首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research project was to 1) evaluate rate of compost application and 2) to compare compost with uncomposted raw material and inorganic fertilizer N application upon maize and soybean growth and productivity, and upon soil characteristics. During the first three years of the study, the source of uncomposted material and compost was food waste and ground newsprint. During years 4 to 9 of the study, the source of uncomposted material and compost was dairy cow manure and wood chips. Application rates in field site 1 were 0, 11.2, 22.4, 33.6 and 44.8 Mg ha?1 compost, 44.8 Mg ha?1 uncomposted material and 140 kg ha?1 fertilizer N (as urea). Application rates in field site 2 were 0, 22.4, 44.8, 67.2 and 134.4 Mg ha?1 compost, 134.4 Mg ha?1 uncomposted manure and 180 kg ha?1 fertilizer N (dry matter basis). The high rates of compost application significantly raised organic matter levels, and available P and K compared to inorganic fertilizer N. Uncomposted manure and increasing compost application rates significantly increased grain yield, number of kernels per plant and plant weight. Composting significantly reduced pathogen indicator bacteria concentrations. The data of this study suggest that on these high organic matter soils 22.4 Mg ha?1 to 44.8 Mg ha?1 are optimal compost application rates.  相似文献   

2.
ABSTRACT

Reducing nitrogen (N) leaching from croplands is important to protect environmental quality and improve recovery of applied N. To contribute to this broader goal of nutrient management, a simple pot experiment evaluated the potential differences among urea (250 kg N ha?1), urea+compost (125 kg N ha?1 from urea + 125 kg N from 8 Mg ha?1 of compost), compost (250 kg N from 16 Mg ha?1 of compost) and a zero control (Ctrl), in terms of their effects on apparent N recovery (ANR), mineral N (Nmin) leaching and soil retention of applied N. Cabbage (Brassica oleraceae L.) and corn (Zea mays L.) were grown in rotation where compost application was not repeated in the 2nd year. Nmin leaching was monitored by adding 83 mm and 62 mm of water fortnightly to cabbage and corn crops, respectively for a total of 28 times in a two-year period. Combined (urea+compost) and independent (compost) treatment application retained 1.5 to 2 times higher N, and lowered 2.1 to 4.6 times Nmin leaching, relative to independent (urea) application. We conclude that farmers’ practice of fertilization that has an inherent problem of N leaching for high rainfall areas in Taiwan could be improved by proper compost and urea combinations within agronomically recommended rates of N application.  相似文献   

3.
High transportation cost is a barrier which prevents land application of compost far away from where the compost is produced. As a result, use of compost in lawns is becoming a popular alternative in municipalities where compost is produced from municipal solid/biosolid waste. A four-year (2002 to 2005) field experiment was conducted on turfgrass [20% Kentucky Blue (Poa pratensis L.) + 80% Creeping Red Fescues (Festuca rubra L.)] grown on a Black Chernozem soil near Edmonton, Alberta, Canada, to determine the effect of rate and frequency of spring application of compost (prepared from soild/biosolid waste of city of Edmonton) on biomass, sward color, concentration and uptake of nutrients of sward, and soil chemical properties. There were three compost treatments: 50 Mg ha?1 annual; 100 Mg ha?1 (1st year) + 50 Mg ha?1 (2nd year) split, and 150 Mg ha?1 once in three years (2002, 2003 and 2004) applications. In addition, there were check (no fertilizers or compost) and annual nitrogen-phosphorus-potassium-sulfur (NPKS) fertilizer application (100 kg N + 20 kg P + 42 kg K + 20 kg S ha?1 annual) treatments. In the fourth year (2005), residual effect of applied compost on turfgrass growth was determined. Annual application of compost at 50 Mg ha?1 had more green color of leaf, and higher sward N concentration and biomass production of turfgrass for prolonged periods than the check treatment. In comparison with annual application, high initial compost and split applications generated greater turfgrass growth only in the first two years, but produced higher cumulative biomass over the three- or four-year period. Both annual and cumulative biomass yields were highest in treatments receiving NPKS fertilizers. After four growing seasons, there was no residual mineral N in soil from both compost and NPKS fertilizer, and no residual sulfate-S in soil from NPKS fertilizer treatments. The amounts of extractable P and exchangeable K in soil were greater in compost treatments than in the NPKS fertilizer treatment. There was downward movement of extractable P into the 15–30 cm soil depth in one-time initial and split compost and NPKS fertilizer treatments, and of sulfate-S in all compost treatments. In conclusion, annual application of compost in spring at 50 Mg ha?1 is recommended for sustainable color and growth of turfgrass.  相似文献   

