首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The characteristics of 12 composts containing, by volume, spent mushroom substrate (SMS, 50 percent), waste waxed corrugated cardboard (WCC, 0 percent, 25 percent or 50 percent), and/or pulverized wood wastes (WW, 50 percent, 25 percent or 0 percent) were measured during two separate windrow composting periods (12-16 weeks). Supplemental N was added to some of the composts in the form of poultry manure, and/or soybean processing wastes. During the first eight to 10 weeks, composts containing 50 percent WCC tended to reach and maintain the highest temperatures, but subsequently cooled most rapidly. Microbial activity (CO2 evolution) also was initially highest in these composts but fell by the twelfth week to levels comparable to composts containing lower levels of WCC. The paraffin wax in WCC containing composts was almost completely degraded (>95 percent). After 12 weeks of composting N (1.2-1.6 percent DW), P (0.30-0.55 percent), and K (0.9-1.2 percent) concentrations were within typical ranges and N and P were highest in composts containing 50 percent WCC. KC1 extractable NH4-N (494 mg-N kg?1) and NO3+NO2-N (281 mg-N kg?1) were highest and lowest, respectively, in composts containing 50 percent WCC. Electrical conductivity (4.5-8.5mS/cm) and pH (7.5-8.5) were high in all composts and highest in composts with 50 percent WCC. Concentrations of phenolic compounds were highest in composts containing 50 percent WCC, manure, and soybean wastes and were positively correlated with NH4-N. C:N ratios of all composts were within an acceptable range (18-23:1).  相似文献   

2.
Municipal solid waste (MSW) compost from aerobic or anaerobic bioprocesses was evaluated as components of substrates for potted plant production. Experiments were conducted with potted media consisting of MSW compost mixed with other conventional substrates (peat or composted pine bark). Spring barley (Hordeum vulgare L.) and cress (Lepidium sativum L.) were used to evaluate the biological quality of composts. Higher germination rates of spring barley were obtained when MSW compost from aerobic treatment was employed as compared with MSW compost from the anaerobic bioprocess. Improved biological indices were observed when MSW composts were mixed with composted pine bark rather than with peat. Mixtures of 75% aerobic MSW compost and 25% composted pine bark were more favorable for cress growth than peat as sole substrate.  相似文献   

3.
Growth and nutrient uptake of three container grown nursery crops were compared using different potting media, including bark mixed with varying amounts, 0, 33, 67, and 100% by volume, of raw paper mill sludge and Phase I (fresh) and Phase II (aged) sludge composts. Species grown were: Tartarian dogwood (Cornus alba L.), Coral Beauty cotoneaster (Cotoneaster dammeri C. K. Schneid.), and Variegata Nana weigela [Weigela florida (Bunge) A.DC.]. Each compost consisted of ca. 40% paper mill sludge. Despite differences in response of species to the amount and source of sludge, plants grew well in media containing Phase I and II composts and produced plants of marketable size at harvest. Media with >33% raw sludge resulted in fewer marketable plants and had a greater volume reduction with increasing amounts of sludge. This was also accompanied by declining shoot and root dry weight. Media containing Phase I compost showed less volume reduction than those with raw sludge, and yielded growth comparable to that obtained with Phase II compost. Media containing Phase II compost showed only marginal volume reduction. Changes in leaf N, P, K, Ca, Mg, Fe, Mn, and Zn were small, or nonsignificant. All nutrients except N were related to growth or amount of raw sludge or compost, although all species did not show the same response with each nutrient. The results showed that up to 33% of raw paper mill sludge or any amount of sludge compost was an effective substitute for bark. Since growth was not affected substantially by the age of the compost, the additional time and cost of producing Phase II compost may be unwarranted.  相似文献   

4.
The rising cost of peat and pine bark has boosted the demand for alternative organic materials for container growing media. Here, composts of invasive acacia (Acacia longifolia and Acacia melanoxylon) residues were evaluated as alternative organic materials for horticultural substrates. Compost bulk density was less than 0.4 g cm?3 and total pore space was more than 85 percent of the total volume, as established for an ideal substrate. The matured acacia compost air capacity, easily available water, buffering capacity, and total water-holding capacity were also within acceptable recommended values. With increased composting time the physical characteristics of the composts were improved, but the same was not true for chemical characteristics such as pH and electrical conductivity. The replacement of pine bark compost by acacia compost in a commercial substrate did not negatively affect either lettuce emergence or lettuce growth, suggesting that acacia compost can be successfully used as an alternative component for horticultural substrates.  相似文献   

