首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Clearing and cultivation in crusting soils from Mazowe (Zimbabwe) has lead to severe changes in most physico‐chemical characteristics related to the concentration and distribution patterns of plant nutrients and to the total amount of soil organic matter. Nevertheless, the concentration of the different humus fractions showed lower intensity changes, as did the mineralization rates of the organic matter. The most significant effects of cultivation on the soil chemical characteristics coincided with those considered to favor clay dispersion and crusting phenomena, including generalized desaturation of the exchange complex and losses of divalent ions with a potential bridging effect between soil particles. Concerning the soil organic matter, the humic acid tended to concentrate in the cultivated soils as a probable consequence of selective biodegradation of the other humic fractions. The composition and activity of soil humus suggest low‐performance organo‐mineral interactions: in these soils the active turnover of the plant wastes is not regulated by intense physico‐chemical interactions with the soil mineral fractions, or by physical encapsulation of organic particles. In consequence, the mineralization rates were relatively constant in the soils studied and unrelated to soil organic matter concentration. The results suggests that there is a possibility to revert the early degradation stages of these soils through a rational management of suitable amounts of crop wastes.  相似文献   

2.
Except for dehydroxylated silica, all the inorganic minerals of soils are hydrophilic because their surfaces usually hold ions and polar groups (hydroxyls). The molecules of humic acid, i. e. the most important part in soil humus, are amphiphilic and superficially active. Water repellancy in soils is mainly caused by amphiphilic humic acid. Criteria are supplied to characterize the hydrophilic-hydrophobic balance of soils. The changes in the hydrophilicity-hydrophobicity of soil by the addition of organic components modify many of their hydric properties, such as wetting, evaporation, infiltration, etc. which are frequently incompatible. Due to the many different types of soil and organic correctors, no general recommendations can be made.  相似文献   

3.
Dynamics of organic matter during the degradation of Chernozems In the course of pedogenesis especially the amount and the composition of soil organic matter changes. This is investigated in the presented paper at 6 different developmentstages of a Chernozem-degradation-sequence from Hildesheim region. The mechanisms of this process can be deduced from the ‘degradation products’, found in the different soils. Using several methods for extraction of organic substances by successively stronger reagents or conditions, different amounts of fulvic and humic acids were got. The findings give indications to the different stability of bondings between mineral and organic substances in the soils and their change during degradation. The ascending exhaustive fractionating method was found to be the best for obtaining and-simultaneously - separating completely the organic matter in distinct franctions and also to earn a humus-clay and a silica humic acid component. Using this method, 5 fractions of the humus complex at any of profile-horizons were got in greater amounts and quantitative as far as qualitative determined. It was found that the loss of organic matter is differently distributed to the single humus fractions in the profiles and in the horizon-zones. Therefore it is not sufficient to determine only the total C- and N-content. Comparing the increase or decrease of humic substances in the upper resp. lower zones of the profiles of the sequence, the degradation process can be pursued retrospectively.  相似文献   

4.
亚热带土壤不同矿物组分中铬的吸附   总被引:1,自引:0,他引:1  
Safe application of chromium (Cr)-containing organic industrial wastes to soil requires considering the ability of the soil to adsorb Cr.In this study,the maximum Cr adsorption capacity was assessed for the bulk samples and their clay and iron-free clay fractions of four subtropical soils differing in mineralogy.To this end,the samples were supplied with Cr(Ⅲ) nitrate solutions at pH 4.5 or 5.5.The results of Cr(Ⅲ) adsorption fitted to a Freundlich equation and the adsorption capacity was positively correlated with soil organic matter and iron oxide contents.The clay fractions adsorbed more Cr per unit mass than the bulk soils and the iron-free clay fractions.The Cr(Ⅲ) adsorption capacity increased with increasing soil pH due to more charges on adsorbing surfaces.Our results suggest that the soils rich in organic matter and iron oxides and having a pH above 4.5 are suitable for application of Cr(Ⅲ)-loaded industrial wastes.  相似文献   

