fertilizer and added to red soil for an incubation experiment. The chemical additives increased total organic carbon (C), total nitrogen (N), and available N content but decreased the C:N ratios in decomposition products compared to controls. Adding FeSO4 gave the highest humic acid content (HA, 30.34 g kg?1) and ratio of humic to fulvic acid (HA/FA, 0.53) and the lowest ratio of HA absorption value at 465 nm to that at 665 nm (E4/E6, 6.05), suggesting high humification of decomposition products. Application of the resulting products to soil increased soil urease and invertase activities. BIOLOG analysis showed that microbial C utilization ability, Shannon–Weaver diversity, and McIntosh evenness indexes were improved by the organic fertilizer promoted by chemical additives. Principal component analysis indicated that microbial community structures were also influenced by different amendments in decomposition products. Our study provides a reference point for acquiring high quality straw compost and improving soil biological functions by organic fertilizer.  相似文献   

13.

Purpose

Sorption of heavy metals on soil components plays an important role in reducing their mobility and bioavailability. Organic matter is an important sorbent of heavy metals in soil. Crop residues which are important sources of soil organic matter will undergo decomposition after addition to the soil. However, few studies reported the effect of organic matter decomposition on heavy metal sorption. This study aimed to investigate the effect of straw decomposition on the sorption of Cu.

Materials and methods

Rice straw was decomposed in aerobic conditions for 1, 3, 6, and 12 months, respectively. Solid organic matter in decomposed rice straw was collected and marked OM-1, OM-3, OM-6, and OM-12, respectively. Sorption isotherms and kinetics of Cu on solid organic matter were studied by batch experiments. The sorption of Cu was calculated by the difference between the amount of Cu added initially and that remained in the supernatant. Sorption thermodynamics of Cu were studied by isothermal titration calorimetry technique. Potential mechanisms of Cu sorption were analyzed by combining the information from sorption thermodynamics, desorption experiments, and Fourier transform infrared spectroscopy observations. All sorption experiments were carried out at pH 5.0.

Results and discussion

The maximum sorption of Cu was 165.8, 170.5, 186.6, and 226.9 mmol kg?1, and the rate constant of Cu sorption was 0.80, 0.58, 0.50, and 0.32 kg mmol?1 h?1 on OM-1, OM-3, OM-6, and OM-12, respectively, indicating that the maximum sorption of Cu increased while sorption rate of Cu decreased with increasing the duration of straw decomposition from 1 to 12 months. The negative values of Gibbs free energy change and positive values of enthalpy change and entropy change revealed that Cu sorption was spontaneous, endothermic in nature, and the randomness was increased during sorption. Carboxyl and hydroxyl in solid organic matter were involved in Cu sorption. The percentage of Cu desorbed by NH4Ac from OM-1, OM-3, OM-6, and OM-12 was 45.0, 43.5, 42.8, and 37.8 %, respectively.

Conclusions

In the current study, the decomposition of straw promoted the sorption capacity but reduced the sorption rate of Cu on solid organic matter. Copper sorption was an endothermic and spontaneous process. The formation of inner-sphere complexes was the main mechanism of Cu sorption, and its role in Cu sorption tended to increase with increasing the duration of straw decomposition. The information will facilitate the understanding of the contamination and remediation of heavy metal in cropland.
  相似文献   

14.

Purpose

This study aimed to investigate the effect of initial soil pH and organic anion-to-acid ratio on changes in soil pH.

Materials and methods

Two soils (Podosol and Tenosol) along with two carboxylic acids (malic and citric acid) and their anions (sodium malate and citrate), commonly found in plant residues, were used in this study. Stock solutions of either malic acid and disodium malate or citric acid and trisodium citrate were added to pre-incubated soils at anion-to-acid ratios of 0:100, 10:90, 25:75, 50:50, 75:25, 90:10, 100:0 and at 0.25 g C kg?1 soil. Soils were adjusted to 80 % field capacity and mixed thoroughly, and three replicates of 50 g of each soil were transferred into individual plastic cores and incubated at 25 °C in the dark for 30 days. Soil pH, respiration, NH4 +, and NO3 ? were determined.

Results and discussion

Soil pH increased linearly with increasing organic anion-to-acid ratio. The addition of organic anions to soil resulted in net alkalinisation. However, the addition of organic acids immediately decreased soil pH. During subsequent incubation, soil pH increased when the organic anions were decomposed. Alkalinity generation was lower in the Podosol (initial pH 4.5) than in the Tenosol (initial pH 6.2), and was proportional to anion-to-acid ratio across all the treatments. Cumulative CO2-C release was approximately three times lower in the Podosol than the Tenosol at day 2 due to lower microbial activity in the low-pH Podosol.