5.
There are substantial environmental and economic benefits to be gained by recycling spent mushroom substrate (SMS). Researchers throughout the world have grown many types of crops with SMS but information with ornamental nursery crops is sparse. High salt levels in SMS is largely responsible for its restricted use in agriculture. Investigations showed that many ornamental woody species grew well in 6-liter (2-gal) regular nursery containers amended with different proportions of SMS (33%, 67%, and 100% by volume) mixed with bark. Test species were: cotoneaster (Cotoneaster dammeri ‘Coral Beauty’); deutzia (Deutzia gracilis); dogwood (Cornus alba and C. alba ‘Argenteo-marginata’); forsythia (Forsythia × intermedia ‘Lynwood’); juniper (Juniperus sabina ‘Blue Danube’ and J. virginiana ‘Hetzii’); ninebark (Physocarpus opulifolius); potentilla (Potentilla fructicosa ‘Red Ace’); privet (Ligustrum vulgare); rose (Rosa ‘John Franklin’); and weigela (Weigela ‘Bristol Ruby’ and W. florida ‘Variegata Nana’). Despite variable species response, there was little relationship of growth performance to: source of SMS (different farms, fresh or aged, leached or unleached); initial or subsequent salt levels in the media; chemical or physical characteristics of the media, including increasing shrinkage with increasing amounts of SMS; or contents of leaf nutrients. Plants of all species, except privet, achieved marketable size and quality at harvest. Time-course studies demonstrated that rapid leaching of undesirable high salt levels from the containers was the key to our successful results. In further studies which evaluated a wider range of amendment combinations (peat, bark, and sand) with SMS included in amounts (25% or 50%) more desirable in commercial container nursery practice, all SMS amended media promoted excellent growth of nursery crops. Minimal shrinkage was obtained with a medium consisting of 25% sand, 25% SMS, and 50% peat or bark.  相似文献   

6.
This study investigated the cocomposting of pine bark with goat manure or sewage sludge, with or without inoculated effective microorganisms (EM). Composting was done for 90 days and parameters monitored over this period included temperature, pH, electrical conductivity (EC), C/N ratio, inorganic N, as well as tannin content. Changes in temperature, pH and EC during composting were consistent with those generally observed with other composting systems. The parameters were influenced by the feedstock materials used but were not affected by inoculation with effective microorganisms. The highest temperature measured from pine bark-goat manure composts was 60°C but much lower maximum temperatures of 40°C and 30°C were observed for pine bark sewage sludge and pine bark alone composts, respectively. The C/N ratios of the composts decreased with composting time. Ammonium levels decreased while nitrate levels increased with composting time. Tannin levels generally decreased with composting time but the extent of decrease depended on the contents of the composting mixtures. The trends observed showed that temperature, pH, EC, C/N ratio, tannin levels, and inorganic NH4-N and NO3-N were reliable parameters for monitoring the co-composting of pine bark with goat manure or sewage sludge. The pine bark-goat manure compost had more desirable nutritional properties than the pine bark and pine bark-sewage sludge composts. It had high CEC, near neutral pH, low C/N ratio, and high amounts of inorganic N and bases (K, Ca, and Mg) while pine bark compost had the least amounts of nutrients, was acidic, and had high C/N ratio and low CEC. The final tannin content of the pine bark-goat manure compost was below the 20 g/kg upper threshold level for horticultural potting media, implying that its use as a growing medium would not cause toxicity to plants.  相似文献   

7.
The use of compost with high salt concentration was evaluated, under commercial conditions, as a potential growing media constituent for vegetable transplant production. Two composts were prepared from sweet sorghum bagasse, pine bark, and either urea (compost A) or brewery sludge (compost B) as N source. Three vegetable species — broccoli (Brassica oleracea), tomato (Lycopersicum esculentum), and onion (Allium cepa) with different tolerance to salinity were used. Eleven substrates were formulated and tested: a control consisting of a moss peat-based commercial substrate; compost A; compost B; and, eight mixtures containing 33 or 67% by volume of each compost with either raw peat moss or commercial substrate as diluent. All the substrates prepared had suitable physical, physicochemical and chemical properties for use as growing media, except for the electrical conductivity (ranging from 3.20 to 13.21 dS m?1) which was above the reference levels for soilless cultivation. Broccoli was the least affected by substrate salinity whilst tomato was the most. Onion transplants had an intermediate response to saline conditions. Tomato seed germination was markedly reduced when compost A, with a higher salt concentration, was used at a rate higher than 67%. Media prepared with either of the composts, and mixed with either a commercial substrate or peat in a rate up to 67%, did not cause any detrimental effect on the growth and nutritional status of broccoli, tomato and onion transplants, despite the high initial salinity of the substrates. These composts appear to be acceptable substitutes for Sphagnum peat in seed sowing mixtures.  相似文献   

