首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bioremediation is an economically attractive option to remediate soil contaminated with DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] and other organochlorine pesticides. However, lack of DDT bioavailability in soil presents one major obstacle to this technology particularly in soils that have been contaminated for long periods. In this work, sodium ion (Na+) was applied to a long-term DDT contaminated soil as Na+ is known to disperse clays, which would potentially release and/or expose physically protected DDT thereby enhancing DDT bioavailability. Sodium ion addition significantly increased dissolved organic carbon (DOC) levels, anaerobic bacterial numbers and the amount of DDT residues measured in soil solution. DDT transformation ranged from 95% (30—80 mg Na+ kg-1 soil) to 72% (no Na+ added) with the optimum level of DDT transformation occurring at 30 mg Na+ kg-1 soil. Higher Na+ levels repressed DDT transformation and this appeared to be related to lower DOC levels and flocculation of soils. The anaerobic incubation conditions employed (high water content) prevented DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] production and DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane] was the major breakdown product formed. Overall it appeared that Na+ has potential as a cheap and safe alternative to surfactants as a method for increasing DDT transformation in contaminated soil.  相似文献   

2.
《Applied soil ecology》2001,16(1):85-90
One DDT-contaminated soil and two uncontaminated soils were used to enumerate DDT-resistant microbes (bacteria, actinomycetes and fungi) by using soil dilution agar plates in media either with 150 μg DDT ml−1 or without DDT at different temperatures (25, 37 and 55°C). Microbial populations in this study were significantly (p<0.001) affected by DDT in the growth medium. However, the numbers of microbes in long-term contaminated and uncontaminated soils were similar, presumably indicating that DDT-resistant microbes had developed over a long time exposure. The tolerance of isolated soil microbes to DDT varied in the order fungi>actinomycetes>bacteria. Bacteria from contaminated soil were more resistant to DDT than bacteria from uncontaminated soils. Microbes isolated at different temperatures also demonstrated varying degrees of DDT resistance. For example, bacteria and actinomycetes isolated at all incubation temperatures were sensitive to DDT. Conversely fungi isolated at all temperatures were unaffected by DDT.  相似文献   

3.
Effects of DDT and its metabolites on soil algae and enzymatic activity   总被引:1,自引:0,他引:1  
 The persistence of DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] and its metabolites in soil, their toxicity to soil algae, and effects on microbial activities were studied in laboratory microcosms for 45 days. In non-sterile soils, removal of DDD [1,1-dichloro-2,2-bis(p-chlorophenyl)ethane] and DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] was less than 3%, while 4–8% of applied DDMU [1-chloro-2,2-bis(p-chlorophenyl)ethylene], DDA [2,2-bis(p-chlorophenyl)acetic acid] and DDT were lost. Added DDOH [2,2-bis(p-chlorophenyl)ethanol] was more labile, as 60% was degraded during the same period. Soil microalgae were not measurably affected by the compounds tested at 10–50 mg kg–1, but at 100 mg kg–1 soil, DDD, DBP (p,p′-dichlorobenzophenone) and DDA significantly reduced their growth. Phosphatase activity was not affected by DDT and its metabolites at the concentrations tested (≤50 mg kg–1), but all compounds inhibited dehydrogenase activity at concentrations of 50 mg kg–1 soil. The toxic effects of DDT and its metabolites were dose-related. Received: 9 January 1998  相似文献   

4.
An enzyme-linked immunosorbent assay (ELISA) specific for DDE [1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene] has been used to map DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane)] residues in the top 10 cm of soil in three river valleys of northern New South Wales, Australia. Despite being almost 20 years since DDT was last applied for cotton growing in these areas, the relationship between sites of greatest application and current residue levels was strong. DDE concentrations in the range 0-2 ppm were found, although most the 389 soil samples examined contained less than 0.2 ppm of DDE. Although some relationship between mode of land use and current residue levels was apparent, this varied from valley to valley and may have reflected different farming practices and times of application. The study demonstrates that the combination of ELISA and geographical information system (GIS) analysis provides an effective means of displaying levels of soil contamination by a pesticide and the possible need for remediation.  相似文献   