Conclusions

Increasing anion-to-acid ratio of organic compounds increased soil pH. Increases in soil pH were mainly attributed to direct chemical reactions and decomposition of organic anions. Low pH decreased the amount of alkalinity generated by addition of organic compounds due to incomplete decomposition of the added compounds. This study implies that organic anion-to-acid ratio in plant residues plays an important role in soil pH change.  相似文献   

15.
A composting experiment was carried out to study changes in physical [color, odor, temperature, organic matter (OM) loss], chemical [C:N ratio, water-soluble organic carbon (Cw):organic N (Norg) ratio, NH4 +-N and NO3 ?-N, humic acid (HA):fulvic acid (FA) ratio, humification index (HI) and cation-exchange capacity (CEC):total organic carbon (TOC) ratio)] and biological [seed germination index (GI)] parameters to assess compost maturity and stability over a period of 150 days. Five composts were prepared using a mixture of different farm wastes with or without enrichment of N, rock phosphate (RP) and microorganism (MO) inoculation. All the composts appeared to change to a granular and dark grey color without foul odor, and attained a constant temperature with no measurable changes (ambient level) at 120 days of composting. Correlation analysis showed that the optimal values of the selected parameters for our experimental conditions are as follows: organic matter loss > 42%, C:N ratio < 15, HA:FA ratio > 1.9, HI > 30%, CEC:TOC ratio > 1.7 and Cw:Norg ratio < 0.55. Composts enriched with N + RP or N + RP + MO matured at 150 and 120 days, respectively, whereas composts without any enrichment or enrichment with N or RP + MO did not mature even at 150 days of composting.  相似文献   

16.
The decomposition of organic matter of source-separated biowaste during composting was followed during 18 months. Compost samples were fractionated into three parts: (i) hot water soluble extract (HWE) (ii) bitumen fraction and (iii) humic substances (humic acids (HA) and fulvic acids (FA)). Original compost samples and the HA and FA fractions were hydrolyzed with sulfuric acid for hexoses and pentoses. Quantitative spectrophotometric and qualitative GC/MS analyses of monosaccharides as trimethylsilyl ethers of the corresponding alditols were carried out.

During composting, the amount of HA in the organic matter of the compost increased, the amounts of HWE and bitumen decreased and the amount of the FA fraction changed only a little. Carbohydrates were found to be important constituents of biowaste composts and their HA and FA fractions. Elemental analysis (C, N and H) of compost and HA samples showed an increase in the C:H ratio and in unsaturation of compounds during composting. The decrease in the C:N ratio was marginal.

The amounts of hexoses and pentoses in original compost samples and the HA and FA fractions decreased during composting. The sugar alcohols erythritol, xylitol, L-arabitol, ribitol, L-rhamnitol, L-fucitol, D-mannitol, D-glucitol and galactitol were identified in both the HA and FA fractions. 2-Deoxy-D-erythro-pentitol was identified in one HA fraction and inositol in two FA fractions. An analysis of gas chromatographic data for relative abundances showed that, in every sample except one and in every stage of composting D-glucitol was the main sugar alcohol. In general, the relative amount of D-glucitol decreased during composting, while the relative amounts of all other sugar alcohols increased.

As chemical indicators of compost maturity, carbohydrates would appear to be a important group of compounds. Most informative as a general indicator would be the ratio of the amount of HA to the amount of organic matter in the total compost samples.

According to our studies, the carbohydrates in composts are covalently bound to the structures of FA and HA. Carbohydrate determination clearly deserves more attention in the structural elucidation of FA and HA.  相似文献   

