首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biowaste can be converted into compost by composting or by a combination of anaerobic digestion and composting. Currently, waste management systems are primarily focused on the increase of the turnover rate of waste streams whereas optimisation of product quality receives less attention. This results in low quality composts that can only be sold on bulk markets at low prices. A new market for quality compost could be potting mixes for horticultural container-grown crops to partially replace non-renewable peat and increase the disease suppressiveness of potting mixes. We report here on the effect of wetsieving biowaste prior to composting on compost quality and on disease suppressiveness against the plant pathogen Pythium ultimum of peat mixes amended with this compost. The increased organic matter and decreased salt content of the compost allow for significantly higher substitution rates of peat by compost. In this study up to 60% v/v compost peat replacement did not affect cucumber growth. However, disease suppressiveness of the potting mixes strongly increased from 31 to 94% when the compost amendment rate was increased from 20 to 60%. It was shown that general disease suppression for P. ultimum can only be effective when the basal respiration rate is sufficiently high to support microbial activity. In addition, organic matter of the compost should reach a sufficient stability level to turn from disease conducive to disease suppressive. Increasing the compost addition from 20 to 60% did not significantly affect plant yield, yield variation were due to differences in nutrient levels. It can be concluded that compost from wetsieved biowaste has high potential to replace peat in growing media for the professional market.  相似文献   

2.
Managing municipal solid waste (MSW) compost for agricultural use requires an understanding of waste stream components and how they affect the value of the finished product. We evaluated the influence of disposable diaper content in MSW compost because of the recent concern of the environmental impact of this product. To determine the potential effect of disposable diapers on MSW compost, the ‘normal’ concentration of soiled, disposable diapers in a waste stream was raised from 2 percent to 8 percent. Previous observations indicated that the diapers disassociated during in-vessel digestion and most of the components could not be distinguished from the primary compost. The objective of this study was to examine the effect of additional diapers on the agricultural value of mature MSW compost. Loamy sand and silt loam soils were amended with MSW compost at a rate of 20 percent. Comparisons between the two composts and their interactions with soil type were made on the basis of water retention characteristics; germination and emergence of corn, soybean, radish and lettuce; and yield and element uptake by corn and lettuce at two moisture regimes. Differences between the compost amended soils suggested that the primary benefits of additional diapers were increased nutrient availability and soil water retention, and the foremost concerns were excess total soluble salts and boron.  相似文献   

3.
The decomposition of organic matter of source-separated biowaste during composting was followed during 18 months. Compost samples were fractionated into three parts: (i) hot water soluble extract (HWE) (ii) bitumen fraction and (iii) humic substances (humic acids (HA) and fulvic acids (FA)). Original compost samples and the HA and FA fractions were hydrolyzed with sulfuric acid for hexoses and pentoses. Quantitative spectrophotometric and qualitative GC/MS analyses of monosaccharides as trimethylsilyl ethers of the corresponding alditols were carried out.

During composting, the amount of HA in the organic matter of the compost increased, the amounts of HWE and bitumen decreased and the amount of the FA fraction changed only a little. Carbohydrates were found to be important constituents of biowaste composts and their HA and FA fractions. Elemental analysis (C, N and H) of compost and HA samples showed an increase in the C:H ratio and in unsaturation of compounds during composting. The decrease in the C:N ratio was marginal.

The amounts of hexoses and pentoses in original compost samples and the HA and FA fractions decreased during composting. The sugar alcohols erythritol, xylitol, L-arabitol, ribitol, L-rhamnitol, L-fucitol, D-mannitol, D-glucitol and galactitol were identified in both the HA and FA fractions. 2-Deoxy-D-erythro-pentitol was identified in one HA fraction and inositol in two FA fractions. An analysis of gas chromatographic data for relative abundances showed that, in every sample except one and in every stage of composting D-glucitol was the main sugar alcohol. In general, the relative amount of D-glucitol decreased during composting, while the relative amounts of all other sugar alcohols increased.

As chemical indicators of compost maturity, carbohydrates would appear to be a important group of compounds. Most informative as a general indicator would be the ratio of the amount of HA to the amount of organic matter in the total compost samples.