4.
A field study was conducted to assess the benefits, with respect to soil physical properties and soil organic matter fractions of utilizing composts from a diversity of sources in perennial forage production. A mixed forage (timothy-red clover (Trifolium pratense L.) and monocrop timothy (Phleum pratense L.) sward were fertilized annually with ammonium nitrate (AN) at up to 150kg and 300 N ha?1 yr?1, respectively, from 1998-2001. Organic amendments, applied at up to 600 kg N ha?1 yr?1 in the first two years only, included composts derived from crop residue (CSC), dairy manure (DMC) or sewage sludge (SSLC), plus liquid dairy manure (DM), and supplied C to soil at 4.6 and 9.2 (CSC), 10.9 (SSLC), 10.0 (DMC) 2.9 (DM) Mg C ha?1. Soil samples (0-5cm; 5-10cm;10-15cm) were recovered in 2000 and 2001. Improvements in soil physical properties (soil bulk density and water content) were obtained for compost treatments alone. Composts alone influenced soil C:N ratio and substantially increased soil organic carbon (SOC) concentration and mass (+ 5.2 to + 9.7 Mg C ha?1). Gains in SOC with AN of 2.7 Mg C ha?1 were detectable by the third crop production year (2001). The lower C inputs, and more labile C, supplied by manure (DM) was reflected in reduced SOC gains (+ 2.5 Mg C ha?1) compared to composts. The distribution of C in densiometric (light fraction, LF; >1.7 g cm?3) and particulate organic matter (POM; litter (>2000μm); coarse-sand (250-2000μm); fine-sand (53-250μm) fractions varied with compost and combining fractionation by size and density improved interpretation of compost dynamics in soil. Combined POM accounted for 82.6% of SOC gains with composts. Estimated compost turnover rates (k) ranged from 0.06 (CSC) to 0.09 yr?1 (DMC). Composts alone increased soil microbial biomass carbon (SMB-C) concentration (μg C g?1 soil). Soil available C (Cext) decreased significantly as compost maturity increased. For some composts (CSC), timothy yields matched those obtained with AN, and SOC gains were derived from both applied-C and increased crop residue-C returns to soil. A trend towards improved C returns across all treatments was apparent for the mixed crop. Matching composts of varying quality with the appropriate (legume/nonlegume) target crop will be critical to promoting soil C gains from compost use.  相似文献   

