首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 150 毫秒
1.
A study was conducted in central highland Ethiopia to: (1) assess the financial feasibility and relative financial attractiveness of three agroforestry practices (small-scale woodlot, homestead tree and shrub growing and boundary tree and shrub growing); (2) evaluate the impacts of implementation of these land uses on farm households income and (3) identify the constraints for the implementation and expansion of the agroforestry practices. Then, 82 different land uses (21 small-scale woodlots, 35 homesteads and 26 boundary plantings) which were older than 15 years and established by the current owner were selected for the financial analysis. The input and output data were filled in a data sheet by face-to-face interview with the owners. The results showed that small-scale woodlot is the most profitable agroforestry practice followed by boundary plantings and homesteads. An ex-ante analysis of implementing the agroforestry practices showed that with minimum land area allocated for the practices, a household can generate net discounted revenues ranging from 5,908 to 26,021 Ethiopian Birr (532–2,342 USD) in 15 years at 10 % interest rate. Hence, the expansion of such agroforestry practices has a vital effect on farm household’s income. Lack of proper planning and poor in-depth understanding about roles of trees and shrubs for household’s income, land and seedling shortage, financial constraints and labor scarcity were identified as major problems for the expansion of agroforestry practices in the area. A thorough extension service comprising both efficient land resources utilization and proper planning practices could enhance the expansion of agroforestry practices and thereby positively influence the farmer’s livelihood.  相似文献   

2.
Scattered trees and woodlots are a prominent feature of agricultural landscapes of Rwanda. However, little is known about their characteristics and their contribution to farmers’ wood needs. Here, we present the results of a survey of (a) the abundance, composition, and size of trees and woodlots in the low, medium and high altitude regions of Rwanda, (b) total woody biomass and biomass for fuelwood at farm and landscape levels, and (c) opportunities for their sustainable use. Scattered trees occurred in all landscapes at minimum densities ranging from 20 to 167 trees ha?1. Of the 56 tree genera recorded, a handful of tree species dominated, with the ten most common species accounting for over 70 % of all trees recorded. Most of them provided fuelwood, fruit and timber to farm owners. Woodlots occurred on about 40 % of the survey farms and consisted for 90 % of eucalyptus coppice. Woody biomass dry weight of scattered trees on agricultural landscape was 0.7 t ha?1 in low altitude region (LAR), 3 t ha?1 in medium altitude region (MAR), and 1 t ha?1 in high altitude region (HAR). Dry weight woody biomass in woodlots (<0.5 ha) was the highest in MAR (221 t ha?1), followed by that in HAR (205 t ha?1) and least in LAR (96 t ha?1). About 80 % of total woody biomass in trees and woodlots on farmland was useable biomass for fuelwood, indicating that the production of fuelwood on agricultural land was important. Woody biomass on agricultural land was higher than that in forest plantations, and was potentially sufficient to reduce the gap between fuelwood supply and demand when the entire agricultural area was taken into account. In order to achieve this on agricultural land, while contributing to food security and environmental conservation as well, smallholder farmers must be provided with incentives to grow woodlots and to adopt agroforestry systems, thereby considering the trade-offs with agricultural production. Strategies to encourage smallholder farmers to increase the use of agroforestry have to account for the farmers’ ecological and socioeconomic conditions.  相似文献   

3.
This paper examines how agroforestry-based farming systems evolved in the Dhanusha district of Nepal following the conversion of forest into agriculture during the early 1950s. Some data are from two focus group discussions with agroforestry farmers and one meeting with agroforestry experts. The farmers?? discussion traced the development of farming practices from 1950 to 2010 to identify the drivers of land use change. The experts?? discussion resulted in a scale to differentiate the prevailing farming systems in the study area considering five key components of agroforestry: agricultural crops, livestock, forest tree crops, fruit tree crops and vegetable crops. Data related to the system components were collected from the randomly selected households. The study reveals that land use had generally changed from very simple agriculture to agroforestry, triggered by infrastructure development, technological innovations, institutional support (subsidies and buy-back guarantees) and extension programs. A range of farming systems with varying degrees of integration was evident in the study area: simple agriculture; less integrated agroforestry; semi-integrated agroforestry and highly integrated agroforestry. The three types of agroforestry systems, which are the focus of this study, varied significantly in terms of farm size, cropping intensity, use of farm inputs, tree species diversity, tree density, home to forest distance and agricultural labour force.  相似文献   