According to our studies, the carbohydrates in composts are covalently bound to the structures of FA and HA. Carbohydrate determination clearly deserves more attention in the structural elucidation of FA and HA.  相似文献   

4.
? The treatment of soiled hygiene papers (HYP), such as diapers and sanitary napkins, added at a concentration of 10 percent (w/w) to separately collected municipal biowaste was tested at Biotechnishce Abfallverwertung (BTA)'s three stage mesophilic biogas plant in Munich. The study aimed to establish the feasibility of cobiogasification of hygiene papers and biowaste. Parameters measured were: Efficiency of plastics and inerts separation; Mass balances; Organic and inorganic dry residues; COD; C:N ratio; Heavy metal content; Bacterial counts; Fiber analysis of suspension; Residues; Effluent for hemicellulose, cellulose and lignin; Biogas yield; and Quality. In the conditioning stage, the hygiene papers (HYP) (10 percent) were completely suspended with municipal solid waste. The dry materials balance of the conditioning unit resulted in an increase of 1.5 percent of the screenings, corresponding exactly to the amount of the added plastics. Heavy metal contents in the residues were well below limits established by German compost quality guidelines. Plate counts of the sums of Enterobacteriae and Salmonellae revealed that addition of soiled HYPs does not increase risk of contamination. Fermentation process and yield did not differ from control; biogas contained about 70-75 percent methane and most organic pollutants measured were undetectable.  相似文献   

5.
A novel system for organic waste stabilization and reuse, combined with production of nitrate-rich liquid fertilizer was developed by manure digestion followed by volatilization of ammonia-rich gas (originating in manure extract) and its nitrification and recovery. This approach has several advantages, including biowaste stabilization and high recovery (over 60%) of manure N mainly as nitrate which is a better N form for many plants as compared to ammonium as the sole fertilizer N. Moreover, the potential utilization of different wastes as N sources in organic horticulture is possible as well as removal of suspended particles and microorganisms (including pathogens) that might otherwise clog the irrigation system and pose health risks, respectively. In a pilot-scale study, the system yielded several hundred liters of nitrate-rich (ca. 11 g N L−1) liquid fertilizer using guano as substrate. In a fertilization experiment, lettuce fertigated with the nitrate-rich extract exhibited better growth and quality compared to the common organic practice of fertigation with guano extract. The resulting stabilized biowaste was estimated as “low-risk” according to current guidelines and may be used for liming or land application.  相似文献   

6.
Soil‐quality parameters, such as soil organic matter (SOM) and plant‐available nutrient contents, microbial properties, aggregate stability, and the amounts of heavy metals were carried out in arable soils of different rotation schedules applied with a total of 50 Mg dry mass ha–1 biowaste compost relative to an untreated control. This was investigated during a 10 y period from 1994 to 2004. Overall, soil‐quality parameters studied appeared to be promoted by biowaste‐compost application. This was evidenced for example by a remarkable increase of SOM and total N content of ≈ 15%–20% relative to the control. Subsequently, amounts of soil microbial biomass and alkaline phosphatase activity were significantly increased as well. In addition, biowaste‐compost application revealed an increase of plant‐available P and K contents and aggregate stability in soil. There was, however, no treatment effect for net N‐mineralization rates. Moreover, in soils of maize and sugar beet rotation schedule a slight decrease was found. Heavy‐metal contents of Pb and Zn were significantly increased in all compost‐treated soils, whereas no significant increase of Cd and Cu contents was measured. However, the investigated amounts were far below of the limits of the German Biowaste Ordinance. It is finally recommended, that biowaste compost may sustain and improve soil quality in agriculture when N nutrition will be considered.  相似文献   

7.
This study was conducted to assess the influence of biowaste compost on soil aggregation and soil organic carbon (SOC) stabilization, in a conventional tillage agro-ecosystem. Four treatments were involved: biowaste compost (Com), fertilizers nitrogen, phosphorus and potassium (NPK) (Min), biowaste compost plus mineral N (ComN) and unfertilized control (Cnt). Compared to the control, after four years, the amount of macroaggregates decreased by 23% and 69% for Com and ComN, while SOC stock increased by 17% and 10%, respectively. Most part of the SOC increases were stored in free-microaggregates and were made up for more than 70% by mineral-associated organic carbon (MOC), while no significant variation of particulate organic C (POC) was observed. Therefore, the biowaste compost application rates and time that were practiced in the studied agro-ecosystem were effective for C sequestration, but not enough to improve the macroaggregation and the POC protection.  相似文献   