5.
The effects of compost application on soil carbon sequestration potential and carbon budget of a tropical sandy soil was studied. Greenhouse gas emissions from soil surface and agricultural inputs (fertiliser and fossil fuel uses) were evaluated. The origin of soil organic carbon was identified by using stable carbon isotope. The CO2, CH4 and N2O emissions from soil were estimated in hill evergreen forest (NF) plot as reference, and in the corn cultivation plots with compost application rate at 30 Mg ha−1 y−1 (LC), and at 50 Mg ha−1 y−1 (HC). The total C emissions from soil surface were 8·54, 10·14 and 9·86 Mg C ha−1 y−1 for NF, HC and LC soils, respectively. Total N2O emissions from HC and LC plots (2·56 and 3·47 kg N2O ha−1 y−1) were significantly higher than from the NF plot (1·47 kg N2O ha−1 y−1). Total CO2 emissions from fuel uses of fertiliser, irrigation and machinery were about 10 per cent of total CO2 emissions. For soil carbon storage, since 1983, it has been increased significantly (12 Mg ha−1) under the application of 50 Mg ha−1 y−1 of compost but not with 30 Mg ha−1 y−1. The net C budget when balancing out carbon inputs and outputs from soil for NF, HC and LC soils were +3·24, −2·50 and +2·07 Mg C ha−1 y−1, respectively. Stable isotope of carbon (δ13C value) indicates that most of the increased soil carbon is derived from the compost inputs and/or corn biomass. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Management practices that reduce landscape water consumption will become more important as potable water supplies diminish. Currently, a significant portion of urban water in hot, dry climates is used for landscaping purposes. Little information is available concerning the effects of compost topdressing after core cultivation on turfgrass drought response. The objectives of this study were to evaluate the effects that core cultivation and topdressing compost onto established Kentucky bluegrass (Poa pratensis L.) have on: i) soil water content, and ii) turf canopy temperatures and quality responses during periods of drought. Following core cultivations in May and September 2003 and May 2004, compost treatments [0 (control), 33, 66, and 99 m3 ha?1, i.e. 0, 31, 62, 93 Mg ha?1] were topdressed onto established ‘Nuglade’ and ‘Livingston’ Kentucky bluegrass in the field (Experiment I). In Experiment II, ‘Kenblue’ Kentucky bluegrass was topdressed with 0 (control), 66, and 99 m3 ha?1 compost after core-cultivation. In addition, a non-core-cultivated and no-compost-topdressed treatment was included. Three 10-d dry down periods were imposed during the summers. During the dry down periods, compost treatment increased SWC in the 15-30 cm soil depth during the first four days of dry down and in the 0-15 cm depth 7-10 days into the dry down period. Compared to the control, compost treatments at 66 and 99 m3 ha?1 reduced turf canopy temperature by 1.2-3.3°C during 4-10 days of dry down, indicating less drought stress. While ‘Nuglade’ and ‘Livingston’ turf quality of control (no compost treatment) declined to an unacceptable level on day 8 of dry down, plots with 66 and 99 m3 ha?1 compost treatments maintained acceptable turf quality during the entire dry down periods. In Experiment II, turf quality of ‘Kenblue’ declined to below 6 on day 3 for the non-cultivated and no-compost-topdressed treatment, on day 5 for the core-cultivated but no-compost-topdressed control and on day 9 for 66 and 99 m3 ha?1 compost treatments. Our results suggested that compost topdressing after core cultivation is a management practice that could reduce turfgrass irrigation requirements.  相似文献   

7.
Changes to soil nutrient availability and increases for crop yield and soil organic C (SOC) concentration on biochar‐amended soil under temperate climate conditions have only been reported in a few publications. The objective of this work was to determine if biochar application rates up to 20 Mg ha?1 affect nutrient availability in soil, SOC stocks and yield of corn (Zea mays L.), soybean (Glycine max L.), and switchgrass (Panicum virgatum L.) on two coarse‐textured soils (loamy sand, sandy clay loam) in S Quebec, Canada. Data were collected from field experiments for a 3‐y period following application of pine wood biochar at rates of 0, 10, and 20 Mg ha?1. For corn plots, at harvest 3 y after biochar application, 20 Mg biochar ha?1 resulted in 41.2% lower soil NH on the loamy sand; the same effect was not present on the sandy clay loam soil. On the loamy sand, 20 Mg biochar ha?1 increased corn yields by 14.2% compared to the control 3 y after application; the same effect was not present on the sandy clay loam soil. Biochar did not alter yield or nutrient availability in soil on soybean or switchgrass plots on either soil type. After 3 y, SOC concentration was 83 and 258% greater after 10 and 20 Mg ha?1 biochar applications, respectively, than the control in sandy clay loam soil under switchgrass production. The same effect was not present on the sandy clay loam soil. A 67% higher SOC concentration was noted with biochar application at 20 Mg ha?1 to sandy clay loam soil under corn.  相似文献   