5.
The transformation rate and direction of dichlorodiphenyltrichloroethane (DDT) and its forms entering the surface layers of Moscow soils have been analyzed. The DDT transformation rate into metabolites—dichlorodiphenyldichloroethylene (DDE) and dichlor diphenyl dichloroethane (DDD)—is small. In 75% of soils, less than half the initial pesticide is transformed. In 67.5% of soils, formation of DDD predominates in the DDE formation. In soils of the entire area of Moscow, 16% of DDT was transformed into DDE and 23% into DDD. The о,n′-DDT to n,n′-DDT ratio is <0.3 for 95% of soils, and the mean ratio is 0.1, which is typical for application of DDT as a technical product.  相似文献   

6.
电子供体基质和电子穿梭体对电子转移过程有重要影响,进而可能影响厌氧反应体系中2,2-双(4-氯苯基)-1,1,1-三氯乙烷(DDT)还原脱氯降解。为了阐明电子供体基质正丁酸与电子穿梭体蒽醌-2,6-二磺酸盐(AQDS)对红壤性水稻土中DDT还原脱氯效果的影响,本研究采用厌氧土壤培养试验并设定以下5个处理:1灭菌对照,2对照,3正丁酸,4AQDS,5正丁酸+AQDS。结果表明,厌氧培养20 d后,土壤中DDT可提取态残留量减少了85.2%~96.3%。DDT厌氧脱氯降解的主要产物为2,2-双(4-氯苯基)-1,1-二氯乙烷DDD。添加正丁酸在培养前8d显著提高产CH4速率,而对DDT脱氯降解无显著促进作用,第8天之后,随着产CH4速率降低,添加正丁酸处理的DDT脱氯速率逐渐升高。添加AQDS显著增强土壤还原性并加速三价铁氧化物还原生成电子供体二价铁,进而显著促进DDT还原脱氯降解。同时添加正丁酸和AQDS对促进DDT还原脱氯的效果最佳,但是正丁酸和AQDS对加速DDT还原脱氯无显著交互作用。本研究结果对于制定DDT污染土壤的高效原位修复技术方案具有指导意义。  相似文献   

7.
氯代持久性有机污染物的农田土壤污染呈现污染浓度低、面积大、新源污染不断输入的特点。农田土壤本身微生物种类丰富,对氯代有机污染物具有较大的降解潜力和未知性。本试验以典型高氯代和低氯代持久性有机污染物——六氯苯(HCB)和滴滴涕(DDT)为研究对象,结合~(14)C同位素示踪技术,研究HCB和DDT在热带水稻土和甘蔗地土壤的矿化现象,同时监测HCB和DDT在两种土壤中的挥发、降解产物以及结合残留。结果表明,经84 d好氧培养,HCB和DDT在两种土壤中的矿化量分别仅为0.14%和3%,低氯代有机污染物DDT的矿化速率显著高于高氯代有机污染物HCB。然而,两种土壤对HCB或DDT的矿化没有显著性差异。HCB或DDT在水稻土中的挥发量略微高于甘蔗地土壤,两种土壤中HCB和DDT的挥发量在0.1%~0.6%之间,表明挥发不是其主要的环境过程。在DDT污染水稻土和甘蔗地土壤中添加1.25%的堆肥增加了DDT在土壤中的矿化与结合残留,减少了DDT的挥发。本研究结果表明土壤在好氧条件下对氯代持久性有机污染物的自然消解能力非常弱,而有机肥的使用有助于土壤中持久性氯代有机污染物的矿化消除。  相似文献   

8.
Thirty strains of fungi collected from nature were investigated for their ability to grow on agar medium contaminated with Remazol Brilliant Blue R (RBBR) and 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). The results showed that strain U97, later identified as Trametes versicolor, was the most active decomposer. This fungus decolorized 85?% of RBBR in 6?h and degraded 71?% of DDT in 30?days. In RBBR decolorization, high-performance liquid chromatography analysis revealed that two peaks were identified as metabolic products. Among inducers for ligninolytic enzymes, only veratryl alcohol improved RBBR decolorization and DDT degradation by 93?% and 77?%, respectively. A partial least squares method using Minitab 15 showed that lignin peroxidase exhibited a positive correlation to the abilities of T. versicolor U97 to decolorize RBBR and degrade DDT. A multivariate linear equation, with the same values of ligninolytic activity during RBBR decolorization and DDT degradation, revealed that 1?% RBBR decolorization represented 1.16?% DDT degradation. Screening with agar or liquid medium and improvement of the mathematical modeling could have practical importance in the exploitation of T. versicolor U97 for the removal of DDT on a commercial scale.  相似文献   

