首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ground fruits of the common juniper (Juniperus communis L.), with a particle size range from 0.250-0.400 mm, forming a bed of around 20.00 +/- 0.05 g, were extracted with supercritical CO(2) at pressures of 80, 90, and 100 bars and at a temperature of 40 degrees C. The total amount of extractable substances or global yield (mass of extract/mass of raw material) for the supercritical fluid extraction process varied from 0.65 to 4.00% (wt). At each investigated pressure, supercritical CO(2) extract fractions collected in successive time intervals over the course of the extraction were analyzed by capillary gas chromatography, using flame ionization (GC-FID) and mass spectrometric detection (GC-MS). More than 200 constituents were detected in the extracts, and the contents of 50 compounds were reported in the work. Dependence of the percentage yields of monoterpene, sesquiterpene, oxygenated monoterpene, and oxygenated sesquiterpene hydrocarbon groups on the extraction time was investigated, and conditions that favored the yielding of each terpene groups were emphasized. At all pressures, monoterpene hydrocarbons were almost completely extracted from the berries in the first 0.6 h. It was possible to extract oxygenated monoterpenes at 100 bar in 0.5 h and at 90 bar in 1.2 h. Contrary to that, during an extraction period of 4 h at 80 bar, it was possible to extract only 75% of the maximum yielded value of oxygenated monoterpene at 100 bar. Intensive extraction of sesquiterpenes could be by no means avoided at any pressure, but at the beginning of the process (the first 0.5 h) at 80 bar, they were extracted about 8 and 3 times slower than at 100 and 90 bar, respectively. Oxygenated sesquiterpenes were yielded at fast, constant extraction rates at 100 and 90 bar in 1.2 and 3 h, respectively. This initial fast extraction period was consequently followed by much slower extraction of oxygenated sesquiterpenes.  相似文献   

2.
Lycopene and beta-carotene were extracted from tomato paste waste using supercritical carbon dioxide (SC-CO(2)). To optimize supercritical fluid extraction (SFE) results for the isolation of lycopene and beta-carotene, a factorial designed experiment was conducted. The factors assessed were the temperature of the extractor (35, 45, 55, and 65 degrees C), the pressure of the extraction fluid (200, 250, and 300 bar), addition of cosolvent (5, 10, and 15% ethanol), extraction time (1, 2, and 3 h), and CO(2) flow rate (2, 4, and 8 kg/h). The total amounts of lycopene and beta-carotene in the tomato paste waste, extracts, and residues were determined by HPLC. A maximum of 53.93% of lycopene was extracted by SC-CO(2) in 2 h (CO(2) flow rate = 4 kg/h) at 55 degrees C and 300 bar, with the addition of 5% ethanol as a cosolvent. Half of the initially present beta-carotene was extracted in 2 h (flow rate = 4 kg/h), at 65 degrees C and 300 bar, also with the addition of 5% ethanol.  相似文献   

3.
The applicability of supercritical fluid extraction (SFE) in pesticide multiresidue analysis (organohalogen, organonitrogen, organophosphorus, and pyrethroid) in soil samples was investigated. Fortification experiments were conducted to test the conventional extraction (solid-liquid) and to optimize the extraction procedure in SFE by varying the CO2 modifier, temperature, extraction time, and pressure. The best efficiency was achieved at 400 bar using methanol as modifier at 60 degrees C. For the SFE method, C-18 cartridges were used for the cleanup. The analytical screening was performed by gas chromatography equipped with electron-capture detection (ECD). Recoveries for the majority of pesticides from spiked samples of soil at different residence times were 1, 20, and 40 days at the fortification level of 0.04-0.10 mg/kg ranging from 70 to 97% for both methods. The detection limits found were <0.01 mg/kg for ECD, and the confirmation of pesticide identity was performed by gas chromatography-mass spectrometry in a selected-ion monitoring mode. Multiresidue methods were applied in real soil samples, and the results of the methods developed were compared.  相似文献   