8.
Abstract

After cultivating 24 crops of vegetables for three consecutive years in a greenhouse, the effects of different application rates of compost (Rate 1, 270 kg N ha?1 y?1; Rate 2, 540 kg N ha?1 y?1; Rate 3, 810 kg N ha?1 y?1; Rate 4, 1,080 kg N ha?1 y?1) were compared with the effects of chemical fertilizer (CF) and no application of fertilizer treatments (CK) for some selected soil chemical properties, microbial populations and soil enzyme activities (dehydrogenase, cellulase, β-glucosidase, protease, urease, arysulphatase, and acid and alkaline phosphatases). The results show that the pH, electrical conductivity, concentrations of total nitrogen (N) and the organic matter received from compost treatment were generally higher than those received through CF treatment. The soil microbial biomass, populations of bacteria, fungi and actinomycetes, as well as soil enzyme activities increased significantly in the compost-treated soils compared with the CF-treated soil. In most instances, no significant increase was observed in the enzymatic activities studied for compost applications higher than a Rate 2 treatment. However, all enzymatic activities examined showed significant linear correlations with the organic matter contents of the soils. The vegetable yield reached its highest level at the Rate 2 treatment and declined or leveled off in the higher treatments, implying that a high application rate of compost cannot further increase the crop yield after the soil fertility has been established. High organic matter content in the soil was found to alleviate the adverse effect of soluble salts on vegetable growth. In conclusion, an application rate of compost at Rate 2, 540 kg N ha?1 y?1, is adequate on the basis of vegetable yields and soil chemical, biochemical and enzymatic properties in greenhouse cultivation under subtropical climatic conditions.  相似文献   

9.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

10.
A field experiment was conducted at the Arkansas Valley Research Center in 2005 through 2007 to study the effects of manure and nitrogen fertilizer on corn yield, nutrient uptake, N and P soil tests, and soil salinity under furrow and drip irrigation. Manure or inorganic N was applied in 2005 and 2006 only. There were no significant differences in corn yield between drip and furrow irrigation even though, on average, 42% less water was applied with drip irrigation. Inorganic N or manure application generally increased grain yield, kernel weight, grain and stover N uptake, and grain P uptake. Nitrogen rates above 67 kg ha?1 did not increase grain yield significantly in 2005 or 2006, nor did manure rates in excess of 22 Mg ha?1. High manure rates increased soil salinity early in the season, depressing corn yields in 2005 and 2006, particularly with drip irrigation. Salts tended to accumulate in the lower half of the root zone under drip irrigation. Residual nitrate nitrogen from manure and inorganic N application sustained corn yields above 12.0 Mg ha?1 in 2007. More research is needed to develop best manure and drip irrigation management for corn production in the Arkansas Valley.  相似文献   

11.
Compost may improve the soil quality and contribute to C sequestration. The short-term effects of compost application on soil properties of soil cropped with maize are reported here. Soil plots to which mature compost was added (at 50 Mg ha?1 and 85 Mg ha?1) were analyzed for total organic carbon (TOC), nutrients, heavy metals and other soil properties. In addition, maize plants were weighed at the end of the trial and analyzed for carbon (C), nitrogen (N), phosphorus (P) and heavy metals. The results demonstrate that soil amended with compost has an increased TOC content. The increase was proportional to the amount of compost used. At the highest dose used, compost also increased soil N and P content and the pH. Moreover, after compost application, the total heavy metal contents in soils did not increase. There was no difference between the maize yield from compost treated plots and the control plots. However, maize grains were found to be C, N and P enriched due to the increased nutrient status of the amended soil. In conclusion, the addition of mature compost improves soil properties by increasing the soil TOC content and this depends on the characteristics and the amount of compost used.  相似文献   