9.
The content and distribution pattern of dichlorodiphenyltrichloroethane (DDT) and its metabolites (DDE and DDD) in the surface layers of soils in Moscow are studied. The residual content of these substances in the soils varies within 2.22–1440 µg/kg (at a mean value of 158.9 ± 314.1 µg/kg and median 42.53 µg/kg). The correlation between the contents of DDT and its metabolites and DDD and organic matter is revealed. The highest contents of the pollutants are seen in the residential–transport and industrial zones of Moscow, while their lowest contents are revealed in the soils of the yards of preschool facilities and schools. With respect to the residual contents of the pesticide, most of the soils of Moscow can be considered uncontaminated (80.0%) and acceptably contaminated (7.5%).  相似文献   

10.
Horticultural soils can contain elevated concentrations of selected trace elements and organochlorine pesticides as a result of long-term use of agrichemicals and soil amendments. A glasshouse study was undertaken to assess the uptake of weathered SigmaDDT {sum of the p, p'- and o, p-isomers of DDT [1,1,1-trichloro-2,2- bis( p-chlorophenyl)ethane], DDE [1,1-dichloro-2,2- bis( p-chlorophenyl)ethylene] and DDD[1,1-dichloro-2,2- bis( p-chlorophenyl)ethane]}, arsenic (As), cadmium (Cd), copper (Cu), and lead (Pb) residues by lettuce ( Lactuca sativa) and radish ( Raphanus sativus) from field-aged New Zealand horticultural soils. Concentrations of SigmaDDT, DDT, DDE, Cd, Cu, and Pb in lettuce increased with increasing soil concentrations. In radish, similar relationships were observed for SigmaDDT, DDE, and Cu. The bioaccumulation factors were less than 1 with the exception of Cd and decreased with increasing soil concentrations. Lettuce Cd concentrations for plants grown on four out of 10 assayed soils were equivalent to or exceeded the New Zealand food standard for leafy vegetables of 0.1 mg kg (-1) fresh weight. Concentrations of As, Pb, and SigmaDDT did not exceed available food standards. Overall, these results demonstrate that aged residues of SigmaDDT, As, Cd, Cu, and Pb in horticultural soils have remained phytoavailable. To be protective of human health, site-specific risk assessments and soil guideline derivations for residential settings with vegetable gardens need to consider the produce consumption pathway.  相似文献   

11.
The overall objective of this study was to investigate the sorption kinetics of DDT in sediment under similar experimental conditions employed in corresponding toxicity studies for bentic organisms. A batch of aerated Schoonrewoerdse Wiel sediment, initially spiked with DDT, was sampled over a period of seven days. Concentrations of DDT, DDD and DDE were determined in both the solid and the solution phase in the sediment/water system after separation by centrifugation. It was found that the extractable amount of DDT decreased with increasing contact time. This can partly be explained in terms of transformation of DDT into DDD. Furthermore, the present applied extraction procedure seems to be less effective with increasing contact time, indicating an increase in binding strength of DDT with the sediment material. Finally, on the basis of DDT, DDE and DDD concentrations in both the solid phase and the solution phase, partition coefficients were calculated, which appeared to be independent of the contact time. This points at a very rapid equilibrating between DDT in pore water and in the extractable forms adsorbed at the solid phase.  相似文献   

12.
Abstract

Dissolved humic acid (HA) and fulvic acid (FA) prepared from a Dando brown forest soil (Typic Dystrochrept) inhibited the growth of soil bacteria degrading DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) in the culture. The population of DDT-degrading Gram-variable rod Bll6 decreased by the application of both HA and FA, suggesting the presence of bactericidal effect. Such inhibitory effect was stronger for HA and resulted in a lower degrading activity of DDT in the culture of Bll6. No inhibitory effect was observed on the growth of DDT-degrading Bacillus sp. B75. The electron spin resonance spectra showed the presence of organic free radicals in both HA and FA. The relative concentration of the radicals was higher in HA. Storage of HA solution for 3 months at 4°C decreased the concentration of the radicals as well as the inhibitory action. The addition of catalase decreased the inhibitory effect of humic acid. It is suggested that a hydroxy radical, which is derived from free radicals of humic substances, is involved in the inhibition of bacterial growth and degradation of DDT.  相似文献   