4.
The aim of this work was to optimize a supercritical fluid extraction (SFE)/enzymatic reaction process for the determination of the fatty acid composition of castor seeds. A lipase from Candida antarctica (Novozyme 435) was used to catalyze the methanolysis reaction in supercritical carbon dioxide (SC-CO(2)). A Box-Behnken statistical design was used to evaluate effects of various values of pressure (200-400 bar), temperature (40-80 degrees C), methanol concentration (1-5 vol %), and water concentration (0.02-0.18 vol %) on the yield of methylated castor oil. Response surfaces were plotted, and these together with results from some additional experiments produced optimal extraction/reaction conditions for SC-CO(2) at 300 bar and 80 degrees C, with 7 vol % methanol and 0.02 vol % water. These conditions were used for the determination of the castor oil content expressed as fatty acid methyl esters (FAMEs) in castor seeds. The results obtained were similar to those obtained using conventional methodology based on solvent extraction followed by chemical transmethylation. It was concluded that the methodology developed could be used for the determination of castor oil content as well as composition of individual FAMEs in castor seeds.  相似文献   

5.
Volatile concentrates from the oleo-gum resin of Commiphora myrrha (Nees) Engl. and from the rhizomes of Acorus calamus were isolated by supercritical extraction with carbon dioxide. The volatile oil of myrrh was obtained at 9.0 MPa and 50 degrees C and at a CO2 flow of 1.5 kg/h. Acorus calamus was extracted at 9.0 MPa and 45 degrees C and at a CO2 flow of 1.6 kg/h. In both cases, an oil devoid of cuticular waxes was obtained with a single depressurization stage. The SFE myrrh oil had a yield, Y, of 3.2%. Its main components, identified and quantified by GC/MS, were furanoeudesma-1,3-diene, 34.9%; lindestrene, 12.9%; curzerene, 8.5%; and germacrone, 5.8%. The essential oils from the same starting material by hydrodistillation, HD, (Y = 2.8%) and by steam distillation, SD, (Y = 0.4%) were quite similar to the SFE extract. The main components of the SFE oil of A. calamus (Y = 3.5%) were acorenone, 13.4%; iso-acorone, 11.6%; (Z)-sesquilavandulol, 11.0%; dehydroxy isocalamendiol, 7.7%; and beta-asarone, 5.5%. The comparison with hydrodistilled (Y = 1.8%) and steam distilled (Y = 1.0%) oils revealed large differences in the content of iso-acorone and crypto-acorone.  相似文献   

6.
Supercritical fluid extraction of organochlorine pesticides in eggs   总被引:2,自引:0,他引:2  
The efficacy of supercritical fluid extraction (SFE) for the recovery of 16 common organochlorine pesticides (OCPs) from liquid whole eggs was investigated by employing supercritical carbon dioxide (SC-CO(2)) without the use of a solvent modifier to minimize interfering coextractives. The OCPs tested included aldrin; alpha-, beta-, delta-, and gamma-BHCs; p,p'-DDD, -DDE, and -DDT; dieldrin; endosulfans I, II, and sulfate; endrin; endrin aldehyde; heptachlor; and heptachlor epoxide. The SFE conditions were as follows: 10000 psi (680 bar), 40 degrees C, SC-CO(2) flow rate of 3.0 L/min with an extraction time of 40 min for a total of 120 L of CO(2). The OCPs were trapped off-line in an SPE cartridge containing Florisil and then eluted by an acetone/hexane mixture and analyzed by gas chromatography-electron capture detection (GC-ECD). Recovery studies were carried out on homogenized eggs fortified at the 0.05, 0.10, and 0.20 ppm levels. At the lowest level, 0.05 ppm, recoveries ranged from 81.8 to 108.3%, with CVs < 9.8%. All recoveries were significantly higher than those obtained by an AOAC/FDA solvent extraction method. Eggs containing incurred endosulfan I were also effectively extracted by SFE. This study suggests that the application of SFE for the extraction of OCPs from eggs will result in significant savings in analysis time and lower solvent use and disposal costs compared to conventional solvent extraction procedures.  相似文献   