17.
The wine industry in Catalonia (Spain) plays an important role in the economy of the region. In this framework, Miguel Torres S.A. is a well known company specializing in production of high-quality wines and brandy, which possesses its own vineyard. Two of the main solid wastes produced in this kind of industry are: stalk (waste from grape harvesting which is only produced during September and October) and wine sludge from the biological wastewater treatment plant which is steadily generated. A composting process was proposed to treat these two organic wastes for recycling its organic matter content to the vineyard crops. Experiments at laboratory-scale in static composting systems did not show positive results for different stalk:sludge mixtures due to the high moisture content of both wastes. Field composting experiments with windrow methods showed that the thermophilic range of composting could be achieved for a 2:1 stalk:sludge volumetric ratio resulting in a complete sanitation of the material with thermophilic temperature of over 55°C for 28 days. The stability and maturity of the final compost were very high (Dewar self-heating test maturity grade V and static respirometric index 0.10 mg O2·g Total Organic Matter?1·h?1). Due to its seasonal production, stalk storage was necessary. A study of the changes of stalk properties during one year is also presented. Bulk density and water holding capacity decreased with storage time while FAS (Free Air Space) and porosity increased. No remarkable changes in organic matter content were observed. Cocomposting of stalk and wine sludge generated in the wine industry is presented as a sustainable waste management strategy, which produces a sanitized fertilizer suitable for application in the vineyard, closing the organic matter cycle.  相似文献   

18.
Soil was freed of its organic matter by heating it to 400°C. Plants were grown in a 14CO2 atmosphere and from them a labelled “soil organic matter” (humus) was prepared by composting the plant material for more than 3 yr in the modified soil under laboratory conditions. The influence of small additions of unlabelled glucose on the decomposition of the labelled soil organic matter was studied. Shortly after the addition of glucose there was a small extra evolution of 14CO2, which lasted about 1 day. It is claimed that the extra evolution of 14CO2 was caused by conversion of labelled material in the living biomass and was not due to a real priming action, i.e. an accelerated decomposition of humic substances or dead cellular material.  相似文献   

19.
Abstract

An investigation was conducted to determine the nature of decomposition products resulting from the interaction between humic acid and apatite and assess their availability to plant growth. Interaction analyses were performed by shaking 200 mg apatite with 0 to 800 mg/L HA or FA solutions at pH 5 or 7 for 0 to 12 hr. Phosphorus concentrations were determined in the supernatants by spectrophotometry. The nature of P‐humic acid complexes was determined by 31P NMR analysis. Availability of these dissolution products was studied by growing corn plants in aerated hydroponics to which 200 mg apatite and 0 to 800 mg/L HA were added at pH 5 or 7. The results indicated that the rate of dissolution of apatite was parabolic in regression with time, and increased by increasing the amounts of HA or FA applied from 100 to 800 mg/L The dissolution reaction was influenced by pH, because larger amounts of PO4 3‐ions were detected at pH 5 than at pH 7. 31P NMR spectroscopy indicated the presence of P‐humic acid complexes, previously believed to be humophosphate esters. The PO4 3‐ ion was complexed by HA at pH 7 or above, but PO4 3‐ appeared to be released again as adsorbed and free ions at pH <5.0. Plant performance corresponded with increased PO4 3‐concentrations at pH 5.0. No significant improvement over the control was observed in the growth of corn plants by apatite + HA treatments at pH 7. However, plant growth was increased significantly over the control by apatite + HA treatments at pH 5.0. Better growth performance of corn plants were noticed by apatite + HA than by KH2PO4 treatments at pH 5.0.  相似文献   

20.
Abstract

Mixed opinions exist on the effect of organic matter on nitrification in soils as well as the lack of data on the effect of fulvic (FA) and humic (HA) acids on this biochemical process. This in vitro investigation was conducted to study the effect of FA and HA on oxidation of NH+ 4 and NO 2 by soil nitrifiers and on the delay period (t') and maximum nitrification rate (Kmax). Soil extracts containing an ammonium‐oxidizer population were incubated in vitro for 3 weeks at 25C in the presence of (NH4)2SO4and 0 to 320 mg FA or HA/L at pH 7.0 or 8.0. A similar experiment was conducted with soil extracts containing a nitrite‐oxidizer population, but with KNO2 as the N source. An additional experiment was conducted with the nitrite‐oxidizer extracts for the determination of t’ and Kmax values. Nitrite production tended to increase linearly as a result of FA and HA treatments from 0 to 320 mg/L at pH 7.0 or 8.0. Fulvic acid appeared to be more effective than HA in increasing the oxidation process. Differences in pH had only a slight effect. On the other hand, nitrate production was decreased linearly by FA or HA treatments from 0 to 320 mg/L which provided some justification for reports of lower nitrate, but higher nitrite concentrations in soils high in organic matter content. Humic acid treatments increased the delay period (t1), and at the same time decreased the maximum nitrification rate (Kmax). The latter suggests that in the presence of HA more time is required to reach a maximum nitrification rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号