首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Striped marlin (Kajikia audax) is an epipelagic species distributed in tropical and temperate waters of the Pacific Ocean. In the central and eastern Pacific Ocean, it is captured principally in commercial longline fisheries, and in small artisanal fisheries, however, it is also taken throughout its range in this region as an incidental catch of the tuna purse‐seine fishery. Previous studies suggest that overexploitation and climate change may reduce abundance and cause changes in spatial distributions of marine species. The main objective of this study was to describe the habitat preferences of striped marlin and the changes in its distribution in response to environmental factors. Habitat modeling was conducted using a maximum entropy model. Operational level data for 2003–2014, collected by scientific observers aboard large purse seine vessels, were compiled by the Inter‐American Tropical Tuna Commission and were matched with detailed (4 km) oceanographic data from satellites and general circulation models. Results showed that the spatial distribution of habitat was dynamic, with seasonal shifts between coastal (winter) and oceanic (summer) waters. We found that the preferred habitat is mainly in coastal waters with warm sea surface temperatures and a high chlorophyll‐a concentration.  相似文献   

2.
  1. The diet of red-footed boobies (Sula sula) provisioning chicks was quantified using 106 regurgitations collected from 81 adults over two study years with contrasting oceanographic conditions: 2014 and 2015.
  2. A total of 1,049 prey items were sorted into three broad categories (fish, squid, and other, consisting of highly-digested ‘mush’ and parasitic isopods) and assigned a categorical freshness value of 1 (perfect condition), 2 (superficial digestion), or 3 (highly digested and incomplete).
  3. A total of 492 undigested prey items (freshness 1 and 2) were measured and sampled for genetic identification with 401 (82%) successfully identified. Rarefaction analyses suggested robust diet sampling, with 32 documented species: 29 fishes and three squids.
  4. While the prey-specific index of relative importance highlighted that fish dominated the diet in 2014 (32.3% fish, 15.1% squid) and in 2015 (29.9% fish, 22.3% squid), diet composition varied significantly between the two study years.
  5. The purpleback flying squid (Stenoteuthis oulaniensis) accounted for 98.7% (232 of 236) of the identified squid specimens. Mantle lengths were significantly longer in 2015 (7.2 ± 1.1 SD cm) than in 2014 (6.3 ± 1.7 SD cm).
  6. These results indicate a higher relative abundance and size of the epipelagic squids available to foraging red-footed boobies in 2015, during warm-water conditions associated with the positive phase of the El Niño Southern Oscillation.
  7. Due to their diverse diet, red-footed boobies are useful bioindicators of epipelagic nekton assemblages during changing oceanographic conditions. Moreover, their reliance on the purpleback flying squid makes these seabirds ideal samplers of the juveniles of this poorly studied species.
  8. Understanding how interannual and longer-term oceanographic variability affects central-place foraging seabirds and the recruitment and abundance of their squid prey is critical for precautionary ecosystem-based fisheries management of oceanic islands and the surrounding marine environment.
  相似文献   

3.
西南大西洋阿根廷滑柔鱼资源及其对环境响应的研究进展   总被引:2,自引:0,他引:2  
刘赫威  余为  陈新军 《中国水产科学》2020,27(10):1254-1265
阿根廷滑柔鱼(Illex argentinus)是短生命周期的大洋性浅海种,是西南大西洋重要的经济头足类,其年间产量差异明显,波动较大。西南大西洋马尔维纳斯寒流和巴西暖流交汇区复杂多变的海洋结构是引起阿根廷滑柔鱼资源变动的重要因素之一。其中,海洋环境因素对阿根廷滑柔鱼早期生活史、种群结构、繁殖、年龄与生长、营养级等生物学习性产生重要影响。此外,阿根廷滑柔鱼的资源丰度与空间位置对中尺度的海洋环境与大尺度气候变化极为敏感,会因其变动迅速做出响应。经归纳与分析,本文认为,探究环境因素对阿根廷滑柔鱼的影响时,除各尺度的非生物因素外,还应考虑生物因素的影响和种群内部动力过程,并建立基于个体的海洋动力学模型,探究阿根廷滑柔鱼完整生活史以及评估环境对其资源变动的影响,为其资源的合理开发和管理提供依据。  相似文献   