13.
堆肥作为微生物菌剂载体的研究   总被引:1,自引:0,他引:1  
以自然风干的堆肥为载体,吸附3株功能芽胞细菌液体菌剂制成不同生物肥料,通过不同时间取样比较堆肥、有机无机肥和生物有机肥以及生物复混肥中功能芽胞细菌和普通微生物数量以及pH等指标变化,探讨堆肥作为载体生产生物肥料的可行性。研究结果表明,经过自然风干的堆肥与蛭石比较,吸附液体微生物菌剂后无论外观、手感还是功能芽胞细菌死亡率,差异均不大。含水量小于15%堆肥吸附液体菌剂比例为6%比较合适,吸附比例高时,生物肥料含水量和pH较高,影响保存效果。生物有机肥和生物复混肥保存6个月时,3株功能芽胞细菌总数分别为0.59×108 CFU.g-1和0.38×108 CFU.g-1,依然可达到农业行业标准要求。生物有机肥中功能芽胞细菌数量最高,生物复混肥集合了三大肥料优点,堆肥中普通微生物数量和多样性最高。完全腐熟的堆肥经过自然风干后可作为微生物菌剂载体。  相似文献   

14.
Tetrahymena pyriformis readily accumulated DDT and its metabolites from the medium initially containing 1 ppm of each compound. These compounds were accumulated in a decreasing order of DDD, DDE, o,p′-DDT, DDMU, and p,p′-DDT. DDT was metabolized to DDE, o,p′-DDT, and DDMU. DDD was metabolized to DDMU whereas o,p′-DDT, DDE and DDMU were not metabolized. When the organisms were transferred to toxicant free medium excretion of p,p′-DDT and its metabolite occurred in two phases: (a) rapid phase of elimination which was completed during the first 3 h and (b) slow phase of elimination which continued for another 21 h. The implications of these results are discussed.  相似文献   

15.
2004年5月和6月采集了安徽、江苏、湖南、湖北省5个茶园的38个土壤表层样品,利用ASE萃取技术,使用GC/MS方法测定了样品中的六氯苯、氯丹、总滴滴涕(DDE、DDD和DDT)、艾氏剂、狄氏剂、异狄氏剂、七氯和灭蚁灵等八种有机氯杀虫剂。5个茶园的六氯苯、总滴滴涕的检出率都为97.4%,是茶园土壤中普遍存在的两类持久性有机污染物(POPs)。艾氏剂、狄氏剂、异狄氏剂、七氯等未检出。总有机氯杀虫剂含量平均为17.4!g kg-1,总滴滴涕占总有机氯杀虫剂含量的97.9%,是茶园土壤中有机氯杀虫剂残留的主要成分。六氯苯的残留量很低,没有对茶园土壤质量造成危害。  相似文献   

16.
The spatial and temporal distribution of persistent chlororganic compounds in the form of insecticide residues—DDT, DDE, DDD, HCH and industrial pollutants—polychlorobiphenyls (PCBs) has been monitored in various components of irrigated agrolandscapes (soil, water, bottom sediments) in the Moscow region, the Kuban lowplain of the Krasnodar region (Russia) and in the Samarkand oasis (Uzbekistan) for the period 1989–1990. The widespread occurence of PCB compounds requires action for their hygienic control and monitoring. The main chlororganic pollutant found were DDT residues and their content in soils and bottom sediments in all regions under study exceeded in many cases the existing baselines (100 µg/kg). Special attention has been given to the ratios between various metabolites and isomers of chlororganic insecticides as well as between various homologs of PCBs among which tetrachlorobiphenyls were predominant in soils, bottom sediments and surface waters.  相似文献   

17.
Many of the microbial inoculants all over the world are based on solid peat formulations. This has been mostly true for well developed legume inoculants based on selected rhizobial strains, due to peat bacterial protection properties. Six carriers (bagasse, cork compost, attapulgite, sepiolite, perlite and amorphous silica) were evaluated as alternatives to peat. Compost from the cork industry and perlite were superior to peat in maintaining survival of different rhizospheric bacteria. Other tested materials were discarded as potential carriers for soybean rhizobia. Also, different liquid culture media have been assayed employing mannitol or glycerol as C sources. Some media maintained more than 109 cfu ml?1 of Sinorhizobium (Ensifer) fredii SMH12 or Bradyrhizobium japonicum USDA110 after 3 months of storage. Rhizobial survival on pre-inoculated seeds with both solid and liquid formulations previously cured for 15 days led to a higher bacterial numbers in comparison with recently made inoculants. An additional curing time of solid inoculants up to 120 days had a beneficial effect on rhizobial survival on seeds. The performance of different formulations of two highly effective soybean rhizobia strains was assayed under field conditions. Soybean inoculated with cork compost, perlite and liquid formulations produced seed yields that were not significantly different to those produced by peat-based inoculants.  相似文献   