4.
The role of land uses outside protected areas in conserving tropical biodiversity remains poorly understood and contested. This paper summarizes the results of plant and bird surveys conducted in three rural landscapes in the East Usambara Mountains of Tanzania, covering a gradient from Village forest reserves to tree-based and other agricultural land uses. The species richness and occurrence of conservationally important species across the land uses were analyzed. Twelve plots of 0.2 ha, stratified among land use types, were established to survey the large trees, with sub-plots of 1 × 40 m for tree saplings, shrubs and non-woody plants, and 5 × 40 m plots for small trees. Avian richness was measured in the same sites as the plants through mist netting and timed species counts. The village forests had higher plant species richness and more conservationally important plant species compared to other land uses. Agroforest and fallows supported a relatively high number of plant species, but the species composition was largely different to the adjacent village forests. Bird species of conservation importance were recorded across all land uses. Village forest reserves and some of the tree-based agricultural land uses were found to contribute to biodiversity conservation goals in tropical landscape mosaics. There is a need to better integrate them, and address their multiple functions, in village land-use planning and conservation efforts at the landscape level.  相似文献   

5.
A general classification of agroforestry practice   总被引:1,自引:0,他引:1  
Present classification schemes confuse agroforestry practices, where trees are intimately associated with agricultural components at a field scale, with the whole farm and forest systems of which they form a part. In fact, it is common for farming systems to involve the integration of several reasonably discrete agroforestry practices, on different types of land. The purpose of a general classification is to identify different types of agroforestry and to group those that are similar, thereby facilitating communication and the organized storage of information. A new scheme is proposed that uses the ‘practice’ rather than the ‘system’ as the unit of classification. This allows an efficient grouping of practices that have a similar underlying ecology and prospects for management. A two stage definition of agroforestry is proposed that distinguishes an interdisciplinary approach to land use from a set of integrated land use practices. Four levels of organization are recognized through analysis of the role of trees in agricultural landscapes: the land use system, categories of land use within systems, discrete groups of components (trees, crops, animals) managed together, and functionally connected groups of such discrete practices in time and space. Precedents for this form of analysis are found in the literature and it conforms with generally accepted methods of systems analysis. Classification of major types of agroforestry practice proceeds primarily according to the components involved and the predominant usage of land. A secondary scheme further classifies these in terms of the arrangement, density and diversity of the tree components involved. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The spatial pattern and abundance of herbaceous vegetation in semi-arid savannas are dictated by a complex and dynamic interaction between trees and grasses. Scattered trees alter the composition and spatial distribution of herbaceous vegetation under their canopies. Therefore, we studied the effect of Vachellia tortilis on herbaceous vegetation composition, biomass and basal area, and soil nutrients on sites with varying grazing intensities in the central rift valley of Ethiopia. Data were collected on species composition, cover and biomass of herbs and grasses, and soil moisture and nutrient contents under light,medium, and heavy grazing pressures, both under the inside and outside of V. tortilis canopies. Species richness was similar in both locations but decreased with increased grazing. Only the overall biomass and herb cover were significantly greater under the canopy than outside, and overall biomass showed significant unchanging decline with increased grazing. However, vegetation cover was significantly greater on moderately grazed sites compared to low and heavily grazed sites. All soil variables were significantly higher under V. tortilis canopies than outside.Our findings suggest that V. tortilis has more effect on composition and diversity of herbaceous vegetation than on species richness, and that V. tortilis promotes the herbaceous layer biomass by reducing soil moisture loss and increasing soil fertility under the inside than outside the canopies. Therefore, we suggest that management practices should be directed on reducing pressure on V. tortilis by regulating grazing. Low to moderate grazing levels(i.e., a stocking rate less than 39.6 TLU ha~(-1) yr~(-1)) seems to be tolerable to ensure sustainable conservation of the species in the study area in particular and in semi-arid savannas in general.  相似文献   