4.
Mesopelagic species are the principal constituents of larval fish assemblages inhabiting the southerly California Current region. Seasonal larval abundance is influenced by circulation of the California Current and subtropical Countercurrent, including regional changes of the physical, chemical, and biological characteristics during the El Niño‐Southern Oscillation. This study examines the mesopelagic fish larvae distribution and abundance patterns between seasons and years, with the aim of describing the mesopelagic larval assemblages during dynamic environmental changes induced by El Niño (1997–1998) and the rapid transition to La Niña (1998–2000) along the west coast of the Baja California Peninsula (25–31°N). Despite large oceanographic variability, larval assemblages varied principally on a seasonal basis, related to reproductive periods and the north–south gradient influenced by the seasonal pattern of the California Current. An increased diversity, number of species, and abundance of tropical species was noticeable during the northward expansion of warm‐water taxa during El Niño, principally in the northern areas (Ensenada and Punta Baja). After El Niño, population adjustments and rapid recovery occurred during La Niña conditions, which reflected seasonal differences in the mesopelagic community structure that are closely related to the seasonal pattern of oceanic currents.  相似文献   

5.
Information on prey availability, diets, and trophic levels of fish predators and their prey provides a link between physical and biological changes in the ecosystem and subsequent productivity (growth and survival) of fish populations. In this study two long‐term data sets on summer diets of steelhead (Oncorhynchus mykiss) in international waters of the central North Pacific Ocean (CNP; 1991–2009) and Gulf of Alaska (GOA; 1993–2002) were evaluated to identify potential drivers of steelhead productivity in the North Pacific. Stable isotopes of steelhead muscle tissue were assessed to corroborate the results of stomach content analysis. We found the composition of steelhead diets varied by ocean age group, region, and year. In both the GOA and CNP, gonatid squid (Berryteuthis anonychus) were the most influential component of steelhead diets, leading to higher prey energy densities and stomach fullness. Stomach contents during an exceptionally warm year in the GOA and CNP (1997) were characterized by high diversity of prey with low energy density, few squid, and a large amount of potentially toxic debris (e.g., plastic). Indicators of good diets (high proportions of squid and high prey energy density) were negatively correlated with abundance of wild populations of eastern Kamchatka pink salmon (O. gorbuscha) in the CNP. In conclusion, interannual variations in climate, abundance of squid, and density‐dependent interactions with highly‐abundant stocks of pink salmon were identified as potential key drivers of steelhead productivity in these ecosystems. Additional research in genetic stock identification is needed to link these potential drivers of productivity to individual populations.  相似文献   

6.
Squid are short lived, with highly labile populations that respond rapidly to changes in environmental conditions. This makes them a good model for studying the response of recruitment processes to environmental signals. This study examines the influence of the Southern Oscillation Index (SOI) and Trans Polar Index (TPI) on the environment and abundance of six species of commercially important squid from the southern hemisphere, all linked to major current systems connected by the Antarctic Circumpolar Current: Dosidicus gigas (Southeast Pacific), Loligo vulgaris reynaudii (Southeast Atlantic), Nototodarus sloanii, N. gouldi (Southwest Pacific), Illex argentinus and L. gahi (Southwest Atlantic). All fisheries displayed a high level of inter‐annual variability and a degree of synchronicity was seen to occur in the abundance of the three Pacific species. The SOI signal was reflected in the environment of each fishery, particularly in Pacific regions. Both indices are correlated with squid abundance, particularly during the early life history stages (SOI) and adult stages (TPI), suggesting some degree of latitudinal separation, with juveniles potentially influenced by environmental variability at lower latitudes and adults at higher latitudes.  相似文献   

7.
Decadal changes in northern fur seal (Callorhinus ursinus) diet were examined based on the stomach contents data collected off the Pacific coast of northeastern Japan from January to April, 1953–1988. Seventeen families of fish and seven families of squid were identified from the stomach contents. Dominant prey species in terms of percentage of occurrence and wet weight were Japanese sardine (Sardinops melanostictus), chub mackerel (Scomber japonicus), and myctophid fishes. Demersal fishes, sparkling enope squid (Watasenia scintillans), and oceanic squids were also preyed on at low incidences. Decadal‐scale diet composition of northern fur seals revealed shifts in the significance of Japanese sardine and chub mackerel in parallel with the decadal alternation in the dominance of these species within the pelagic fish community off the Pacific coast of northeastern Japan. These results suggest that northern fur seals can use a variety of prey resources in this wintering area by switching the diet according to the distribution and abundance of prey species.  相似文献   