5.
Abstract

Determinations were made of total soil organic matter (SOM), stable and labile organic fractions, biomass carbon (C), and chemical composition of several humus‐soil‐fractions in Chilean volcanic soils, Andosols and Ultisols. Their physico‐chemical properties and humification degree at different stages in edaphic evolution were also assessed. In addition, organic matter models were obtained by chemical and biological syntheses and the structures and properties of natural and synthetic humic materials were compared with SOM. Results indicate that Andosols have higher SOM levels than Ultisols, but the fraction distribution in the latter suggests a shift of the more stable fractions to the more labile ones. Moreover, contents of humines, and humic and fulvic acids suggest that Chilean volcanic soil SOM is highly humified. On the other hand, among the SOM labile fractions, carbohydrate and biomass are about 15% of the SOM which are one of the most important fractions in soil fertility.  相似文献   

6.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   

7.
Abstract

Knowledge of the distribution of soil organic matter (SOM) fractions is important in managing soils toward a sustainable agricultural system in a tropical environment. However, data on Histosols is limited. This study developed 19 profiles of Histosols and soils with high organic-matter content from different regions of Brazil. Soil organic matter was fractionated into fulvic acids (FAF), humic acids (HAF), and humin (HUM). The ratios HAF/FAF and AE (alkaline extract)/HUM were calculated. The objectives were to evaluate the method for SOM fractionating in Histosols and related soils and to correlate the distribution of organic fractions with other soil attributes. The humic fractions presented significant correlations with other soil attributes, the best being the correlation between FAF and nutrient level. The HAF and HUM presented high correlation with cationic exchange capacity, active acidity (H+) and pH. Humin and the alkaline extract absorbance measured at 380 nm and 465 nm and presented good correlation with total organic carbon.  相似文献   

8.
Specific features of the transformation of humic substances in particle-size fractions of drained soddy-podzolic soils were studied on a field (12 ha) of the Experimental and Educational Center of Lomonosov Moscow State University in Moscow oblast. The field had a clearly pronounced microtopography. Surface-gleyed soddy-podzolic soils (Albic Stagnic Glossic Retisols (Loamic, Aric, Ochric)) of microdepressions with excessive surface moistening and nongleyed soddy-podzolic soils (Albic Glossic Retisols (Loamic, Aric, Ochric)) of elevated positions were examined. These soils were studied before the field drainage and during 25 years after drainage works in the periods differing in conditions of humification and with due account for not only drainage works but also other factors, such as topography and agrotechnology and their joint action. The specificity of transformation of humic substances in the soils and their particle-size fractions was analyzed in the basis of data on the organic carbon content, group and fractional composition of humus, the intensity of individual stages of humification (the neoformation of humic acids and the formation of humates), and the optical density of the fractions of humic acids. The results of the study of these properties in the fine soil fractions (<50 μm) made it possible to assess the response of the clay (<1 μm) and silt (1–5, 5–10, 10–50 μm) fractions to changes in the ecological situation and the role of separate particle-size fractions in the degradation of humus under adverse impacts. Overall, a clear tendency toward worsening of the humus quality was observed in both soils during the 25-year-long period, which is related to the long-term (20 years) agricultural use of the reclaimed field without application of agrochemicals. The features of humus degradation were mainly manifested in the finest (<10 μm) fractions with a general decrease in the humus content, slowing down of the formation of humic acids and humates, and considerable loss of humic acids, including their agronomically valuable fractions HA1 and HA2. The degradation of humus quality in the clay fraction was largely due to the impact of the reclamation (drainage) factor; the degradation of humus quality in the fine and medium silt fractions was mainly due to the negative changes in the agricultural background. Among negative consequences of the worsening humus quality, the lowering of soil fertility, ecological sustainability, and productivity of agrocenoses should be noted.  相似文献   

9.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

10.
In highly weathered tropical conditions, soil organic matter is important for soil quality and productivity. We evaluated the effects of deforestation and subsequent arable cropping on the qualitative and quantitative transformation of the humic pool of the soil at three locations in Nigeria. Cultivation reduced the humic pool in the order: acetone‐soluble hydrophobic fraction (HE) > humic acid (HA) > humin (HU) > fulvic acid (FA), but not to the same degree at all three sites. The C and N contents, as well as the C/N ratios of humic extracts, were large and not substantially influenced by land use. The δ13C values of the humic extracts were invariably more negative in forested soils thereby showing a dilution of δ13C signature with cultivation from C3 to C4 plants. The δ13C values of apolar HE fractions were generally more negative, indicating a reduced sensitivity compared with other humic fractions to turnover of crop residues. The contents of hydrophobic constituents (alkyl and aromatic C), as revealed by cross‐polarization magic angle spinning (CPMAS) 13C‐NMR spectroscopy, in HA, FA and HU were generally < 50%, with the exception of larger hydrophobicity in HU in the forested soil at Nsukka and HA in that at Umudike. The HE fraction contained significantly more apolar constituents, and consequently had a larger intrinsic hydrophobicity than the other humic fractions. The larger reduction of apolar humic constituents than of the less hydrophobic humic fractions, when these soils were deforested for cultivation, indicates that at those sites the stability of accumulated organic matter is to be ascribed mainly to the selective preservation of hydrophobic compounds.  相似文献   

