首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to compare the allometric equations and biomass expansion factors (BEFs) of six dominant evergreen broad-leaved trees (Camellia japonica L, Castanopsis sieboldii Hatus, Quercus acuta Thunb, Q. glauca Thunb, Machilus thunbergii S. et Z., and Neolitsea sericea Koidz) in subtropical forests. A total of 86 trees were destructively sampled to quantify the aboveground biomass of each tree component (i.e., leaves, branches, and stem). Species-specific or generalized allometric equations and species-dependent BEFs were developed for each tree component of the six broad-leaved forest trees. Species-specific allometric equations were significant (P < 0.05), with the diameter at breast height (DBH) accounting for 68–99% of the variation, whereas generalized allometric equations explained 64–96% of the variation. The values of stem density ranged broadly from 0.49 g cm?3 for C. sieboldii to 0.79 g cm?3 for Q. glauca, with a mean value of 0.68 g cm?3. The BEFs were significantly (P < 0.05) lower for C. sieboldii (1.25) than for M. thunbergii (2.02). Stem density and aboveground BEFs had a significant negative relationship with tree ages. The results indicate that species-specific allometric equations and species-dependent BEFs are applicable for obtaining accurate biomass estimates of subtropical evergreen broad-leaved forests.  相似文献   

2.
Tropical forests are the world’s largest terrestrial storehouses of carbon and are recognized as rich, diverse and highly productive ecosystems. The present study was conducted to characterize the land use, diversity and biomass of tropical forest in Western Ghat of Maharashtra State in India through satellite remote sensing and GIS. The study has been designed and implemented to promote analysis on Western Ghat biodiversity resources including trees, shrubs and herbs based on inventorying, monitoring and mapping. Field measured biomass is integrated with spectral responses of various bands and indices of the Landsat TM satellite image for estimation of above-ground biomass in a 36,046 km2 area of relic forest in the Central Western Ghat. The above-ground biomass from field-based inventory varied from 30.2 to 151.1 ton/ha in moist deciduous forest, 9.2–99.1 ton/ha in dry deciduous forest, 42.1–158.6 ton/ha in semi-evergreen forest, and 160.9–271 ton/ha in evergreen forest. The total above-ground biomass of the study area was estimated to be 95.2 M tons. A regression equation between field above-ground biomass and a Normalized Difference Vegetation Index was used for spectral modeling to estimate and prepare the above-ground biomass map in the region. A total 120 plant species in 81 genera and 31 families were identified in the study area. This study emphasizes the importance of relic forests for their biodiversity, carbon sequestration and total biomass.  相似文献   

3.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

4.
Temperate and boreal forests act as major sinks for atmospheric CO2. To assess the magnitude and distribution of the sinks more precisely, an accurate estimation of forest biomass is required. However, the determinants of large-scale biomass pattern (especially root biomass) are still poorly understood for these forests in China. In this study, we used 515 field measurements of biomass across the northeast part of China, to examine factors affecting large-scale biomass pattern and root–shoot biomass allocation. Our results showed that, Picea & Abies forest and coniferous & broadleaf mixed forest had the highest mean biomass (178–202 Mg/ha), while Pinus sylvestris forest the lowest (78 Mg/ha). The root:shoot (R/S) biomass ratio ranged between 0.09 and 0.67 in northeast China, with an average of 0.27. Forest origin (primary/secondary/planted forest) explained 31–37% of variation in biomass (total, shoot and root), while climate explained only 8–15%, reflecting the strong effect of disturbance on forest biomass. Compared with shoot biomass, root biomass was less limited by precipitation as a result of biomass allocation change. R/S ratio was negatively related to water availability, shoot biomass, stand age, height and volume, suggesting significant effects of climate and ontogeny on biomass allocation. Root–shoot biomass relationships also differed significantly between natural and planted forests, and between broadleaf and coniferous forests. Shoot biomass, climate and forest origin were the most important predictors for root biomass, and together explained 83% of the variation. This model provided a better way for estimating root biomass than the R/S ratio method, which predicted root biomass with a R2 of 0.71.  相似文献   