8.
Treatment combinations of four poinsettia (Euphorbia pulcherrima) cultivars, 20 substrates, and three fertigation treatments were evaluated in a completely randomized block design. Poinsettia cultivars included ‘V-14 Glory’, ‘Red Sails’, ‘Lilo Pink’, and ‘Annette Hegg Top White’. The compost substrates were compost:peat:perlite blended (by vol.) at 2:3:3, 1:1:1, and 2:1:1 ratios. Sunshine Mix 1 and Pro Gro 300S were used as controls. Composts tested were those prepared from crab offal, lime and polymer-dewatered biosolids, municipal solid waste (MSW), yard waste, and poultry litter. Fertigation treatments were initiated on the week of potting, delayed one or two week after potting and applied once per week. Controls produced premium quality plants. Composts prepared from poultry litter, yard waste, polymer-dewatered biosolids, crab offal, and MSW produced good quality plants. Plant width in 25 percent compost treatments were greater than those in 50 percent compost treatments. Total number of branches, plant height, canopy diameter, and plant grade on plants treated with fertilizer on the first week were only three percent greater than in treatments where fertilizer application was delayed one or two weeks.  相似文献   

9.
Diverting organics from landfills to compost piles is generally recognized as a means to reduce greenhouse gas emissions. This article provides a detailed review of the Climate Action Reserve (CAR) and the U.S. EPA Waste Reduction Model (WARM) protocols on landfill diversion and composting for food scraps and yard waste. The primary benefits associated with diversion are methane avoidance. The equations used to quantify methane avoidance include first-order decay rate constants for different feedstocks to predict how quickly organics will decay. The total methane generation potential of the different feedstocks is also included. The equations include estimates of gas collection efficiencies in landfills. The decay rate constants have been determined from laboratory incubations and may not be representative of decomposition within a landfill. Estimates of gas capture efficiency have been improved and more closely reflect actual landfill conditions. Gas capture efficiency will vary based on landfill cover material, portion of the landfill where measurements take place, and whether the gas collection system is operational. Emissions during composting are included in these calculations. Only the WARM model includes a consideration of benefits for compost use. Nevertheless, significant benefits are recognized for landfill diversion of food scraps. The WARM model suggests that landfilling yard waste is superior to composting.  相似文献   

10.
The composting of wood fiber waste from the manufacture of newsprint is described, with a mixture of wood fiber waste:sewage sludge at a ratio of 1:1 giving best results in a trial of shoot growth of Pinus radiata. An alternative chemical nutrient amendment (initial C:N ratio of 60:1) gave a plant response which was not significantly different to that of sewage sludge. Over a five month period volume reductions of up to 39 percent were observed in the composts, providing potential savings in subsequent transport operations. Use of uncomposted materials or addition of fly- or screen-ash compost amendment (12.5 percent or 25 percent v /v) was inhibitory to plant growth. Concentrations of some heavy metals in Hobart city sewage (particularly of chromium) were high, precluding its long-term use as a soil nutrient supplement. In view of the high heavy metal content of sewage sludge and its high volume to nutrient ratio, it was concluded that composting with chemical amendment was the preferred option for future investigation. Such composts would require ash amendment (or lime equivalent) at concentrations lower than those used in this study to counter acidity produced during composting.  相似文献   

11.
The biodegradable portion of city waste is a potential source of plant nutrients, and appropriate techniques of composting can convert it to quality compost with higher nutrient content and lower levels of pathogenic microorganisms. An amount of 68.19 tons of waste is generated in Imphal City, Manipur, India, of which 24.84 tons were biodegradable. Of the total biodegradable municipality waste (MW), 20.7 tons were produced in households and the vegetable markets of the city. The MW were found to contain pathogenic bacteria (PB), namely, Salmonella spp., Shigella spp., Micrococcus spp., and Enterobacter spp. in the range of 6.35–9.28 (log cfu/g dry biomass), and agriculturally beneficial bacteria (BB), namely, phosphate solubilizers, Azospirillum spp., Azotobacter spp., and cellulose degraders in the range of 6.25–8.83 log cfu/g dry biomass. Pre-treatment of the MW by exposure at temperatures of 27°C–50°C in a greenhouse for 5 days could not reduce the level of PB and BB, but by heating at 100°C for 8 h followed by 30°C for 16 h of a day for three consecutive days, the PB (except Micrococcus spp.) could be eliminated. Aerobic composting of the mixture of MW with cow dung (CD) and rice straw (RS) and by inoculation with epigeic earthworm Eisenia fetida, produced high quality manure as evident from more finer particle (56.6%), higher nutrient (2.19% N) content, higher population of BB (7.03–9.19 log cfu/g dry biomass), and reduced level of PB (6.87–8.09 log cfu/g dry biomass).  相似文献   