8.
The suitability as growing media of composts made from pine bark or pine bark cocomposted with goat manure or sewage sludge and either inoculated or not inoculated with effective microorganisms, was evaluated under greenhouse conditions with and without fertilization using cabbage as the test crop. The treatments were replicated three times and arranged in a randomized complete block design in a fibre glass covered greenhouse. Cabbage seedlings were grown in cavity trays for five weeks, after which plants were harvested and fresh and dry weights determined. Samples were also analyzed for N, P, K and selected heavy metal concentrations. Results revealed that pine bark-goat manure cocomposts supported good seedling growth and could thus be good substitutes for pine bark alone as a growing medium where goat manure or similar manures are available. The results also showed that despite the superior nutritional value of these alternative growing media, nutrient supplementation may still be necessary where seedlings are kept in the nursery for extended periods due to nutrient exhaustion through plant uptake and leaching. Pine bark-sewage sludge compost also had positive effects on seedling growth but could only be recommended as a growing medium for nonfood plants because its composting did not reach the thermophillic temperatures necessary for adequate pathogen kill. Inoculation with effective microorganisms improved seedling growth in sewage sludge and goat manure based composts but the mechanisms involved remain to be established.  相似文献   

9.
Three representative Florida composts were mixed by volume with sphagnum peat and pine bark to formulate 12 container substrates. After physical and chemical characterization, the substrates, along with a control, were used to grow containerized Cordyline terminalis ‘Baby Doll’, Dieffenbachia maculata ‘Camille’, and Dracaena fragans ‘Massangeana’ cane. All substrates were able to produce marketable plants, but only five or seven, depending on plant genus, of the 12 compost-formulated substrates resulted in plants comparable or superior to those of the control substrate. The five also had substrate shrinkage equal to or less than the control. Plants were then moved to an interior evaluation site to determine the suitability of compost-formulated substrates in sustaining foliage plant growth under an interior environment. During a six-month interior evaluation, the plants maintained their aesthetic appearances. Based on plant growth parameters and quality ratings as well as substrate shrinkage both in production and interior evaluation, five of 12 compost-formulated substrates were identified to be equal or superior to the control. This study showed that the three composts, after being appropriately mixed with sphagnum peat and pine bark, can be used as container substrates in every phase of tropical foliage plant production and utilization.  相似文献   

10.
Mandated processing of waste by‐products in the United States has inspired national interest in addressing the effectiveness of using composted biosolids and yard trimmings to grow containerized plants. Diamond bay Chinese evergreen (Aglaonema ‘Diamond Bay’) was transplanted in containers filled with one of eight formulated media (components added by volume). Medium 1 was a standard mix commonly used in Aglaonema production (5:2:3 peat–vermiculite–perlite); medium 2 was formulated on site to contain peat–bark–stalite–rice hulls–coir (2:2:3:1:2); media 3 and 4 contained 40% biosolid–yard waste compost instead of peat and with or without 20% stalite, respectively; and media 5, 6, 7, and 8 were commercially formulated to contain peat–bark–perlite–rice hulls–coir (4:1.5:2.5:1:1, 4:1.5:2.5:1:1, 4:2:2:1:1, and 3.0:2.5:2:1:1.5, respectively). Physical and chemical properties of the eight media were in ranges 50–65% container water‐holding capacity, 2.9–7.8% air‐filled porosity, 55–80% moisture (w/w), 0.11–0.37 g·cm3 bulk density, 0.34–0.96 g·cm3 particle density, 4.2–7.2 pH, 0.12–4.4 dS·m?1 electrical conductivity (EC), 27.3–54.5 meg/100 g cation exchange capacity (CEC), 17.9–39.0% carbon (C), and 0.22–1.7% nitrogen (N). Medium 4 (40% compost) had 5.5 times more ammoniacal N (NH4‐N) and 1.7 times more nitrate N (NO3‐N) than that of the standard commercial mix. At week 8, plants grown in media 2 and 5 were 8.9% to 9.5% taller than plants grown in medium 1 (commercial standard). At week 16, there were no significant differences in plant heights or growth indices among media. At week 24, there were no significant differences in plant height, growth index, visual quality, shoot dry weight, and root dry weight among media. However, cumulative phosphorus (P) leaching from media 1, 4, and 5 was significantly more than leaching from media 2 and 8. This study suggests that compost may serve as a horticulturally suitable and cost‐effective alternative to peat‐based media for Aglaonema production.  相似文献   