12.
This paper deals with the problem of mineral N leaching from arable lands due to the fertilization method. The influence of different doses of compost (50 and 100?Mg ha?1) and N-mineral fertilizer (35-70-140 kg N ha?1) on leaching of Nmin in a lysimetric experiment with winter wheat. The area of our interest represents the main source of drinking water for the city of Brno and its neighborhoods. To demonstrate the effect of compost and mineral nitrogen addition, the lysimetric experiment was established there. Seven variants of the experiment with different fertilization schemes were studied during two vegetation seasons (2013 and 2014), each with three repetitions. The experiment was carried out in plastic experimental containers of 0.3 m diameter and 0.5 m height. Therefore, each lysimeter was the same size and was filled with 25 kg of subsoil and 25 kg of topsoil. The highest leaching of Nmin was detected in the variant C2 where 140 kg N ha?1 was applied, in both vegetation periods (5.97 kg Nmin ha?1 after the first vegetation period and 17.02 kg Nmin ha?1 after the second vegetation period). The positive effect of compost application (individually or in combination with the mineral N) on decrease in mineral N leaching was found during both vegetation period in comparison with variant C2. The highest doses of compost (100?Mg per ha) significantly decreased the concentration of mineral nitrogen in the soil eluate in both periods (3.03 kg Nmin ha?1 and 5.79 kg Nmin ha?1, respectively), by 197% and 293% in comparison with variant C2. There is evidence that the application of compost has a positive effect on the reduction of Nmin leaching.  相似文献   

13.
Yard trimmings from sources rich in grass clippings have the potential to supply nutrients for crop production. Our objectives were to estimate N availability from yard trimmings and determine their effects on crop production, soil nutrients, and organic matter levels. We conducted a field experiment, comparing three consecutive years of yard trimmings applications (22, 44, or 66 Mg ha?1 yr?1 dry weight) with inorganic N (112 kg N ha?1 yr?1) and zero-N controls in a silage corn (Zea mays L.) - winter triticale (Triticosecale spp.) rotation. The yard trimmings were screened and ground, and allowed to heat for a short period. They were incorporated each spring before planting corn. We measured crop yield and N uptake, and estimated apparent N recovery (ANR). We measured soil inorganic N two weeks after yard trimmings application and after corn harvest. In a one-year on-farm demonstration, we compared three sources of yard trimmings applied at a single rate. Yard trimmings applied at 44 Mg ha?1 dry weight provided sufficient available N to replace inorganic N. For silage corn grown with summer irrigation, estimated ANR in the crop was 7% in Year 1, 19% in Year 2, and 18% in Year 3 at the 44 Mg ha?1 yard trimmings rate, compared with a mean ANR of 65% for the inorganic N treatment. Postharvest soil nitrate residual (0-to 120-cm depth) was similar for the 44 Mg ha?1 treatment and inorganic N treatment. We observed variation in N availability with year and source of material. Yard trimmings also increased soil test K and organic matter.  相似文献   

14.
ABSTRACT

The use of manure-based organic soil amendments is common in countries with food animal production. A two-season field study was carried out in central Chile to evaluate the effect of different poultry litter (PL) and pig compost (PC) rates (7.5, 10.0, 12.5, and 15.0 Mg ha?1for each amendment) combined with different nitrogen (N) rates (0, 100, 200, and 300 kg ha?1) on dry matter (DM), grain production, and macronutrient concentration in corn (Zea mays L.) produced during the 2008–2009 (PL) and 2009–2010 (PC) seasons. The soil was clay loam. Organic amendments were applied before sowing, whereas inorganic N (urea) was applied at the 6-leaf stage (V6). When PL was combined with N, DM production ranged between 21.44 and 31.01 Mg ha?1 and grain yield was between 12.76 and 17.86 Mg ha?1. When PC was combined with N, DM production values were between 21.07 and 26.18 Mg ha?1 and grain yield was between 14.01 and 17.14 Mg ha?1. Results indicate that applying a combination of PL and N improved DM production, but applying a combination of PC and N did not affect this parameter. Grain production was only affected by increasing N rates. Applying both PL and N improved plant macronutrient concentration, while only applying PC increased N concentration. These results could be considered as the best recommended practices for using PL and PC.  相似文献   