5.
The African tulip tree, Spathodea campanulata, the most common tree in Puerto Rico, forms novel forest types with mixtures of native and other introduced tree species. Novel forests increase in area in response to human activity and there is no information about their biomass accumulation and nutrient cycling. We established allometric relationships and chemically analyzed plant parts of African tulip trees to determine the concentration and standing stock of chemical elements (C, N, P, K, Ca, Mg, S, Mn, Al, Fe, Na), and ash. Trees ranged in diameter at breast height from 8 to 85 cm and in height from 8.8 to 28 m. The concentrations of N, P, K, and Ca in leaves of the African tulip tree were similar to those of the native pioneer Cecropia schreberiana and higher than those of mature forest tree species in Puerto Rico. The over bark wood volume of African tulip trees in nine forest stands where it was dominant ranged from 163 to 849 m3/ha. Aboveground biomass ranged from 60 to 296 Mg/ha, and N and P stocks ranged from 190 to 988 and 32 to 137 kg/ha, respectively. Novel forests on abandoned agricultural lands can store more biomass and elements than native and plantation forest stands of similar age.  相似文献   

6.
This study estimates the carbon stock of Banja Forest which is natural and dry Afromontane forest type in Banja District, northwest of Ethiopia. A systematic sampling method was used to identify each sampling point through the Global Positioning System. A total of 63 plots measuring 20 × 20 m were employed to collect tree species and soil data. Losses on ignition and the Walkley–Black method were used to estimate biomass and soil carbon stock, respectively. The carbon stock of trees was estimated using an allometric equation. The results revealed that the total carbon stock of the forest was 639.87 t/ha whereas trees store 406.47 t/ha, litter, herbs, and grasses (LHGs) 2.58 t/ha and soil 230.82 t/ha (up to 30 cm depth). The carbon pools’ carbon stock variation with altitude and slope gradients were not significant (p > 0.05) which was similar to other previous studies. The Banja Forest is a reservoir of high carbon and thus acts as a great sink of the atmospheric carbon. It can be concluded that the Forest plays a role in climate change mitigation. Hence, it should be integrated with reduced emission from deforestation and degradation (REDD+) and the clean development mechanism (CDM) of the Kyoto Protocol to catch monetary benefits.  相似文献   

7.
[Objective]To study the leaf calorific value of different forest types.[Method]This study focused on four common forest types widely distributed across China, including boreal coniferous forest, warm temperate deciduous broad-leaved forest, subtropical evergreen broad-leaved forest, and tropical monsoon forest. The leaf calorific values of 175 dominant (or common) tree species were measured. The leaf calorific value characteristics of the trees found in the different forest types were analyzed, and the primary factors affecting leaf calorific value were investigated, including leaf morphological traits, nutrient elements, climate, and soil traits. [Result]The results showed that in these forest types, the leaf calorific values ranged from 14.84 to 21.98 KJ·g-1, with an overall mean of 19.06 KJ·g-1. The presence of organisms appeared to affect the leaf calorific value, which differed among forest types as follows: coniferous trees > broadleaf trees or evergreen trees > deciduous trees. [Conclusion]The latitudinal pattern of tree leaf calorific value, ordered from north to south, is as follows: warm temperate deciduous broad-leaved forest > subtropical evergreen broad-leaved forest > tropical mountain rainforest. The mean leaf calorific value of boreal coniferous forest was slightly lower than those of warm temperate deciduous broad-leaved forest and subtropical evergreen broad-leaved forest. The leaf calorific values were significantly correlated with leaf carbon content (R2= 0.89, P<0.001). A multiple regression equation was established to describe the relationships among leaf calorific value, leaf carbon content, leaf nitrogen content, and leaf thickness.  相似文献   