11.
Color change of city refuse during composting process was investigated according to the methods of measurement for color of materials based on the CIE 1931 Standard Colorimetric System. Stimulus value Y (the degree of lightness) and chromaticity coordinates (x, y) were determined with Color Analyzer by measuring relative spectral reflectance. Stimulus value Y of city refuse decreased during composting process, but chromaticity coordinates (x, y) scarcely changed.

Color of various composts, which were produced from city refuse, straw, hog fecal wastes, tree bark, and tree bark mixed with activated sludge, were also investigated by measuring relative spectral reflectance. The shapes of the reflection spectra of city refuse were different from those of the other composts. Colors of the various composts were similar to each other when specified according to their three attributes: value, hue, and chroma (Munsell renotation).

While city refuse was rotting and maturing, stimulus value Yand C/N ratio equally decreased. A positive correlation was found between stimulus value Y and C/N ratio. It was concluded that stimulus value Y can be used as a criterion for determining the degree of maturity of city refuse compost.

The correlation between stimulus value Y and C/N ratio of various composts was also investigated. According to the position on the two coordinates having stimulus value Y and C/N ratio as axe s, various composts were classified into three groups: (i) city refuse compost group, (ii) straw compost group, and (iii) tree bark compost group.  相似文献   

12.
The use of biosolids compost, in the formulation of media used in the commercial production of container grown nursery crops, has been slow in the Northeast region of the United States. When biosolids compost is used in growing media, it is limited to small percentages. Regulations in Connecticut restrict the use of most biosolids compost to growing media for containerized ornamental plants and landfill cover. Information on the benefits of using biosolids compost, to grow a wide range of plant species in containers, could increase usage by nurseries. Seven species of flowering annuals, nine species of herbaceous perennials and eight species of woody ornamentals were grown in media containing 0, 25, 50, and 100 percent (by volume) biosolids compost, in combination with a mixture of bark, peat and sand. Biosolids compost came from the Metropolitan District Corporation (MDC) facility in Hartford, Connecticut. It was a mixture of wood chips and digested biosolids (3:1 by volume). Optimal plant growth generally occurred in media containing 50 and 100 percent compost. Plants growing in media high in compost were often somewhat stunted and chlorotic for several weeks after planting probably due to higher levels of salinity and ammonium nitrogen in their media. However, by the middle of the growing season these plants had recovered and at season's end, they were often superior to plants grown in media with less compost. Increasing proportions of compost generally increased the amounts of plant nutrients and heavy metals in media while decreasing air filled pore space. All heavy metal concentrations were below levels of concern.  相似文献   

13.
In sub-Saharan Africa, manure and loam soil are popular growing media substrates. However, their poor physiochemical properties limit their use in growing media. Following a survey of farmers, single species sawdust, mixed species sawdust, and rice husk (RH) were selected and composted with poultry manure. Additionally, the RH was charred for use in soilless media. Objectives were to produce feedstock-specific composts and determine appropriate proportion for using them in containerized systems. Three composts produced were amended with soil in ratios of 1:1, 1:2, and 1:3 (v/v) in an initial experiment. In a second experiment (soilless), the single sawdust and RH compost were each amended with RH biochar in ratios of 1:0, 1:1, 1:2 (v/v) and subjected to half or full pot irrigation. RH compost amended soils gave the highest lettuce yield. In the soilless media, 2:1 ratio (v/v) of biochar to sawdust compost gave the highest yield.  相似文献   

14.
Abstract

Composts may be incorporated into container mixes for several purposes, including to supply nutrients, add organic matter, or suppress plant diseases. The objective of this research was to assess the nutritional benefits of two composts derived in common from composted chicken manure and used in formulation of container media for growth of tomato (Lycopersicon esculentum Mill.). The composts differed in extractable and total plant nutrients so that one of the composts was considered a nutrient‐rich material and the other a nutrient‐poor material. Media were formulated from soil or peat with the composts added in a progressive array of concentrations from a medium with no compost addition to a medium that was all compost. Half of the media were treated with a water‐soluble, complete fertilizer and half were left unfertilized. Optimum growth occurred in media in which compost did not exceed 25% of the volume. The beneficial effects of the composts on plant growth were associated with increased supply of nutrients for the plants. The suppressive effects were attributed to restricted accumulation of nutrients with the nutrient‐poor compost and to excessive potassium supply and accumulation with the nutrient‐rich compost. Fertilization was beneficial in increasing plant growth with the nutrient‐rich compost and was essential for plant growth with the nutrient‐poor compost. The research demonstrated that composts can be used in formulation of media for container growth of plants.  相似文献   