18.
Water samples, collected trimonthly along the Uruguay River between February 1988 and December 1989, were analyzed for alpha- and gamma-HCH, heptachlor and its epoxide, aldrin, dieldrin, and the o-p′ and p-p′ isomers of DDE, DDD and DDT to assess the present status of the contamination in this South American region. In general, chlorinated pesticides were encountered at very low concentrations. HCH isomers were the most commonly detected compounds with concentrations ranging from the detection limits to 10 ng L?1. Heptachlor, heptachlor epoxide, aldrin, dieldrin, p-p′ DDE and p-p′ DDT were occasionally encountered while o-p′ DDE, p-p′ DDD, o-p′ DDD and o-p′ DDT were never detected. Compared to previous studies in the area, the present data seems to indicate that there was a decrease in the concentrations of these compounds.  相似文献   

19.

Purpose

2,2-Bis(p-chlorophenyl)-1,1,1-trichloroethane (DDT), one of the most widely used organochlorine pesticides in soil, was banned in the 1970s for agricultural use because of its detrimental impacts on wildlife and harmful effects on human health via the food chain. However, high levels of DDT are frequently detected in agricultural soils in China. Considering this situation, this study investigated the use of white rot fungi and laccase derived from white rot fungi to co-remediate DDT-contaminated soil.

Materials and methods

A culture of white rot fungi was used to inoculate soil samples and also to extract laccase from. Soil was contaminated with four components of DDT (p,p′-DDE, o,p′-DDT, p,p′-DDD, and p,p′-DDT). Individual DDT components and the sum of the DDT components (p,p′-DDE, o,p′-DDT, p,p′-DDD, and p,p′-DDT—collectively referred to as DDTs) were both analyzed by GC at various stages during the incubation period. The efficacy of co-remediating DDT-contaminated soil using white rot fungi and laccase was tested by investigating how degradation varied with varying amounts of white rot fungi, sterilizing soil, temperature, soil pH, concentrations of DDT, and concentration of the heavy metal ion Cd2+.

Results and discussion

“”It was concluded that the reduction of DDTs in soil using white rot fungi and laccase was higher than reduction using only white rot fungi or laccase by nearly 14 and 16 %, respectively. Five milliliters fungi per 15 g soil and 6 U laccase per gram soil were the optimal application rates for remediation, as shown by a reduction in DDTs of 66.82 %. The difference in the reduction of individual DDT components and DDTs between natural and sterilized soils was insignificant. The optimal temperature and pH in the study were 28 °C and 4.5, respectively. In addition, reduction of individual DDT components and DDTs increased with increasing concentrations of DDT and decreased with increasing concentrations of Cd2+.

Conclusions

Compared with the remediation of DDT using only white rot fungi or laccase, the co-remediation of DDT using white rot fungi and laccase degraded DDT in soil more rapidly and efficiently; the highest reduction of DDTs was 66.82 %.  相似文献   

20.
丛枝菌根真菌对污染土壤中农产品质量安全的影响   总被引:6,自引:0,他引:6  
王发园  林先贵 《土壤学报》2008,45(6):1142-1147
丛枝菌根(Arbuscular mycorrhiza,AM)是自然界中分布最广的一类菌根,常见于各种类型的污染土壤中,如重金属污染土壤、有机污染土壤及复合污染土壤。AM真菌能与陆地上绝大多数的高等植物共生,大多数的农作物如粮食作物、果树、蔬菜等均能形成菌根。研究表明,AM真菌完全能在提高污染土壤中农产品质量安全方面发挥作用,主要体现在:(1)促进有机污染物的降解和转化,降低污染物在土壤和农产品中的残留;(2)提高农作物对重金属的耐性,降低重金属在农产品中的积累;(3)改善农作物营养状况,提高其抗病性,降低肥料、农药施用量,从而间接降低污染物在土壤和农产品中的残留。因此,AM真菌在提高农产品质量安全方面具有较大潜力。当前和今后可在以下几个方面开展工作:(1)筛选和驯化能显著降低农产品中污染物的AM真菌菌株;(2)AM真菌提高农产品质量安全的效应与机制;(3)AM真菌和其他生物农药、生物肥料间的相互作用;(4)AM真菌在农产品生产中的应用基础研究等。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号