12.
In Tunisia, on‐site co‐composting of oil mill waste would overcome environmental issues and valorize renewable resources. The authors' goal was to determine the physic‐chemical and microbiological properties and nutrient supply characteristics of mixed oil mill waste and green waste compost. Two piles of the same raw materials (2/3 oil mill waste–1/3 green waste, w/w) were moistened with two kinds of water: treated urban wastewater (A1) and tap water (A2). Results showed the following: (i) produced compost decreased in C/N from 32 to 12.30?±?0.89 (A1) and 11?±?0.89 (A2); (ii) major elements (P and K) were within acceptable limits; (iii) A1 and A2 had potentially lower heavy metal contents than the limits established by the second draft of the Biological Treatment of Biowaste of the European Commission and microbial load values below the limit N FU 44‐051 values; (iv) A1 and A2 had, respectively, 93 and 89.67% as germination index Gl values, which confirmed the composts' maturity and safety; (v) for both composts, A1 and A2, culture potting made up of half compost and half soil revealed the highest bean leaves' number; and (vi) the less richness in minerals and organic compounds of A2 compared to A1 gave better germination results for white wheat and bean leaves' number for A2. Even moistened with treated urban waste water, oil mill wastes proved to be very interesting for co‐composting with green waste.  相似文献   

13.
Disposal of crawfish processing residuals (hereinafter, referred to as crawfish residuals) poses a challenging problem to the rapidly expanding crawfish industry. Cocomposting is examined as a waste management alternative to landfill disposal. Four agricultural processing by-products were evaluated for use as bulking agents in composting crawfish residuals: wood chips, rice hulls, bagasse, and bark. Approximately 5 to 6.5 volumes of each bulking agents were mixed with one volume of crawfish residuals in 0.3-m3 composting reactors. Compost temperature was continuously monitored, and moisture content was maintained within a desirable range. Samples were collected twice weekly throughout the 50-d composting process. Use of bagasse as a bulking agent led to the largest reduction in volatile solids (27.6 percent), organic C (55.3 percent), particle size (64.7 percent), and compost volume (52.8 percent). Finished compost using bagasse contained the greatest concentration of N (18.4 g N/kg and 160 mg NH4-N/kg). Self-heating patterns and decomposition of crawfish residuals were satisfactory using all four bulking agents, and no odor, insect or other nuisance problems were detected. The finished products of all compost mixtures were suitable for use as mulch or reuse as bulking agents.  相似文献   

14.
Wood ash from a wood-fired, electrical generating plant was examined as a potential amendment in municipal biosolids and yard waste composting applications. The rate of composting and the final compost quality (chemical, physical, and plant growth characteristics) were examined. Yard waste (leaves, grass, and wood chips) and a municipal biosolids-chip mixture were either not amended or amended with wood ash at eight percent or five percent by weight, respectively, and then composted outdoors in insulated, 1700L, aerated reactors. Yard waste piles heated rapidly to 60°C within six to seven days, whereas biosolid piles heated more slowly to a maximum of 52 to 57°C within nine to 11 days. Ash had little, if any, effect on the time-temperature response. In general, ash-amended compost had higher pi I, plant nutrient, and salt contents. Tomato plants (Lycopersicum esculentum) produced 100 percent more shoot biomass in biosolids than in yard waste compost media. Poor plant growth in the yard waste compost was likely due to the high initial pH and salt content of the growth medium. In yard waste media, tomato plants germinated and produced more shoot biomass in the control compost than in the ash-amended compost.