7.
Supercritical fluid extraction (SFE) has been utilized by the food industry in many applications to extract, fractionate, and recover compounds from various food matrices. However, little research has been conducted using SFE as an alternative process for producing reduced-fat cheese. Lipids in cheeses may be selectively extracted due to the nonpolar properties of supercritical carbon dioxide (SC-CO2), without leaving residual chemicals as is the case in solvent extraction. The objective of this study was to evaluate the influence on the extraction process due to cheese variety and protein breakdown by age. A Latin square design was utilized to test the extractability of lipids from Parmesan and Cheddar cheeses, aged young (9-10 months) or old (24 months). Extraction took place in a 500 mL SFE vessel using 100 g of grated cheese samples. The SFE parameters of the extraction were 350 bar, 35 degrees C, and supercritical carbon dioxide at a flow rate of 20 g/min for 55 min. Compositional analysis measured all treated samples and controls of total lipids, lipid profiling, total protein, protein/peptide analysis, moisture, ash, and pH. Cheese type was a major variable in fat extraction. The extraction in Cheddar showed an average fat reduction of 53.56% for young cheese, whereas that in old Cheddar was 47.90%. However, young Parmesan was reduced an average of 55.07%, but old Parmesan was reduced at 68.11%, measured on a dry basis. SFE extracted triglycerides and cholesterol, but did not remove phospholipids. This investigation introduces the observations of the effect of Cheddar and Parmesan varieties on SFE, offering data on the important parameters to consider in the design of SFE processes to reduce fat in cheese.  相似文献   

8.
The aqueous extract of American skullcap (Scutellaria lateriflora L. (S. lateriflora), Lamiaceae) has been traditionally used by North American Indians as a nerve tonic and for its sedative and diuretic properties. Recent reports stated that flavonoids and possibly amino acids are responsible for the anxiolytic activity. As a part of our search for environmentally friendly solvents to extract the active components from medicinal plants, we used S. lateriflora in a comparison of accelerated solvent extraction (ASE) using water, and supercritical fluid extraction (SFE) using CO2 and 10% EtOH as modifier, at different temperatures. Flavonoids and amino acids were quantified by HPLC-UV and HPLC-MS, respectively. The flavonoid content was compared with conventional extraction methods (hot water extraction and 70% ethanol). The use of ASE at 85 degrees C with water as solvent gave the best results for flavonoid glycosides and amino acids, whereas SFE gave higher yields of flavonoid aglycones. However, the results obtained for total flavonoids were not significatively superior to hot water extraction or 70% aqueous EtOH extract.  相似文献   

9.
Supercritical carbon dioxide (SC CO(2)) was used for the extraction of oil and squalene from Amaranthus grain. Very small amounts of oil could be extracted by SC CO(2) from undisrupted grains, although SC CO(2) possesses higher diffusivity. Grinding increased the extraction rate and oil yield, and smaller particle size gave higher extraction rate. The oil yield and initial extraction rate increased linearly with the increasing SC CO(2) flow rate from 1 to 2 L/min. Increasing the flow rate of SC CO(2) above 2 L/min resulted in only a slight increase of oil yield and extraction rate. In the pressure range of 150-250 bar, extraction decreased with increasing temperature at a constant pressure, whereas at a pressure of 300 bar, the extraction yield increased with increasing temperature. Possible reasons for this are discussed. Effects of temperature and pressure on squalene yield were different from those on oil yield. A good oil yield (4.77 g of oil/100 g of grain) was obtained at 40 degrees C and 250 bar. The highest squalene yield (0.31 g of squalene/100 g of grain) and concentration (15.3% in extract) were obtained at 50 degrees C and 200 bar, although the oil yield under this condition was low (2.07 g of oil/100 g of grain). The moisture content within 0-10% had little influence on yields of oil and squalene at 40 degrees C and 250 bar. Finally, the oil yield and the squalene concentration in the extracts by SC CO(2) were compared to those by solvent extraction.  相似文献   