7.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

8.
In tropical regions where agricultural activities are limited, agroforestry is an alternative for both economic development and for the management and conservation of biodiversity. The potential role of different types of land use as reservoirs of dung beetle diversity in the wet tropical forest of the Pacific lowlands of Colombia is evaluated in three agroforestry systems that differ in canopy cover and the sowing density of Borojoa patinoi crops associated with timber forest. Although total species richness was similar among land use types, differences related to the decrease in the abundance and biomass of the species were remarkable, and reflected in turn by the diversity and structure of the guilds. The general pattern observed was one in which the structure of the dung beetle assemblage of B. patinoi growing below a diversified and permanent tree cover was similar to that of the primary and secondary forest. Beetle diversity in management systems with less tree cover or a high sowing density of B. patinoi was lower and very similar to that of abandoned agricultural fields. This suggests that B. patinoi agroforestry systems can be viewed as valuable instruments for biodiversity management and conservation in the wet tropical forests of the Pacific lowlands and not just as substitutes for forest, though we must be aware that structural changes in the beetle community may in turn affect the ecological processes regulated by these insects in the agrosystems under study.  相似文献   

9.
Biologically mediated soil processes rely on soil biota to provide vital ecosystem services in natural and managed ecosystems. However, land use changes continue to impact on assemblages of soil biota and the ecosystem services they provide. The objective of the present study was to assess the effect of land use intensification on the distribution and abundance of soil invertebrate communities in the Nilgiri, a human-dominated biosphere reserve of international importance. Soil invertebrates were sampled in 15 land use practices ranging from simple and intensively managed annual crop fields and monoculture tree plantations through less intensively managed agroforestry and pristine forest ecosystems. The lowest taxonomic richness was found in annual crops and coconut monoculture plantations, while the highest was in moist-deciduous and semi-evergreen forests. With 21 ant species, agroforestry systems had the highest diversity of ants followed by forest ecosystems (12 species). Earthworms and millipedes were significantly more abundant in agroforestry systems, plantations and forest ecosystems than in annual crop fields. Ants, termites, beetles, centipedes, crickets and spiders were more abundant in forest ecosystems than in other ecosystems. It is concluded that annual cropping systems have lower diversity and abundance of soil invertebrates than agroforestry and natural forest ecosystems. These results and the literature from other regions highlight the potential role that agroforestry practices can play in biodiversity conservation in an era of ever-increasing land use intensification and habitat loss.  相似文献   

10.
Tree species in agroforestry are important source of inoculum for companion agricultural crops. Agroforestry trees can serve as a source of Arbuscular mycorrhiza (AM) inoculants to intercropped annuals. We studied spore abundance, root colonization of Albizia gummifera (J.F. Gmel.) and Croton macrostachyus (Hochst Ex Del.) trees and their effect on colonization of maize. Soil and root samples were collected from field standing trees from under and outside the canopy of trees and maize crops in the main rainy season. The number of spore count was significantly higher under the canopy of A. gummifera (791/100 g of dry soil) and C. macrostachyus (877/100 g of dry soil) trees than outside the canopy (547 and 588/100 g of dry soil, respectively). The level of root colonization of C. macrostachyus (45 %) was higher than A. gummifera (41 %). Root colonization of maize crops grown under the canopy of A. gummifera and C. macrostachyus trees was significantly higher than outside the canopy (P < 0.001). Maize seedlings grown on non-sterilized soils collected under and outside the canopy of A. gummifera and C. macrostachyus trees recorded higher root colonization, plant height, shoot and root dry weight than grown on sterilized soils (P < 0.001). The percentage of AM colonized roots of Zea mays seedlings was significantly positively correlated with the number of spore counts for field soils. The rhizospheres of indigenous agroforestry perennial species are important source of inoculum for annuals. The integration of perennials and annuals in an agroforestry system enhances the maintenance of soil quality in the tropics.  相似文献   