15.
This study evaluated the possibility of mixing fly ash vermicompost (FA) with pine bark (PB) compost to produce a horticultural growing medium for ornamental plants using ornamental marigolds (Tagetes spp.) as the test crop. Fly ash vermicompost was mixed with pine bark compost at 0, 25, 50, 75, and 100% and marigold seeds were sown with or without fertilizer in the resultant media to test their suitability as seedling growing media. FA substitution up to 50% significantly improved water-holding capacity, total porosity, and air-filled porosity. It also raised pH from 4.52 to a maximum of 8.33 when incorporated up to 75%. Incorporation of FA up to 75% resulted in significantly high germination percentages above 90% compared to only 22.5% for the 100% PB medium. However, after 4 weeks of growth, seedlings in the 25 and 50% FA substituted media had higher plant height and leaf area. The 25% FA treatment resulted in significantly higher number of flowers and buds compared to the 50 and 75%. For effective marigold seedling germination and growth, a 50% FA:50% PB growing medium is recommended while for maturity and flower production, the 25% FA:75% PB combination is preferred.  相似文献   

16.
A conventional potting media containing peat moss, softwood bark and sand was amended to contain 0,25,50,75 and 100 (percent vol?1) municipal compost made from yard waste and biosolids. Each medium was adjusted with limestone and sulfur to an approximate pH of 5.0, 6.0 or 7.0. Rhododendron Panticum L. ‘Anah Kruschke’ (Rhododendron), Thujia occidentalis L. (Arborvitae) and Rudbeckia hirta L. ‘Goldilocks’ (Black-eyed Susan) were grown in each medium and pH level for 18 months. Leachate from pots was tested for NO3-N and NH3-N+NH4-N to determine how media pH and the amount of compost effected the potential for potting media to be a source of nitrate in surface and ground water.

Media pH affected plant growth more than the percent compost. Compared to media with a pH of 7.0, statistically significant increases in the growth of Rhododendron occurred in media with a pH of 5.0 or 6.0. This pH effect was similar but less pronounced for Thujia. Growth of Rudbeckia was not effected by media pH or percent compost. Media with 0 and 25 percent compost leached the least nitrogen regardless of pH. Media with 75 and 100 percent compost at pH 5.0 and 6.0 leached the most nitrogen. The increase in nitrogen leaching in the more acidic media was associated with higher concentrations NH3-N+NH4-N. Nitrogen in leachate was greatest during the four weeks immediately after the pots were placed in the field and four weeks after fertilizer was applied in June of the second year of the experiment.  相似文献   

17.
Composting broiler litter (a mixture of manure, bedding material, and wasted feed) with commonly available high-C substrates may be a viable alternative to reduce current land disposal practices for litter. Broiler litter with wood shavings as a bedding material and broiler litter with peanut hulls as a bedding material were composted with wheat straw, peanut hulls, pine bark and paper mill sludge in 0.33 m3 batch reactors. Litters and C substrates were mixed to achieve C:N ratios of approximately 30:1. Dry weight, total N, total C, temperature, electrical conductivity and pH were determined at regular intervals. Maximum temperatures peaked near 70°C within 2.25 d after mixing peanut hulls with litter and within 2.58 d for pine bark and litter. Composts made from paper mill sludge approached 50°C within 3.71 d. Wheat straw composts never exceeded 40°C which could present potential health problems associated with pathogenic microorganisms. Mass loss and C:N ratio gradually declined and stabilized approximately 84 d after mixing. Mass loss averaged 73 percent for wheat straw compost, 33 percent for peanut hull composts, and 16 percent for the other mixes. Wheat straw compost C:N ratios stabilized near 14:1 and other mixes remained above 20:1, indicating N limited conditions for complete composting. Compost pH was 5.8 after 84 d from pine bark composted with wood shaving litter and was significantly lower than pH from paper mill sludge compost with an average pH of 6.9 but similar to all other compost mixes (pH 6.7). Electrical conductivity ranged from 0.35 S m?1 for paper mill sludge composted with wood shaving litter to 0.91 S m?1 from wheat straw composted with peanut hull litter. Composting temperature varied considerably among C sources and all required at least 72 d of curing to stabilize the C:N ratio. Composts made from wheat straw were most effective for waste reduction but temperatures were below the 50°C level generally considered necessary to kill pathogens.  相似文献   