8.
Standing and downed deadwood at different stages of decay provides a crucial habitat for a wide range of organisms. It is particularly abundant in unmanaged forests, such as strictly protected areas of national parks and nature reserves. The present work used the available data for such sites in Poland, analyzing a total of 113 studies concerning 79 sites to determine the causes contributing to variation in deadwood volume based on the duration of conservation, changes in deadwood volume over time (for those sites which were examined multiple times), elevation above sea level, forest type, stage of forest development, input of dead trees from the years preceding deadwood measurements, live tree volume, and the proportion of downed to standing deadwood). Depending on species composition and site altitude, most tree stands fell into one of four categories: subalpine spruce forests, montane beech-fir forests, low altitude beech-fir forests, or oak-hornbeam and riparian forests. The mean deadwood volume for all forest types amounted to 172.0 m3/ha. The mean volume of deadwood in montane beech-fir forests (223.9 m3/ha) was statistically significantly greater than in the other three forest types, for which it ranged from 103.5 to 142.5 m3/ha. A direct effect of the duration of conservation on deadwood volume was not identified. Nevertheless, analysis of repeated measurements on the same sample plots at 10-year intervals showed a consistent rise in mean deadwood volume. A linear regression model for all the analyzed factors reported from montane beech-fir forests and subalpine spruce forests showed that in addition to site altitude, another statistically significant variable was the input of dead trees (R2?=?63.54%).  相似文献   

9.
Five Armillaria species were identified in a nationwide survey in Greece. Armillaria mellea was present in coniferous and broad-leaved forests in most of the areas examined, except the high altitudes (above 1100 m) of the mountains of north Greece. It was found to cause significant damage in fir forests as well as in fruit orchards and vineyards. Armillaria gallica was common in coniferous and broad-leaved forests in the high altitudes of central and northern Greece, predominating in the beech forests. The fungus was a weak parasite or a saprophyte of forest trees and was occasionally found on cultivated plants. Armillaria ostoyae was not found in southern and central parts of the country, but it has a wide distribution in the mountain forests of northern Greece and causes significant damage on fir, black pine, Scots pine and spruce. Armillaria cepistipes was recorded at high altitudes (1400–1800 m) on two mountains of northern Greece, mostly as a saprophyte in coniferous and broad-leaved forests. Armillaria tabescens was rare in the forests of Greece; it was found to cause disease in almond tree orchards.  相似文献   

10.
In the modern forestry paradigm, many factors influence the amount of coarse woody debris (CWD). The present paper analyzes the effects of both local (national) programs (special functions of forests) and European programs (Natura 2000 sites), as well as the individual characteristics of forest stands. The study was conducted on 2,752 sampling plots distributed over an area of about 17,500 ha and located in lowland stands having a species composition typical of large areas in central Europe. Natura 2000 areas contained significantly more CWD (8.4 m3/ha) than areas not covered by the program (4.8 m3/ha). However, this is due to the fact that Natura 2000 sites involve well-preserved forest areas, such as nature reserves (26.6 m3/ha). In the managed forests that have been covered by the Natura 2000 program over the past several years, the volume of CWD has not increased. Forests with ecological and social functions differed slightly in the amount of CWD. More CWD occurred in protected animal areas (8.7 m3/ha) than in stands damaged by industry (3.9 m3/ha). Intermediate CWD levels were found in water-protection forests and in forests located around cities and military facilities. In managed forests, the lowest CWD volume was observed in middle-aged stands. The species composition of the stand had little effect on the volume of CWD. Only stands with a predominance of ash and alder had higher CWD levels (13.5 m3/ha). More CWD was found in stands whose species composition did not represent the potential site quality (6.4 m3/ha) than in habitats with the optimum species composition (3.8 m3/ha). CWD volume should be systematically increased taking into consideration local natural conditions. Such efforts should be focused on particularly valuable regions, and especially on Natura 2000 sites, where the threshold values reported from other European forests should be reached. Leaving some trees to die naturally and retaining reasonable amounts of such trees ought to be incorporated into CWD management practice in Poland.  相似文献   

11.
Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha~(-1),481.47 to 565.40 Mg ha~(-1) C,1240 to 1320 stem ha~(-1) and79.43 to 90.64 m~2 ha~(-1),respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.  相似文献   