8.
Our examination of the neon flying squid (Ommastrephes bartramii) winter–spring cohort catch per unit effort (CPUE, an index of stock) revealed significant positive correlations with the interannual variations of observed chlorophyll‐a (Chl‐a) concentration and autumn–winter mixed layer depth (MLD) in the winter–spring feeding grounds of paralarvae and juveniles (130–170°E, 20–27°N). These correlations suggest the importance of integrated bottom‐up effects by the autumn–winter MLD for the neon flying squid stocks. However, the influence of autumn–winter MLD interannual variation in the forage availability for paralarvae and juveniles, i.e., particulate organic matter and zooplankton, has still been unclear. In this study, we use the lower trophic ecosystem model NEMURO, which uses the physical environmental data from the ocean reanalysis dataset obtained by the four‐dimensional variational (4DVAR) data assimilation method. The model‐based investigation enables us to clarify how the autumn–winter MLD controls the particulate organic matter and zooplankton abundance in the feeding grounds. Further, our investigation of the autumn–winter MLD interannual variation demonstrates that the stronger autumn wind in the feeding grounds develops a deeper mixed layer. Therefore, the deep mixed layer entrains nutrient‐rich water and enhances photosynthesis, which results in good feeding conditions for paralarvae and juveniles. Our results underline that the wind system interannual variation has critical roles on the winter–spring cohort of the neon flying squid stock.  相似文献   

9.
Striped marlin (Kajikia audax) is an epipelagic fish distributed in oceanic and coastal waters of the Pacific Ocean. This species is usually found in warm and coastal waters with high primary productivity. The main goal of this study was to describe the spatial segregation of striped marlin by average Eye‐Fork length (EFL) in the eastern Pacific Ocean (EPO) and its relationship with environmental variables using EFL data obtained from tuna purse‐seining and Generalized Additive Models (GAMs). The model suggested that larger individuals of striped marlin were more likely to be found in waters with high Chlorophyll‐a concentration (>2 mg/m3) and with temperatures lower than 25°C, within a region known as the “cold tongue” and the Humboldt current system, while smaller individuals were more likely to be found in warmer and low productive areas within a region known as the “warm pool of the EPO.” We observed that set type caused a large variation on average EFL of striped marlin; larger fish were captured in sets associated with floating objects (natural and manmade), while smaller fish were captured in sets associated with dolphins. Despite this, our findings suggest that striped marlin has a latitudinal gradient in average EFL; larger individuals occurred predominantly south of 10°N, while smaller ones occurred predominantly in coastal waters between 10°N and 20°N, thus demonstrating a spatial segregation of the species affected by its maturity stage.  相似文献   

10.
Blackbelly rosefish Helicolenus dactylopterus (Delaroche, 1809) is one of the most important species of the demersal/deep‐water assemblages fished in the NE Atlantic Ocean (Azores archipelago). However, there is insufficient information about the stock structure of this species to support analytical resource assessments and it is currently managed with a precautionary approach. Here, we examine the depth and temporal distribution, size composition, sex, and movement patterns of blackbelly rosefish in order to test the hypothesis that the stock structure in the Azores region comprises different local management units (MUs). We also evaluate annual abundance indices and size composition from scientific surveys and commercial landings over the past c. 25 years for an assessment of the species' vulnerability to bottom longline fishing pressure. The greatest abundance occurred in seamount areas at 350–800 m depth. Larger individuals were mainly found in deeper waters, and no sexual segregation by depth was observed. Tagging results indicated a strongly sedentary behavior and an intraregional separation among populations. Although the abundance pattern and size composition were very similar over time, this species is particularly vulnerable to overfishing due to its biological characteristics (long life, large size, late maturity, slow growth, and low mortality rate). Proper monitoring and management of its exploitation should be a priority. Exploratory analysis for analytical assessment should be performed under the assumption of local MUs. Further oceanographic research is needed to understand larval transport and mixing of populations.  相似文献   