11.
Some environmental problems, especially soil salinity hinder the regional sustainable development of eastern China coastal region. Salinity mainly comes from tide weave, seawater flooding and seawater intrusion. Over exploitation of groundwater,which is the result of unfitful land use systems, leads to seawater intrusion and salt concentration increase. Agroforestry systems can enrich soil fertility and prevent soil salinization, furthermore help maintain biodiversity and enhance productivity. For the intergrated multiple ecosystems the most critical issue is to select optimum tree species and rationally arrange these plants. The basics of this multiple ecosystem is that different plants will occupy variable ecological niches within an area, both in space and in soil depth.Shelterbelts and trees intercropping with agricultural crops are major types of the multiple ecosystem. Shelterbelts can reduce wind speed and consequently lessen evaporation and erosion of the soil, increase pasture growth by up to 60% on exposed sites, increase crop yields by up to 25%. Besides intercropping with jujube, other agroforestry multiple ecosystem such as forestry plus agriculture,forestry plus agriculture plus fishery, and forestry plus animal husbandry are the most appropriate ways to utilise land resource in this region.  相似文献   

12.
Formal Address     
Summary

A combination of social, economic and physical factors contribute to a decision to migrate for a peasant farmer. Seventy percent of Panamanian land comprises steep topography with low soil fertility. Campesinos (peasant farmers) must perpetually migrate when the land they have settled in the forest loses fertility. This process of continual migration results in deforestation and conversion of forest land to pasture land, which then becomes degraded and subsequently abandoned. Also, government policy has not favored the activities of small land owners, but loans from national banks have financed the promotion of large-scale cattle ranches.

Migration patterns consist of moving to a forested area, clearing it for agriculture for one to three years, and thereafter sowing it for pasture. These conditions eventually result in low agricultural and cattle production. Campesinos therefore sell the land to cattle ranchers who can afford to invest in better management practices. Deforestation in the Canal Watershed, therefore, has left a pattern of land ownership comprising a matrix of a few large landowners, within which remain numerous but small peasant land holdings.

A program for small land owners in and around the Watershed region that promotes social, cultural, and economic stability of land use is needed. Supporting and promoting agroforestry with uses of native tree species associated with subsistence and market crops is an alternative for slowing deforestation and promoting sedentary land use.  相似文献   

13.
Effects of three aspen (Populus tremuloides Michx.) canopy removal treatments and root trenching on understory microenvironment and moisture were tested at Parkland and Boreal sites in Alberta, Canada. Aspen canopies moderated air temperature by reducing maximums and increasing minimums, and increased the frost-free period in the understory by reducing radiative frosts. When daily differences were found among canopy treatments, maximum absolute humidity was greater with complete canopy removal. Maximum daily relative humidity was greater in openings at night than with either full or partial canopy cover. Predictably, increasing aspen cover reduced PAR reaching the understory. Soil moisture response was highly variable, changing with site, aspen density and precipitation patterns, but there were only marginal differences due to root trenching. In the Parkland site, soil moisture conservation from aspen canopy and leaf litter effects were masked by tree uptake in most periods, but a net increase in soil water (+5.2%) was observed during drought. Soil and microclimatic conditions in thinned aspen stands suggest potentially favourable production benefits from developing and adopting agroforestry systems in these northern ecosystems.  相似文献   