15.
ABSTRACT

The potential for phosphorus (P) movement from poultry-litter amended soils into surface waters heightens the need to manage elevated P concentrations. Amending high P soils with aluminum (Al) rich drinking water treatment residue in a greenhouse study reduced water extractable P levels and induced P deficiency in container grown wheat. Objectives of the current investigation were to determine the effect of water treatment residue on grain yield, leaf and grain mineral nutrient concentrations in corn (Zea mays L.) grown under field conditions and to examine pH, water and Mehlich 3-extractable P, and 0.01 M calcium chloride extractable Al in the amended soils at two sites. Poultry litter was amended with 0, 5.6, and 11.2 Mg ha? 1 of water treatment residual and applied to two sites prior to planting with corn in 1998. Additional rates (16.8 and 33.6 Mg ha? 1) of water treatment residue were applied directly to half of each plot on site I in 1999. Results indicated that water treatment residue application did not adversely affect corn grain yields or alter concentrations of mineral nutrients in leaves and grain. Water and Mehlich 3-extractable P and calcium chloride extractable Al concentrations were unchanged with water treatment residue applications in both years on both sites. Further studies are needed concerning optimal annual dosages and long term loading rates for direct soil application of water treatment residue to reduce soluble phosphorus.  相似文献   

16.
Compost amendment to agricultural soils has been reported to reduce disease incidence, conserve soil moisture, control weeds, or improve soil fertility. Application rate and placement of compost largely depends on the proposed beneficial effects and the rate may vary from 25 to 250 Mg ha?1 (N content up to 4 percent). Application of high rates of compost with high N or P levels may result in excessive leaching of nitrate, ammonium, and phosphate into the groundwater. Leaching could be a serious concern on the east coast of Florida with its inherent high annual rainfall, sandy soils and shallow water table. In this study, five composts (sugarcane filtercake, biosolids, and mixtures of municipal solid wastes and biosolids) were applied on the surface of an Oldsmar sand soil (in 7.5 cm diameter leaching columns) at 100 Mg ha?1 rate and leached with deionized water (300 ml day?1, for five days; equivalent to 34 cm rainfall). The concentrations of NO3-N, NH4-N, and PO4-P in leachate reached as high as 246, 29, and 7 mg L?1, respectively. The amount of N and P leached accounted for 3.3-15.8 percent of total N and 0.2-2.8 percent of total P in the compost. The leaching peaks of NO3-N occurred following the application of only 300-400 ml water (equivalent to 6.8-9.1 cm rainfall).  相似文献   

17.
Abstract

Effective soil diagnostic criteria for exchangeable potassium (Ex-K) combined with inorganic potassium (K) application rates were developed to lower K input in forage corn (Zea mays L.) production using experimental fields with different application rates and histories of cattle manure compost. Two corn varieties, ‘Cecilia’ as a low K uptake variety and ‘Yumechikara’ as a high K uptake variety, were selected from among 20 varieties and tested to make diagnostic criteria for K fertilization applicable to varieties with different K uptakes. The K uptakes increased from 96 to 303 kg K ha?1 for ‘Cecilia’ and from 123 to 411 kg K ha?1 for ‘Yumechikara’ with increasing Ex-K content on a dry soil basis from 0.11 to 0.92 g kg?1 with no inorganic K fertilizer application. The K uptake by corn for achieving the target dry matter yield of 18 Mg ha?1 was estimated to be approximately 200 kg K ha?1 in common between the two varieties. Yields of both varieties achieved the target yield at an Ex-K content of approximately 0.30 g kg?1 with no K fertilization, although ‘Yumechikara’ reached the target yield at a lower Ex-K content. At the low Ex-K content of 0.1 g kg?1, inorganic K fertilizer application at 83 kg K ha?1 was needed to gain the target yield, and apparent K recovery rate for K fertilizer was calculated to be 70% for both varieties. The K uptakes for gaining the target yield by the K fertilization were lower than that by soil K supply. Based on these results, diagnostic criteria of Ex-K and inorganic K application rates were set up as follows: at an Ex-K content of < 0.15 g kg?1, inorganic K fertilizer is applied at 83 kg K ha?1 (100 kg ha?1 as potassium oxide (K2O) equivalent); at an Ex-K content of 0.15–0.30 g kg?1, the application rate is reduced to 33 kg K ha?1 (40 kg K2O ha?1); at an Ex-K content of ≥ 0.30 g kg?1, inorganic K fertilizer is not applied because of sufficient K in the soil. Additionally, we propose that cattle manure compost be used to supplement soil K fertility.  相似文献   