18.
Several composts were tested for their capacity to moderate the effect of Verticillium dahliae Kleb. (VCG B4, VD) on eggplant (Solanum melongena) under greenhouse conditions. Eggplants plantlets were inoculated by immersing their roots in conidial suspension and then planted in pots filled with mixtures of compost or peat moss, mixed with perlite. Six composts and peat moss mixtures were tested, of which tomato waste compost suppressed V. dahliae, and turkey litter compost partially suppressed it. Reduced levels of symptoms and lower fungal colonization were detected in the xylem of eggplants planted in tomato waste compost, and these plants accumulated more dry matter and had higher chlorophyll content compared to other media. However, survival of conidia in tomato waste compost showed only a moderate decrease compared with a sharp decrease in other media, suggesting that conidial eradication cannot be proposed as the suppressiveness mechanism. γ irradiation of tomato waste compost and peat at 2.5 Mrad reduced microorganism density by four orders of magnitude, but irradiation of tomato waste compost did not reduce its suppressiveness of V. dahliae. Composts properties affected progress rate of VD in the xylem tissue of eggplant seedling. These properties could indicate both biotic and abiotic factors affecting the process.  相似文献   

19.
Composts made from coffee processing residue (CFPR), source separated municipal solid waste (MSW), sewage sludge and wood chips (SSWC), and sewage sludge, wood ash, wood chips and leaves (SSACL) were examined as replacements for the peat, perlite and sand found in a conventional potting medium. The perennial flower Rudbeckia hirta L. ‘Goldilocks’ (Black-Eyed Susan) was grown in media composed of 0, 10, 25, 50, 80, and 100 (percent by vol) of each compost. Leachate from media containing 0, 25, 50, and 100% compost was tested for NO3-N and NH3-N + NH4-N to determine if compost would increase the potential for potting media to be a source of nitrate in surface and ground water. The effects of two mid season applications of liquid fertilizer on plant growth and nitrogen leaching were also examined.

Compared to a conventional medium without compost, differences in the growth of Rudbeckia in media with compost were few. Statistically significant decreases in growth occurred in media containing 80 and 100% CFPR, and 80% SSACL. None of the composts caused a statistically significant increase in growth. Leaching of nitrogen increased from media containing 100% CFPR, SSWC and SSACL compared to the medium with no compost. Media containing 25, 50, and 100% MSW leached less N the conventional medium. Liquid fertilizer did not significantly change the growth of Rudbeckia or the amount of nitrogen found in the leachate from any medium.  相似文献   

20.
‘Georgia Jet’ sweetpotato [Ipomoea batatas (L.) Lam] transplants were produced in heated beds to compare aged pine sawdust or builders’ sand (traditional media) to fresh pine bark and aged pine bark, or fresh pine sawdust (alternative media), with regard to transplant production and quality over an extended harvest period. At the first harvest, highest transplant numbers (mean 1400 transplants/m2) were obtained with fresh pine sawdust or fresh pine bark. Media effects on transplant numbers at the first harvest agree with the results of an earlier experiment. The greater productivity of fresh pine bark compared to aged pine media and builders’ sand at the early‐harvest (two harvests) in the previous experiment was not confirmed in this experiment. Extended‐harvest (four harvests) transplant production was greater with fresh pine sawdust (2030 transplants/m2) than with aged pine sawdust (1380 transplants/m2), but was not greater than the number of transplants produced with the other media. Transplant production averaged over the five media, decreased from 1060 and 360 transplants/m2 at the first and second harvests, respectively, to 130 transplants/m2 at each of the last two harvests. Differences in mean transplant weights due to media were found only at the third harvest. At the first harvest, greater mean lengths of transplants grown with the fresh pine media (mean 25.7 cm) than with the aged pine media (mean 21.4 cm). Shortest transplants were produced with builders’ sand at the first harvest (17.8 cm) and throughout the extended season (17.5 cm). Similar effects of media on mean transplant length were observed at the early‐ and extended‐harvest periods. Media had no effect on the percentage of intact roots at the end of the 15‐week season (mean 71%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号