14.
Plant-soil interactions in multistrata agroforestry in the humid tropicsa   总被引:1,自引:0,他引:1  
Multistrata agroforestry systems with tree crops comprise a variety of land use systems ranging from plantations of coffee, cacao or tea with shade trees to highly diversified homegardens and multi-storey tree gardens. Research on plant-soil interactions has concentrated on the former. Tree crop-based land use systems are more efficient in maintaining soil fertility than annual cropping systems. Certain tree crop plantations have remained productive for many decades, whereas homegardens have existed in the same place for centuries. However, cases of fertility decline under tree crops, including multistrata agroforestry systems, have also been reported, and research on the causal factors (both socioeconomic and biophysical) is needed. Plantation establishment is a critical phase, during which the tree crops require inputs but do not provide economic outputs. In larger plantations, tree crops are often established together with a leguminous cover crop, whereas in smallholder agriculture, the initial association with food crops and short-lived cash crops can have both socioeconomic and biological advantages. Fertilizers applied to, and financed by, such crops can help to `recapitalize' soil fertility and improve the development conditions of the young tree crops. Favorable effects on soil fertility and crop nutrition have been observed in associations of tree crops with N2-fixing legume trees, especially under N-deficient conditions. Depending on site conditions, the substitution of legume `service' trees with fast-growing timber trees may lead to problems of competition for nutrients and water, which may be alleviated through appropriate planting designs. The reduction of nutrient leaching and the recycling of subsoil nutrients are ways to increase the availability of nutrients in multistrata systems, and at the same time, reduce negative environmental impacts. These processes are optimized through fuller occupation of the soil volume by roots, allowing a limited amount of competition between associated species. The analysis of temporal and spatial patterns of water and nutrient availability within a system helps to optimize the use of soil resources, e.g., by showing where more plants can be added or fertilizer rates reduced. Important research topics in multistrata agroforestry include plantation establishment, plant arrangement and management for maximum complementarity of resource use in space and time, and the optimization of soil biological processes, such as soil organic matter build-up and the stabilization and improvement of soil structure by roots, fauna and microflora. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
A study was conducted in Madhupur sal forest of Tangail, Bangladesh to identify the suitable agroforestry practices of the area. Considering the ecological aspects of different agroforestry practices 10 sample plots (10 m × 10 m) from each land uses were taken, including natural forest to get a comparative scenario. The study showed that among the different agroforestry practices, Margalef and Shannon-Weiner index values are the maximum for pineapple agroforestry and lower for banana agroforestry, and Evenness index value is the maximum for lemon agroforestry. Determination of tree biomass in different land uses revealed that it is highest (3 078.6 kg/100 m2) in natural forest followed by pineapple agroforestry, lemon agroforestry and banana agroforestry. Soil pH, moisture content, organic matter, organic carbon, phosphorus and total nitrogen showed statistically significant variation while bulk density, particle density, sulphur and potassium did not show any statistically significant variation among the land uses. Soil fertility status showed that pineapple agroforestry is more fertile than rest of other land uses. The Net Present Value (NPV) indicated that banana agroforestry is financially more profitable than other two systems, while the Benefit-Cost ratio (BCR) is higher in pineapple agroforestry (4.21 in participatory agroforestry and 3.35 in privately managed land). Even though banana agroforestry gives higher NPV, capital required for this practice is much higher. The findings suggest that pineapple agroforestry has a tendency towards becoming ecologically and economically more sound than other two practices as it has better ecological attributes and required comparatively low investment.  相似文献   

16.
Gender is often a useful distinction for analysis and project design, but in some cases it is too narrowly applied to capture some of the fundamental differences among female producers. Evaluating agroforestry practices in the Siaya and South Nyanza districts of Kenya, the authors argue that, in designing agroforestry interventions and assessing policy or program impacts, there is a need to go beyond simple gender distinctions and look at additional stratifiers such as the individual producer's access to resources, including use rights and control over the benefits from and use of a particular resource. Furthermore, the study reveals some of the difficulties in separating activities and effects by gender in households where agroforestry decisions are often joint. The results of their study show that species choice, tree product marketing and use, and the employment or soil conservation and fertility management practices arenot clearly differentiated by gender, but rather, more variable across the marital status of women.  相似文献   