10.
A small-scale supercritical fluid extraction (SFE) method was developed for the selective extraction of phloroglucinols from St. John's wort (SJW) leaf/flower mixtures using supercritical carbon dioxide (CO(2)). The extraction efficiency was investigated as influenced by pressure, temperature, time, and modifier. The optimized condition of SFE was carried out at 3.80 x 10(4) kpa (5500 psi) and 50 degrees C. Samples were held in static extraction for 10 min, followed by a dynamic extraction for 90 min at the flow rate of 1 mL/min. A simple and sensitive HPLC method was developed for the analysis of hyperforin and adhyperforin, the major phloroglucinols, in the SFE extract of SJW.  相似文献   

11.
Possible refining of crude hexane extract (CHE) from pyrethrum flowers and further refining of Pyrethrum Board of Kenya (PBK) pale product is investigated with both liquid and supercritical carbon dioxide. The experiments were carried out in a small pilot plant with a 200 mL extractor and three cyclonic separators in series. To understand the dynamics of pyrethrin extraction, CHE was extracted in a single step; pyrethrin concentration was found to be improved from 0.16 to 0.50 g/g. The effects of temperature and pressure on the quality of the extract were studied at 29 degrees C and 80 bar and at 40 degrees C and 100 bar. Liquid CO(2) processing (29 degrees C, 80 bar) yielded slightly better product quality. A comparison study of CHE and PBK pale processing with supercritical CO(2) (40 degrees C, 100 bar) showed that the final products were similar in terms of pyrethrin content. Extraction of both PBK pale and CHE in two steps with different operating conditions improved their purity.  相似文献   

12.
Supercritical fluid extraction (SFE) and the use of aminopropyl solid-phase material for "in-line" cleanup was evaluated for residue analysis of 22 GC-amenable pesticides in wild- and white-rice samples with a fat content of 1.9 and 0.4%, respectively. After optimizing the extraction conditions on glass beads as inert material and evaluating the fat amount extracted from rice by SFE, the use of Florisil, Celite, Extrelut, Hydromatrix, and an aminopropyl material as fat-retention materials for SFE "in-line" cleanup was assessed, aminopropyl being the most suitable material for this cleanup of fat. Pesticide mean recoveries obtained from rice samples, at fortification levels around 0.5 mg/kg, by means of the SFE/in-line cleanup method finally proposed (15-mL CO2 volume, 50 degrees C temperature, 200 atm pressure, 200 muL of methanol static modifier, and a 1-cm layer of aminopropyl at the bottom of the extraction vessel), ranged between 74 and 98%, except for captafol and dimethoate for which mean recoveries lower than 21% were determined.  相似文献   

13.
The volatile oil of the bark of Cinnamomum zeylanicum was extracted by means of supercritical CO2 fluid extraction in different conditions of pressure and temperature. Its chemical composition was characterized by GC-MS analysis. Nineteen compounds, which in the supercritical extract represented >95% of the oil, were identified. (E)-Cinnamaldehyde (77.1%), (E)-beta-caryophyllene (6.0%), alpha-terpineol (4.4%), and eugenol (3.0%) were found to be the major constituents. The SFE oil of cinnamon was screened for its biological activity about the formation of melanin in vitro. The extract showed antityrosinase activity and was able to reduce the formation of insoluble flakes of melanin from tyrosine. The oil also delayed the browning effect in apple homogenate. (E)-Cinnamaldehyde and eugenol were found to be mainly responsible of this inhibition effect.  相似文献   