A pH neutralization study indicated that wood fly ash could be used as an economical substitute for lime which is commonly used to stabilize municipal biosolids prior to land filling or land application. Wood fly ash (pH = 13.2-13.4), when added to biosolids at a 2 to 1 ratio by weight, raised the pH of the mixture to 12.0.  相似文献   

15.
Wet olive husks represent an environmental problem in Mediterranean areas but also a potential resource as recyclable organic matter. In the present work, we describe the composting of wet olive husks, using mechanically turned piles without forced ventilation, carried out to study the effects of partially composted oil-depleted husks as a starter for wet husks degradation. At the beginning of the composting process, protease and dehydrogenase activity, along with the microbial respiration, were higher in the piles with the starter, demonstrating a higher microbial activity in comparison with the piles without the starter. At the end of the process, the compost with the starter showed a deeper humification and a lower content of total organic carbon with respect to the compost without the starter, indicating a higher level of biodegradation and organic matter evolution. The main outcome of this research includes the possibility to: (a) detoxify and de-odorize a bad-smelling waste into an hygienically safe product; (b) produce a green, mature, humified compost useful to restore soil fertility and texture in intensive and organic agriculture.  相似文献   

16.
Biowaste compost can influence soil organic matter accumulation directly or indirectly. A 5-year experiment was conducted to assess the influence of biowaste compost on the process of soil aggregation and soil organic carbon(SOC) accumulation in a Mediterranean vegetable cropping system. The study involved four treatments: biowaste compost(COM), mineral NPK fertilizers(MIN), biowaste compost with half-dose N fertilizer(COMN), and unfertilized control(CK). The SOC stocks were increased in COM, COMN, and MIN by 20.2, 14.9, and 2.4 Mg ha~(-1)over CK, respectively. The SOC concentration was significantly related to mean weight diameter of aggregates(MWD)(P 0.05, R~2= 0.798 4) when CK was excluded from regression analysis. Compared to CK, COM and COMN increased the SOC amount in macroaggregates( 250 μm) by 2.7 and 0.6 g kg~(-1)soil, respectively, while MIN showed a loss of 0.4g kg~(-1)soil. The SOC amount in free microaggregates(53–250 μm) increased by 0.9, 1.6, and 1.0 g kg~(-1)soil for COM, COMN, and MIN, respectively, while those in the free silt plus clay aggregates( 53 μm) did not vary significantly. However, when separating SOC in particle-size fractions, we found that more stable organic carbon associated with mineral fraction 53 μm(MOM-C) increased significantly by 3.4, 2.2, and 0.7 g kg~(-1)soil for COM, COMN, and MIN, respectively, over CK, while SOC amount in fine particulate organic matter(POM) fraction(53–250 μm) increased only by 0.3 g kg~(-1)soil for both COM and COMN, with no difference in coarse POM 250 μm. Therefore, we consider that biowaste compost could be effective in improving soil structure and long-term C sequestration as more stable MOM-C.  相似文献   

17.
A 4-year field study was carried out to investigate the effects of three types of biowastes application on PCB accumulation in agricultural soils. This study was based on the experiments designed for four soils in two areas of Palencia province (Spain) (Cerrato and Tierra de Campos) for non irrigated and irrigated land after applying biowaste. The amounts of the three different types of biowastes added were determined according to the fertilization needs of nitrogen for the crop. The concentrations of PCBs in soils were determined before and after biowaste application. The three biowaste treatments raise the concentration of PCBs in the soil, sewage sludge compost (SC) treatment produced the main increase in PCBs concentration, followed by municipal solid waste compost (MC) treatment and the dehydrated sewage sludge (SD) treatment. The values of biowaste treated areas were 3.7-11.5 times higher than the respective values of the non treated areas. Changes observed in the congener distribution also suggest the influence of the biowaste on the soil. The biowaste used had an average PCBs concentration of 63.16 ng g?1 with a range from 34.08 ng g?1 to 118.93 ng g?1, which are values below the EEC recommended limit (800 ng g?1). In the soils without treatment was found an average concentration 0.206 ng g?1 of PCBs, typical of areas with low levels of environmental pollution.  相似文献   