11.
Spatial and temporal variation in copepod community structure, abundance, distribution and biodiversity were examined in the western subarctic North Pacific (40–53°N, 144–173°E) during 2001–2013. Continuous Plankton Recorder (CPR) observational data during the summer season (June and July) were analyzed. The latitudinal distribution of warm‐water species in June shifted northward after 2011 while no apparent latitudinal shift of cold‐water and other species was observed. Species number and the Shannon–Wiener biodiversity index (H′) in June tended to increase in the northern area after 2011. The warm‐water species abundance and center latitude of warm‐water distribution were positively correlated with sea surface temperature (SST) across sampling locations, whereas no significant correlations with SST were observed for cold‐water species or other species. Warm SSTs in June after 2011 appeared to cause the northward shift of warm‐water species distribution, which in turn contributed to the higher biodiversity in the northern area. This study demonstrated the rapid response of warm‐water species to warm SST variation, whereas cold‐water and other species did not exhibit such clear responses. These findings indicate that the response of copepods to environmental changes differs among copepod species, highlighting the importance of investigating lower trophic levels to the species level to evaluate individual species’ responses to climate change.  相似文献   

12.
We investigated the drift of passive particles on the Newfoundland Shelf and western Labrador Sea using numerical simulations to assess the possible sources of plankton collected at a high frequency sampling site (S27; 47.55°N, 52.59°W) located near the coast of Newfoundland, Canada. We also summarized data detailing the seasonal stage succession of Calanus finmarchicus at that site, as well as along three oceanographic sections sampled in the spring, summer and autumn across the adjacent continental shelf. Simulations indicated that the Labrador and Newfoundland Shelves represent the major sources of particles transiting through the S27 site, with relatively minor contributions from the western Labrador Sea which are significant during a few months each year. The latter point may be affected by uncertainty in the representation of cross‐shelf transport associated with seasonal or short‐term variations in atmospheric and oceanic forcing, which may also affect the strength and location of bifurcation of the inner branch of the Labrador Current around the Grand Banks. Nevertheless, our results indicated that drift along the inner shelf is likely to be the primary source of copepods collected at S27 throughout most of the year. This in turn suggested that there may be a higher degree of connectivity between conditions in coastal areas of Newfoundland and those in Baffin Bay and west Greenland than with the southern half of the Labrador Sea.  相似文献   

13.
Evidence mounts for the influence of climate variability on temporal trends in the phenology of many organisms including various species of fish. Accordingly, we examined variation in adult Atlantic salmon Salmo salar run timing in thirteen Newfoundland and Labrador rivers where returns were monitored at fishways or fish‐counting fences. Run timing varied significantly among rivers with the median date of return differing by up to 5 weeks. Duration of runs was generally short with most adults returning over a period of three to 5 weeks. A mixed model analysis incorporating a first‐order autoregressive error structure was used to generalise changes in run timing among all monitored rivers. Results indicated that the median date of return has advanced by almost 12 days over a 35‐year interval from 1978 to 2012, while several individual rivers have advanced by almost 21 days. The influence of climate on median timing was evident when the simultaneous effects of both climate and salmon abundance were controlled. We found earlier runs associated with overall warmer climate conditions on the Newfoundland and Labrador Shelf. Results contrast with those from the north‐east Atlantic where Atlantic salmon are returning later in some rivers coincident with warming climate conditions.  相似文献   

14.
Yearling Chinook (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) were sampled concurrently with physical variables (temperature, salinity, depth) and biological variables (chlorophyll a concentration and copepod abundance) along the Washington and Oregon coast in June 1998–2008. Copepod species were divided into four different groups based on their water‐type affinities: cold neritic, subarctic oceanic, warm neritic, and warm oceanic. Generalized linear mixed models were used to quantify the relationship between the abundance of these four different copepod groups and the abundance of juvenile salmon. The relationships between juvenile salmon and different copepod groups were further validated using regression analysis of annual mean juvenile salmon abundance versus the mean abundance of the copepod groups. Yearling Chinook salmon abundance was negatively correlated with warm oceanic copepods, warm neritic copepods, and bottom depth, and positively correlated with cold neritic copepods, subarctic copepods, and chlorophyll a concentration. The selected habitat variables explained 67% of the variation in yearling Chinook abundance. Yearling coho salmon abundance was negatively correlated with warm oceanic copepods, warm neritic copepods, and bottom depth, and positively correlated with temperature. The selected habitat variables explained 40% of the variation in yearling coho abundance. Results suggest that copepod communities can be used to characterize spatio‐temporal patterns of abundance of juvenile salmon, i.e., large‐scale interannual variations in ocean conditions (warm versus cold years) and inshore‐offshore (cross‐shelf) gradients in the abundance of juvenile salmon can be characterized by differences in the abundance of copepod species with various water mass affinities.  相似文献   