11.
南岭山地土壤有机碳及组分海拔梯度变化特征   总被引:1,自引:0,他引:1  
  目的  为了解我国亚热带山地土壤有机碳及组分海拔梯度变化规律及影响因素。  方法  以南岭国家级自然保护区不同海拔(400? ~ 1650?m)山地土壤为研究对象,调查了土壤有机碳及组分在不同土层深度的分布及密度特征,分析了土壤理化因子的影响。  结果  (1)总有机碳、易氧化碳、颗粒有机碳、惰性有机碳含量在相对较高海拔土壤中的含量整体更高,并在针阔混交林土壤中出现最大值,而水溶性有机碳含量则在低海拔的沟谷常绿阔叶林土壤中最高。(2)有机碳及组分含量随土层深度的增加呈明显下降趋势,随海拔变化幅度最大的组分为水溶性有机碳,随深度变化幅度最大的为颗粒有机碳,不同组分占总有机碳的比例在不同海拔和深度上的变化规律有所差异。(3)南岭山地土壤有机碳密度范围为8.81 ~ 26.59?kg m?2,整体略高于与其位置相近的山地土壤,有机碳及组分密度随海拔变化趋势与各自在土壤中的含量分布规律较为类似。(4)pH、黏粒含量、全氮与有机碳及组分含量的相关性较好,RDA分析结果表明全氮、全磷与土壤含水率对有机碳及组分变化的解释量占比较高。  结论  南岭山地土壤有机碳及组分具有明显的海拔梯度变化特征,土壤理化性质是影响有机碳及组分分布的重要因素。  相似文献   

12.
Equilibrium and kinetic studies have been made on the adsorption of acrylonitrile(CH2=CHCN) on three soils and four minerals from aqueous solutions.It was shown that the organic matter was the major factor affecting the adsorption process in the soils.The conformity of the equilibrium data to linear type(one soil) and Langmuir type(two soils) isotherms indicated that different mechanisms were involved in the adsorption.This behavior appears bo be related to the hydrophobicity of soil organic matter due to their composition and E4/E6 ratio of humic acids.The adsorption kinetics were also different among the soils,indicating the difference in porosity of organic matter among the soils,and the kinetics strongly affected the adsorption capacity of soils for acrylonitrile.Acrylonitrile was slightly adsorbed from aqueous solutions on pyrophyllite with electrically neutral and hydrophobic nature,and practically not on montmorillonite and kaolinite saturated with Ca.However,much higher adsorption occurred on the zeolitized coal ash,probably caused by high organic carbon content(107g/kg).  相似文献   

13.
Soil phosphorus (P) availability is commonly assumed to limit productivity in tropical soils, yet there is relatively little information on the chemical forms of soil P in such ecosystems. The study was conducted to determine the size P pools via application of gypsum. We used a sequential fractionation to assess P fractions. The average total P concentration was 519 mg kg?1. Soil organic P was relatively low (74 mg kg?1). The ratio of organic carbon to organic P was generally greater than 298, suggesting the potential for immobilization. Calcium-associated P was the dominant inorganic P pool, whereas Al+Fe-P was the second dominant. Readily available P was very low (1.3 mg kg?1). Gypsum at different level was used as a reclamation material for sodic soils, and application of gypsum significantly affected the different P fractions. Organic P forms were significantly lower for higher levels of gypsum application.  相似文献   