18.
Advanced treatment of residues from anaerobic digestion of leftovers and kitchen waste originating from an industrial waste treatment plant was carried out by means of cocomposting in order to reveal potential synergistic effects. After a retention time of two weeks in the anaerobic reactor, microbial activity of the residues remained high. The biogas produced is of use in combined heat and power generation. Lab-scale experiments in the liquid phase have demonstrated “cracking” of the anaerobic stabilized organic matter under aerobic conditions. The advanced aerobic treatment of residues from anaerobic digestion by means of cocomposting leads to high quality composts. The addition of output material to biowaste from the separated bin collection may improve the formation of humic substances. Extractable humic acids are considered to represent a reliable parameter in describing high quality composts. Thus, the improvement of humic acid formation by means of composting is a goal to be achieved. Process control was performed by assessing parameters such as loss of ignition, total organic carbon, nitrogen and humic acid content as well as by modern analytic methods like FT-IR spectroscopy and thermogravimetry.  相似文献   

19.
The objectives of this work were to determine the potential mineralization of various organic pollutants that are likely found in compostable materials during composting, and to evaluate the participation of the microflora of the thermophilic and maturation composting phases in pollutant mineralization. Four composts were used: a biowaste compost (BioW), a municipal solid waste compost (MSW), a green waste compost (GW) and a co-compost of green waste and sludge (GW+S). In each composting plant, two samples were withdrawn: one in the thermophilic phase (fresh compost) and one in the maturation phase (mature compost) to have the microflora of thermophilic and maturation phases active, respectively. The mineralization of 5 organic pollutants, 3 polycyclic aromatic hydrocarbons (PAHs) (i.e., phenanthrene, fluoranthene and benzo(a)pyrene), 1 herbicide (dicamba) and 1 polychlorinated biphenyl (PCB, congener 52), was measured in a laboratory setting during incubations at 60 ℃ in fresh composts and at 28 ℃ in mature composts. All molecules were 14 C-labeled, which allowed the mineralization of the molecules to be measured by trapping of produced 14CO2 in NaOH. Their volatilization was also measured by trapping molecules on glass wool impregnated with paraffin oil. Mineralization of the organic molecules was only observed when the maturation microflora was present in the mature composts or when it was inoculated into the fresh compost. Phenanthrene mineralization of up to 60% in the fresh GW+S compost was the only exception. Mineralization of PAH decreased when the complexity of the PAH molecules increased. Mineralization of phenanthrene and fluoranthene reached 50%-70% in all mature composts. Benzo(a)pyrene was mineralized (30%) only in the MSW mature compost. Dicamba was moderately mineralized (30%-40%). Finally, no PCB mineralization was detected, but 20% of the PCB had volatilized after 12 d at 60 ℃. No clear difference was observed in the degrading capacity of the different composts, and the major difference was the larger mineralizing capacity of the maturation microflora compared with the thermophilic microflora.  相似文献   

20.
Growth of Impatiens wallerana Hook. ‘Accent Red’ was evaluated in three composted urban waste materials (composted biosolids and yard trash (SYT): 20 percent biosolids/sewage sludge, 44 percent yard trimmings, and 36 percent mixed paper; composted refuse fuel residues with biosolids and yard trash (RYT): 74 percent refuse-derived fuel residuals, 10 percent biosolids/sewage sludge, and 16 percent yard trimmings; and composted municipal solid waste (MSW): 100 percent municipal solid waste). Treatments consisted of 100 percent composted waste and media in which the composted wastes were combined with control medium components at 60 percent, 30 percent, or 0 percent composted waste, by volume. Shoot dry mass of plants grown in SYT increased as the percentage of SYT in the medium increased, while shoot dry mass of plants grown in MSW linearly decreased from 1.24 g to 0.15 g. There were no significant differences in shoot dry mass of plants grown in different percentages of RYT. Initial medium soluble salt concentrations in MSW media were more than double concentrations measured in SYT and RYT media. Soluble salt concentrations in both the 100 percent and 60 percent MSW media exceeded 1.75 dS.m?1, while the soluble salt concentrations in 100 percent SYT and 100 percent RYT were 0.50 dS.m?1 and 0.61 dS.m?1, respectively. The C:N ratios in 100 percent SYT and RYT were 17 and 15, respectively, while 100 percent MSW had a C:N ratio of 29. The relatively higher level of compost maturity as indicated by lower C:N and soluble salt concentrations contributed to superior growth of impatiens plants in 100 percent SYT and RYT compared to 100 percent MSW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号