18.
A study was conducted to evaluate the effect of two biosolids based soil products on soil physical properties in urban community gardens in Tacoma, Washington. The Tagro soil product is made from Class A biosolids cake mixed with sand and sawdust. The GroCo biosolids compost is produced from biosolids cake and sawdust. Both products meet regulatory requirements for unrestricted use and are locally available to gardeners. Plots were established in 3 community gardens and maintained for 2 growing seasons. Amendments were applied at 200 Mg ha?1 dry weight in the first year of the study. Plots were split for the 2nd year with half of the amendment plots receiving an additional 200 Mg ha?1 of amendments. Although lower in most metals than the soils they were added to, biosolids did not have a significant effect on total soil metal concentrations. Biosolids addition increased the water infiltration rate from 10.1 ± 0.95 ml min?1 in control soils to between 51 ± 6.1 and 212 ± 34 ml min?1, depending on the product used. Bulk density was decreased from 1.07 ± 0.01 g cm?3 to between 0.51 ± 0.08 and 0.77 ± 0.03 g cm?3. Total carbon, nitrogen and available phosphorus were increased in the biosolids amended plots in comparison to the control plots. Biosolids addition resulted in decreased pH (5.35-5.75) in comparison to the control soils (6.43). The results from this study indicate that biosolids-based soil amendments can be a suitable amendment for urban community gardens.  相似文献   

19.
Organic materials supply nutrients to plants but may also have other, nonnutrient-related benefits which are more difficult to quantify. This study partitioned the winter wheat (Triticum aestivum L.) yield response from compost applications into nutrient and nonnutrient fractions. Composted dairy manure and wheat straw bedding was applied at five rates (0, 10, 25, 50, and 75 Mg dry weight ha?1) to dry-land wheat in an organic wheat-fallow farming system. The compost was fall-applied and incorporated prior to planting at adjacent sites in sequential years. Maximum grain yield increases from compost application ranged from 2,139 kg ha?1 in a year with 186% of average annual precipitation to 1,324 kg ha?1 in a year with 87% of average annual precipitation. The Mitscherlich equation was used to describe the yield response to compost rate. The nutrient and nonnutrient contributions of compost to grain yield were partitioned by solving the Mitscherlich equation for compost rates where applied nutrients were in surplus (≥25 Mg ha?1), calculating a non-nutrient Mitscherlich response function, and subtracting the nonnutrient response function from the full response to determine the nutrient contribution across compost rates. At the 10 Mg ha?1 compost rate, the nonnutrient to nutrient yield response ratio varied from 0.25:1 for the year with above average precipitation to 2.2:1 for the year with below average precipitation. Compost significantly increases dry-land wheat yields. These results suggest that nonnutrient benefits of compost applications may be significant and exceed nutrient benefits under dryland production in low rainfall years.  相似文献   

20.
A 3-year field experiment on a calcareous Fluventic Xerochrept planted with corn (Zea mays L.) was carried out to evaluate the effects of amending the soil with high and low rates of composted municipal waste on soil enzyme activities (alkaline phosphomonoesterase, phosphodiesterase, arylsulphatase, dehydrogenase, and l-asparaginase). These enzyme activities all increased when compost was added at rates of up to 90 t ha-1, and the phosphatases continued to show a linear increase with compost rates of up to 270 t ha-1. The addition of mineral fertilizer increased enzyme activities in unamended soil, and masked the stimulating effect of compost on the amended soils. Heavy metals did not affect soil enzyme activities up to a compost addition of at least three times the amount specified by Italian law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号