14.
Globally, copper (Cu) accumulation in soils is a major environmental concern. Agricultural organic waste and some bacterial species can readily absorb metals in an eco-friendly manner, and thus are commonly used in metal-contaminated soil remediation. This study investigates the change in Cu fractions during the aging process and the time effects of rice straw (RS) and engineered bacteria (EB) (Pseudomonas putida X4/pIME) on reduction of Cu mobility. Three typical Chinese soils (red, cinnamon, and black soils) were incubated with RS or RS + EB in the presence of exogenous Cu for 24 months. The soil physicochemical properties, reactive soil components, Cu fractions, and Cu mobility were determined over time. The Cu mobility factor (MF) values were the lowest in the black soil (6.4-9.2) because of its high organic carbon and clay contents. The additions of both RS and RS + EB accelerated Cu stabilization during the aging process in all three soils. The Cu MF values decreased with time during the initial 20 months; however, the MF values increased thereafter in all soils, which might be due to the reduction of humic substances and amorphous iron oxides and the increase in iron oxides complexed on the organic matter. The reduction rates of Cu MF were similar after 16, 24, and more than 24 months in the red, cinnamon, and black soils, respectively, indicating that RS and RS + EB could limit Cu mobility at different times in various soils. The RS treatment showed the greatest efficiency in reducing Cu mobility in the red, cinnamon, and black soils after 12, 12, and 8 months of incubation, respectively. The RS + EB treatment was more efficient than the RS treatment in the red soil during the initial 8 months of the incubation period. Our study provides theoretical support for Cu risk assessments and RS supplementation for Cu remediation in different soils.  相似文献   

15.
The influence of different agricultural treatments on the contents of Cd, Zn, and Co in the organic matter and humic acids of soddy-podzolic and dark gray forest soils was studied in long-term field experiments. The use of gel chromatography proved the complicated molecular-weight composition of the humic acids in all the studied soils. The contents of heavy metals and their distribution by the molecular-weight fractions of humic acids were determined in the experimental soils and in the virgin podzolic soils. The complex nature of organomineral compounds of Cd and Zn with humic acids was shown by means of gel filtration. The thermodynamic stability of the organomineral complexes increased with the increasing weight of the initial molecular-weight fractions of humic acids.  相似文献   

16.
采用物理分组方法对长期不同施肥处理的旱地红壤有机碳组分进行了区分,布置室内培育试验观测了培养过程中土壤有机碳的矿化动态,通过拟合一级动力学方程计算土壤生物活性有机碳库量.研究结果表明,不同施肥处理的土壤中,轻组有机碳(LF-C)、团聚体包裹的粗颗粒有机碳(iPOMc-C)及细颗粒有机碳(iPOMf-C)、矿物结合态有机碳(mSOC)分别占总有机碳的7%~10%、0.5%~1.5%、4%~7%、76%~85%,并与总有机碳(TOC)含量显著相关;厩肥处理显著增加了各组分含量,其作用优于绿肥处理和单施无机肥处理(CK);培养过程中土壤有机碳矿化动态符合一级反应动力学方程;有机无机肥配施处理的土壤生物活性有机碳库(C0)显著提高;和绿肥相比,厩肥处理中生物活性有效碳库(C0)增加幅度更大,但其周转速率常数k更小;各组分有机碳含量与C0含量均达到极显著(p<0.01)相关,但除LF-C外其余有机碳组分占TOC的百分率均与C0达到极显著水平.  相似文献   

17.
The qualitative and quantitative distribution of N-compounds in 10 tropical soils, and in a number of humic materials extracted from representative samples thereof, was determined after 6 N HCl hydrolysis.Eighty to 98% of the total N in the soils and humic materials was hydrolysable by 6n HCl. Slightly less than one half the hydrolysable N in the soils and humic fractions consisted of amino acids. Well-drained soils and fulvic acids extracted from them contained unusually high concentrations of the acidic amino acids, aspartic and glutamic acids. Between 80 and 95% of the amino acids in the soils was accounted for in the humic materials + NaOH-insoluble organic residues. NH+4-N released by acid hydrolysis was generally higher for the soil samples than for the humic materials. Amino sugar-N constituted relatively small proportions of the total N in the soils and humic fractions.Our data suggest that large quantities of amorphous allophanic materials coupled with relatively high enzymic activity are responsible for the observed accumulation of acidic amino acids in the well-drained tropical volcanic soils.  相似文献   

18.