14.
Large amounts of contaminated process dust remain from the procedure of pesticide treatments applied to seed pellets. A pilot study in analytical-scale supercritical fluid extraction (SFE) was performed to determine the possibility of using supercritical carbon dioxide for the extraction of the nonpolar insecticide carbosulfan and the more polar insecticide imidacloprid present in contaminated dust waste, at concentrations of up to 20% (w/w). The effects of various experimental conditions, such as temperature, flow rate, and addition of modifier, on the recovery of the analytes were evaluated by extracting the pesticides both from spiked support material and from real dust samples. It was found that carbosulfan could easily be extracted from the dust waste within 30 min at 138 bar and 40 degrees C with a recovery of 98.9% (RSD = 2.3%, n = 10), compared to values obtained with a validated liquid extraction method. A sufficient removal of the more polar substance imidacloprid required the addition of a modifier, and the results showed a strong dependence of the extraction efficiency on the choice of modifier. Extractions at 276 bar and 80 degrees C with a solvent consisting of supercritical carbon dioxide modified with methanol (5%) gave a recovery of 97.0% (RSD = 3.6%, n = 10) using a 40 min extraction time. The results indicate that it seems to be possible to use process-scale SFE for the decontamination of pesticides from dust waste. The conditions outlined also permit analytical determinations of the two insecticides based on a combination of SFE and liquid chromatography.  相似文献   

15.
Environmental concerns, the disposal cost of hazardous waste, and the time required for extraction in current methods encouraged us to develop an alternate method for analysis of wheat flour lipids. Supercritical fluid extraction (SFE) with carbon dioxide has provided that medium and the method is fully automatic. Crude fats or nonstarch free lipids (FL) were extracted from 4–5 g of wheat flour by an SFE system. To develop optimum conditions for SFE, various extraction pressures, temperatures, and modifier volumes were tried to provide a method that would produce an amount of lipids comparable to those extracted by the AACC Approved Soxhlet Method and the AOCS Official Butt Method using petroleum ether as solvent. Using several wheat flour samples, the best conditions were 12.0 vol% ethanol (10.8 mol%) at 7,500 psi and 80°C to extract the amount of FL similar to those by the AACC and AOCS methods. Using solid‐phase extraction, lipids were separated into nonpolar lipid (NL), glycolipid (GL), and phospholipid (PL) fractions. The mean value of five flours was 1.15% (flour weight, db) by the SFE method, 1.07% by the Butt method, and 1.01% by the Soxhlet methhod. The SFE‐extracted lipids contained less NL and more GL than either the Butt or Soxhlet methods. All three methods extracted lipids with qualitatively similar components. The overall benefit for SFE over the Soxhlet or Butt methods was to increase the number of samples analyzed in a given time, reduce the cost of analysis, and reduce exposure to toxic chemicals.  相似文献   

16.
Supercritical carbon dioxide extraction and fractionation of fennel oil   总被引:3,自引:0,他引:3  
Ground fennel seeds were extracted with supercritical carbon dioxide. Small-scale subsequent extractions of the same sample showed that the composition of volatile compounds was changed with the extension of extraction time and only principal volatile components (limonene, fenchone, methylchavicol, and anethole) were present in the last-extracted sample. Fennel oil was successfully fractionated into the essential oil rich and fatty oil rich products in pilot-scale apparatus using two separators in series. Designed experiments were carried out to map the effects of pressure and temperature in the first separator on the yields and compositions of the products. The minimum level of the total undesired components in both essential oil rich and fatty oil rich products appeared at a pressure of 80-84 bar and a temperature of 31-35 degrees C in the first separator. Supercritical CO(2) extraction of fennel seeds resulted in higher yield (10.0%) than steam distillation (3.0%), almost the same yield as hexane extraction (10.6%), and lower yield than alcohol extraction (15.4%). Analysis of the volatile compounds revealed the significant difference of the composition in distilled oil and oleoresins prepared by CO(2) and solvent extractions. Sensory evaluation showed that the CO(2) extraction product and distilled oil were more intense in odor and taste than alcohol and hexane extracts.  相似文献   