15.
Mackerel (Scomber scombrus) is one of the ecologically and economically most important fish species in the Atlantic. Its recruitment has, for unknown reasons, been exceptional from 1998 to 2012. The majority (75%) of the survivors in the first winter were found north of an oceanographic division at approximately 52°N, despite the fact that mackerel spawns over a wide range of latitudes. Multivariate time series modelling of survivor abundance in the north revealed a significant correlation with the abundance of copepodites (stage I–IV) of Calanus sp. in the spawning season (April to June). The copepodites were a mix of C. helgolandicus (dominating) and C. finmarchicus. The growth of mackerel larvae is known to be positively related to the availability of nauplii and copopodites of preferred prey species, namely, large calanoid copepod species such as Calanus. The statistical relationship between mackerel survivors and abundance of Calanus, therefore, most likely, reflected a causal relationship: high availability of Calanus probably reduced starvation, stage‐specific predation and cannibalism (owing to prey switching). The effects of other abundant, but less preferred zooplankton taxa, (Acartia sp., Branchiopoda spp. and Echinodermata spp. larvae), as well as stock size, temperature and wind‐induced turbulence were not found to be significant. However, stock size was retained in the final model because of a significant interaction with Calanus in oceanic areas west of the North European continental shelf. This was suggested to be a consequence of a density driven expansion of the spawning area that increased the overlap between early life stages of mackerel and food (Calanus) in new areas.  相似文献   

16.
为研究超强厄尔尼诺事件对西北太平洋海域柔鱼(Ommastrephes bartarmii)资源量变动的影响,并分析柔鱼栖息地在极端气候条件下的变化规律,根据上海海洋大学鱿钓科学技术组提供的中国柔鱼生产捕捞数据,比较2008年正常气候年份与2015年超强厄尔尼诺年份的单位捕捞努力量渔获量(CPUE)、产量、捕捞努力量以及渔场纬度重心(LATG)的变化;利用栖息地适宜性指数模型对西北太平洋柔鱼栖息地的海表温度(SST)、光合有效辐射范围(PAR)和海表面高度距平(SSHA)3个关键环境因子进行分析。渔业数据时间为2008年和2015年9—11月,数据覆盖范围为36°N~48°N、150°E~170°E。结果发现,相对于2008年正常年份,2015年超强厄尔尼诺事件下的CPUE明显降低,且LATG向南偏移;此外,2015年适宜的SST和PAR范围均显著降低,导致适宜的栖息地面积与正常年份相比大幅减少;最适宜的SST和PAR等值线向南偏移,导致有利的栖息地纬度位置向南移动。研究认为,2015年超强厄尔尼诺事件发生时,柔鱼渔场环境不适于柔鱼生长,适宜栖息地面积减少且向南移动,导致该年份柔鱼资源丰度骤减,渔场向南偏移。  相似文献   

17.
In the Northwest Pacific, the squid jigging fisheries targeted the west winter–spring cohort of neon flying squid (Ommastrephes bartramii) from August to November. Total annual catch by the Chinese mainland squid jigging fleet during 2000–2005 ranged from 64,100 to 104,200 t. The unique life history of this squid species makes the use of traditional age- or length-structured models difficult in evaluating the effect of intensive commercial jigging on this stock. We fitted a modified depletion model to the Chinese jigging fisheries data to estimate the squid stock abundance during 2000–2005. Monthly biological data were randomly sampled from the five squid jigging vessels during the fishing seasons. Effects of using different natural mortality rates (M) and three different error assumptions were evaluated in fitting the depletion model. Based on sensitivity analyses, the log-normal error model was found to be preferred for the squid assessment. The assessment results indicated that the initial (pre-fishing season) annual population sizes ranged from 199 to 704 million squid with the M value of 0.03–0.10 during 2000–2005. The proportional escapement (M = 0.03–0.10) for different fishing seasons over the time period of 2000–2005 ranged from 15.3% (in 2000) to 69.9% (in 2001), with an average of 37.18%, which was close to the management target of 40%. Thus, the current fishing mortality of the squid jigging fishery was considered to be sustainable. We inferred its annual maximum allowable catch ranging from 80,000 to 100,000 t. This study suggests that the modified depletion model provides an alternative method for assessing short-lived species such as O. bartramii.  相似文献   