Purpose

Soil organic carbon (SOC) and its labile fractions are strong determinants of physical, chemical and biological properties. The objective of the present work was to evaluate the effects of organic amendments (technosol made of wastes and biochar) and Brassica juncea L. on the soil C fractions in a reclaimed mine soil.

Materials and methods

The studied soil was from a former copper mine that was subsequently partially reclaimed with vegetation and wastes. A greenhouse experiment was carried out to amend the mine soil with different proportions of technosol and biochar mixture and planting B. juncea. B. juncea plants can tolerate high levels of metals and can produce a large amount of biomass in relatively short periods of time.

Results and discussion

The results showed that with the addition of biochar and wastes, soil pH increased from 2.7 to 6.18, SOC from undetectable to 105 g kg?1 and soil total nitrogen (TN) from undetectable to 11.4 g kg?1. Amending with wastes and biochar also increased dissolved organic carbon (DOC) from undetectable to 5.82 g kg?1, carbon in the free organic matter (FOM) from undetectable to 30.42 g kg?1, FAP (carbon in fulvic acids removed with phosphoric acid) from undetectable to 24.14 g kg?1 and also increased the humification ratio, the humification index, the polymerisation rate and the organic carbon in the humified fractions (humic acids, fulvic acids and humin). Soils amended and vegetated with B. juncea showed lower FOM values and higher humification index values than the soils amended only with biochar and wastes.

Conclusions

This study concludes that the combined addition of wastes and biochar has a greater potential for both increasing and improving organic carbon fractions in mine soils. The authors recommend the application of biochar and technosol made of wastes as a soil amendment combined with B. juncea on soils that are deficient in organic matter, since they increased all of the SOC fractions in the studied copper mine soil.
  相似文献   

19.
We studied the acid‐base properties of 16 fulvic acids and 16 humic acids isolated from the surface (3–15 cm) and subsurface (> 45 cm) horizons of two types of acid forest soils, derived respectively from amphibolite and granite rocks, under five different types of vegetation. The observed differences between the contents of humic substances in the two types of soils were related to the degree of Al‐saturation of the soil organic matter, as indicated by the molar ratio between pyrophosphate extractable Al and C. Humic fractions were characterized in terms of elemental composition, and CPMAS 13C NMR spectrometry. The contents of carboxylic and phenolic groups were estimated by potentiometric titrations conducted in 0.1 m KNO3 in a nitrogen atmosphere. The fulvic acids contained more carboxylic groups but less phenolic groups than the humic acids: the ratio of phenolic to carboxylic groups in the humic acids was 0.48 ± 0.10 and in the fulvic acids 0.23 ± 0.05. The mean values of the protonation constants of each of the humic substance fractions can be used as generic parameters for describing the proton binding properties. The fulvic acids isolated from the subsurface horizon of the soil contained between 2.6 and 23% more carboxylic groups, and the humic acids between 8 and 43% more carboxylic groups than those isolated from the surface horizon of the same soil.  相似文献   

20.
Sluszny  C.  Graber  E. R.  Gerstl  Z. 《Water, air, and soil pollution》1999,115(1-4):395-410
Fresh amendment of soil with sewage sludge and composted sewage sludge resulted in increased sorption of three s-triazine herbicides: atrazine, ametryn and terbuthylazine. The extent of increased sorption (as evaluated by sorption coefficients Kd or Kf) was a function of soil type, such that sorption in amended organic carbon-poor soil (0.4% OC) was more enhanced than in amended organic carbon-rich soil (1.55% OC). Despite significant differences between the organic amendments in terms of humic and fulvic acid content, humin content, soluble organic matter content, total organic matter content, and H/C and O/C atomic ratios, organic matter composition had no discernible effect on either sorption distribution coefficients or on isotherm linearity in amended soils. Soils amended with composted sludge had the same sorption potential as did soils amended with the analogous uncomposted sludge. After incubating soil-sludge mixtures for a year at room temperature, organic matter content decreased to original pre-amendment levels. Sorption coefficients for the three compounds similarly decreased to initial pre-amendment values. Organic carbon normalized sorption coefficients (Koc) were essentially identical in the soils, amended soils, and incubated amended soils, indicating that sludge and compost derived organic matter does not have a significantly different sorption capacity as compared with the original soils, despite compositional differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号