17.
Agroforestry in the Czech Republic has vanished both from the landscape and public conscience. That raises questions about its history and fate; there are examples of this land use type from all neighbouring countries. The article looks at the record of such systems in a historical land tax survey, the Franciscan cadastre made in the Czech Republic in the mid nineteenth century. With this source, patterns of preindustrial-era subsistence systems were analysed in a considerable part of what is now the Czech Republic. Any correlation among occurrences of various land uses (including agroforestry cultures) and influences of chosen natural and cultural factors was statistically tested and further visualised by multivariate analysis. The main existing agroforestry types and their historical distribution were investigated. The results have shown that cropland with fruit trees, and meadows, and pastures with either fruit trees or wood use, were a common part of Czech countryside in the mid-nineteenth century. Some agroforestry plots were found in the 1689 total studied cadastral areas. The types of agroforestry and the overall subsistence patterns were attuned to elevation, soil fertility, population density, and the dominant language group of the inhabitants. Cropland and pastures with fruit trees were associated with more fertile inland lowlands with sound infrastructure and prevalently Czech inhabitants (so-called ‘old settlement’ areas), wood meadows and pastures with cadastral units located in border regions at higher elevations characterised by lower soil fertility, a greater ratio of coniferous forests and predominantly inhabited by Czech Germans. Traditional agroforestry, as is discussed, however, did not survive the industrialisation of agriculture.  相似文献   

18.
ABSTRACT

In the arid, low biomass producing areas of Ethiopia, Acacia woodlands suffered a severe degradation due to exploitation for various uses, and conversion to grazing and cultivated lands. However, little is known on the impact of agricultural land uses on soil organic carbon (SOC), total nitrogen (TN) stocks, and other soil quality indicators. This study was planned to evaluate SOC and TN stock changes under parkland agroforestry (PAF), managed pastureland (MPL), and treeless cropland (TLCL) regimes by considering the remnant protected woodland (PWL) as a reference. We found that SOC and TN stocks were significantly higher in PWL and MPL areas. Conversion of Acacia woodlands to MPL, PAF, and TLCL resulted in the loss of SOC stock by 23, 50, and 56%, respectively. Higher SOC and TN stocks were found under PWL (144.3 Mg ha?1) and MPL (108.2 Mg ha?1). Significant changes in available phosphorous (P), exchangeable cations, and cation exchangeable capacity were observed following the woodland conversion to different land use types. Available P was the highest in MPL compared with the other land use regimes. Within the study area, the MPL land use type was the best land management option for protecting SOC and TN soil stocks.  相似文献   

19.
Agroforestry systems are widely practiced in tropical forests to recover degraded and deforested areas and also to balance the global carbon budget. However, our understanding of difference in soil respiration rates between agroforestry and natural forest systems is very limited. This study compared the seasonal variations in soil respiration rates in relation to fine root biomass, microbial biomass, and soil organic carbon between a secondary forest and two agroforestry systems dominated by Gmelina arborea and Dipterocarps in the Philippines during the dry and the wet seasons. The secondary forest had significantly higher (p < 0.05) soil respiration rate, fine root biomass and soil organic matter than the agroforestry systems in the dry season. However, in the wet season, soil respiration and soil organic matter in the G. arborea dominated agroforestry system were as high as in the secondary forest. Whereas soil respiration was generally higher in the wet than in the dry season, there were no differences in fine root biomass, microbial biomass and soil organic matter between the two seasons. Soil respiration rate correlated positively and significantly with fine root biomass, microbial biomass, and soil organic C in all three sites. The results of this study indicate, to some degree, that different land use management practices have different effects on fine root biomass, microbial biomass and soil organic C which may affect soil respiration as well. Therefore, when introducing agroforestry system, a proper choice of species and management techniques which are similar to natural forest is recommended.  相似文献   

20.
ICRAF's main contributions to research related to soils have been a symposium, Soils Research in Agroforestry; a review of soil productivity aspects of agroforestry; a further review of the potential of agroforestry for soil conservation, covering both erosion control and maintenance of fertility; the construction of a computerized model to predict soil changes under agroforestry systems; and a handbook of practical methods of agroforestry for soil and water conservation in dryland Africa. In research on land evaluation, an environmental data base has been established, leading to a capacity to obtain information, for environmental conditions similar to those of a given site or area, on publications, multipurpose trees, crops, existing agroforestry systems and current experimental work. Land evaluation for agroforestry cannot be achieved merely by synthesis of methods from agriculture and forestry, but will require more data on the performance of agroforestry land utilization types. Recognition of problems of environmental degradation has become an integral part of planning for agroforestry research. By means of a partial synthesis between land evaluation and diagnosis and design, a procedure of site selection for agroforestry research and development has been established.Principal Scientist, ICRAF  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号