17.
An efficient supercritical fluid extraction (SFE) process with carbon dioxide (SFE-CO(2)) was developed for the extraction of natural vitamin E (V(E)) from wheat germ. Both the pretreatment of extracted wheat germ and extraction conditions were optimized to ensure maximal V(E) yield. The extraction was undertaken at the extracting pressure of 4000-5000 psi, the extracting temperature of 40-45 degrees C, and the carbon dioxide flow rate of 2.0 mL/min for 90 min. An optimized pretreatment of wheat germ was usually necessary with a particle size of 30 mesh and a moisture content of 5.1%. A yield comparison of V(E) and its isomers extracted by supercritical CO(2) with those by conventional solvent extraction suggested that this SFE process was a practical process prospectively superior to conventional solvent extraction to prepare V(E) from wheat germ.  相似文献   

18.
This study investigated the supercritical carbon dioxide (SC-CO(2)) extraction of fat from ground beef and the effects of several factors on the gravimetric determination of fat. The use of ethanol modifier with the SC-CO(2) was not necessary for efficient fat extraction; however, the ethanol did increase the coextraction of water. This coextraction of water caused a significant overestimation of gravimetric fat. Oven-drying ground beef samples prior to extraction inhibited the subsequent extraction of fat, whereas oven-drying the extract after collection decreased the subsequent gas chromatographic fatty acid methyl ester (GC-FAME) fat determination. None of the drying agents tested were able to completely prevent the coextraction of water, and silica gel and molecular sieves inhibited the complete extraction of fat. Measurements of collection vial mass indicated that CO(2) extraction/collection causes an initial increase in mass due to the density of CO(2) (relative to displaced air) followed by a decrease in vial mass due to the removal of adsorbed water from the collection vial. Microwave-drying of the empty collection vials removes approximately 3 mg of adsorbed water, approximately 15-20 min is required for readsorption of the displaced water. For collection vials containing collected fat, microwave-drying effectively removed coextracted water, and the vials reached equilibration after approximately 10-15 min. Silanizing collection vials did not significantly affect weight loss during microwave-drying. SC-CO(2) can be used to accurately determine fat gravimetrically for ground beef, and the presented method can also be followed by GC-FAME analysis to provide specific fatty acid information as well.  相似文献   

19.
The volatile oil of Elettaria cardamomum (L.) Maton seeds was obtained by supercritical CO(2) extraction (SC-CO(2)). The effect of the extraction conditions on the yield and composition of the resulting cardamom volatile oil was examined by testing two pressure values, 9.0 and 11.0 MPa; two temperatures, 40 and 50 degrees C; two flow rate values, 0.6 and 1.2 kg/h; and two particles size values, 250-425 and >850 microm. The extraction conditions that gave the highest yield, Y (grams of extract per gram of seeds), of 5.5%, were as follows: pressure, 9.0 MPa; temperature, 40 degrees C; carbon dioxide flow, phi = 1.2 kg/h; and particles sizes in the range of 250-425 microm. Waxes, recovered as traces, were entrapped in the first separator set at 9.0 MPa and -10 degrees C. The oil was recovered in the second separator working at 1.5 MPa and 10 degrees C. The main components were as follows: alpha-terpinyl acetate, 42.3%; 1,8-cineole, 21.4%; linalyl acetate, 8.2%; limonene, 5.6%; and linalool, 5.4%. A comparison with the hydrodistilled oil, obtained at a yield of 5.0%, did not reveal any consistent difference. In contrast, the extract obtained using hexane, Y = 7.6%, showed strong composition differences. Indeed, the volatile fraction of the extract was made up mainly of the following: limonene, 36.4%; 1,8-cineole, 23.5%; terpinolene, 8.6%; and myrcene, 6.6%.  相似文献   

20.
Volatile compounds were obtained from whole and ground grain samples by two methods. In the supercritical fluid extraction (SFE) method, volatiles were extracted from the grain with supercritical carbon dioxide, trapped at -78 degrees C, and then transferred via a purge-and-trap instrument to a gas chromatograph with mass and infrared detectors (GC-MS/IR) for separation and identification. In the direct-helium-purge method (DHP), volatiles were purged directly from the grain into the purge-and-trap instrument for subsequent transfer to the GC-MS/IR system. With SFE, extraction of volatiles was favored by ground grain, low pressures (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号