18.
19.
Knowledge about the areas used by the foraging wandering albatross, Diomedea exulans, its prey and overlap with longline fisheries is important information not only for the conservation of this species but also for furthering our understanding of the ecology of its prey. We attached satellite‐tracking devices and activity recorders to wandering albatrosses between May and July of 1999 and 2000 (years of differing food availability around South Georgia) in order to assess inter‐annual variation in the main foraging areas, association with oceanographic features (i.e. fronts, bathymetry), diet and interactions with fisheries. The overall foraging patterns of the tracked birds were similar in 1999 and 2000, ranging between southern Brazil (28°S) and the Antarctic Peninsula (63°S) and between the waters off Tristan da Cunha (19°W) and the Patagonian Shelf and oceanic waters south of Cape Horn (68°W) in the South Atlantic. In 1999, wandering albatrosses spent most time in sub‐Antarctic oceanic waters, their trip durations were significantly longer and they fed on fish and cephalopods (53 and 42% by mass, respectively). In contrast, in 2000, they spent more time in Antarctic waters, foraging trips were shorter and the diet was predominantly fish (84% by mass). Wandering albatrosses were associated with the sub‐Antarctic Front (SAF; both years), Subtropical Front (STF; in 1999) and the Tropical Front (TF; in 2000) suggesting that this species exploits prey concentrated at oceanic fronts. Fisheries discards also seemed to provide a very good source of food. Several fish species that are targeted (e.g. Patagonian toothfish, Dissostichus eleginoides) or are available as offal/discards from commercial fisheries (e.g. the macrourids, Antimora rostrata and Macrourus holotrachys) were mainly associated with the South Georgia shelf and the Patagonian Shelf, respectively. Wandering albatross foraging areas overlapped with longline fisheries in three different regions: around South Georgia, at the Patagonian Shelf and in oceanic waters north of 40°S. Females commuted more frequently to the Patagonian Shelf and to oceanic areas where longline fisheries were operating. Males, on the other hand, spent more time on the shelf/shelf slope of South Georgia where they were more at risk from the local Patagonian toothfish fishery, particularly in 2000. These results emphasize that inter‐annual variation in foraging preferences could lead to increased incidental mortality of this vulnerable species. Potential evidence for this is provided by a satellite‐tracked wandering albatross (male; 1.8‐day trip), whose diet contained a Patagonian toothfish head and a longline hook, and who spent extensive time in the water (44% of the time wet; 0.3 days of the trip) where a Patagonian toothfish longline fishing vessel was operating.  相似文献   

20.
I explored the biological basis of variation in recruitment (age 3 abundance), growth and age‐specific adult survival rate for the major populations [West Coast Vancouver Island (WCVI), Strait of Georgia, Central Coast, North Coast and Haida Gwaii] of Pacific herring (Clupea pallasi) that inhabit British Columbian waters. The analyses were based on a synthesis of time series of empirical observations of herring population characteristics (egg deposition, age‐specific abundance and size) and prey, competitor and predator biomass/abundance. Recruitment was not correlated among populations. Recruitment variability was explained for WCVI herring only, as a consequence of prey (the euphausiid Thysanoessa spinifera) biomass during August in each of the first 3 years of life, and the biomass of piscivorous Pacific hake (Merluccius productus) during the first year of life. Recruit mass and adult mass‐at‐age were correlated among populations and over ages within populations. Recruit mass was affected by T. spinifera biomass in August of the first and third years of life. Adult mass‐at‐age variability was determined mainly by size at the beginning of the growth season, but also by T. spinifera biomass in August. Age‐specific adult survival rates were not correlated among the five populations. Survival rates decreased with age; there were additional population‐specific effects of somatic mass and T. spinifera biomass in August. The analyses were repeated using physical oceanographic explanatory variables. Only recruit mass variation was explained significantly by physical oceanographic variables, and the biological‐based explanation of recruit mass variability accounted for more of the variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号