12.
Forest ecosystems play a major role in atmospheric carbon sequestration and emission. Comparable organic carbon stock estimates at temporal and spatial scales for all forest pools are needed for scientific investigations and political purposes. Therefore, we developed a new carbon stock (CS) estimation procedure that combines forest inventory and soil and litter geodatabases at a regional scale (southern Belgium). This procedure can be implemented in other regions and countries on condition that available external carbon soil and litter data can be linked to forest inventory plots. The presented procedure includes a specific CS estimation method for each of the following forest pools and subpools (in brackets): living biomass (aboveground and belowground), deadwood (dead trees and snags, coarse woody debris and stumps), litter, and soil. The total CS of the forest was estimated at 86 Tg (185 Mg ha?1). Soil up to 0.2 m depth, living biomass, litter, and deadwood CSs account, respectively, for 48, 47, 4, and 1 % of the total CS. The analysis of the CS variation within the pools across ecoregions and forest types revealed in particular that: (1) the living biomass CS of broadleaved forests exceeds that of coniferous forests, (2) the soil and litter CSs of coniferous forest exceed those of broadleaved forests, and (3) beech stands come at the top in carbon stocking capacity. Because our estimates differ sometimes significantly from the previous studies, we compared different methods and their impacts on the estimates. We demonstrated that estimates may vary highly, from ?16 to +12 %, depending on the selected methods. Methodological choices are thus essential especially for estimating CO2 fluxes by the stock change approach. The sources of error and the accuracy of the estimates were discussed extensively.  相似文献   

13.
The status of woody plants in dry-land systems is a fundamental determinant of key ecosystem processes. Monitoring of this status plays an important role in understanding the dynamics of woody plants in arid and semi-arid ecosystems. The present study determined the dynamism of the Zagros forests in Iran using Remote Sensing and Geographic Information System techniques and statistical science. The results show that the density of trees varied from 10 to 53 % according to the physiographic and climatic conditions of semi-arid regions. The best and lowest correlation between vegetation indices and forest density were obtained for the global environmental monitoring index (GEMI; R 2 = 0.94) and soil adjust vegetation index (R 2 = 0.81), respectively. GEMI is used to monitor land use changes over a 10-year period. Results show that 2720 ha2 of forest have been destroyed by human interference and tillage on steep slopes during this period which also resulted in the loss of the fertile soil layer. GEMI determined the areas with a biomass of trees and could normally separate border regions with low biomass density of trees from regions without canopy cover. The results revealed that assessment of forest and vegetation cover in arid and semi-arid arduous forest regions using satellite digital numbers and ordinary sampling is subject to uncertainty. A stratified grouping procedure should be established to increase the accuracy of assessment.  相似文献   

14.
Abstract

In this study, I defined a gap as a small opening formed in a forest canopy (area < 0.1 ha) and tried to synthesize gap-disturbance regimes of primary mature stands in different forest types of Japan, such as warm temperate evergreen broad-leaved (4 stands in 3 localities), cool temperate deciduous broad-leaved (10 in 5) and subalpine evergreen coniferous (3 in 1) forests. Mean percentage of the total gap area within the total forested area (percentage gap area) in each forest type was 17.0% in warm temperate (number of surveyed gaps was 161), 13.8% in cool temperate (278 gaps), and 8.0% in subalpine (100 gaps) forests. Mean gap density (ha-1) and mean gap size (m2) were 19.5 and 77.1 in warm temperate, 16.4 and 92.0 in cool temperate, and 19.1 and 41.9 in subalpine forests, respectively. These figures indicate that gap density is not substantially different among the forest types, but the mean gap size of subalpine forests is smaller than the other two, resulting in lower percentage gap area of this forest type. The gap size distributions were similar among the forest types; smaller gaps were much more frequent than larger ones, and gaps > 400 rrr were rare in warm temperate and cool temperate forests. In subalpine forests gaps > 200 m2 were rare. Gaps formed by multiple gapmakers comprised 19.9% of all gaps in warm temperate, 9.9% in cool temperate, and 44.9% in subalpine forests, which implies that gap formation by simultaneous tree fall or gap enlargement is more frequent in subalpine forests. Canopy trees died less often by uprooting in every forest type; dominant mode for the death of canopy trees was by leaving standing-dead or with broken trunks in every forest type. Since typhoons are obviously a chief agent of forest disturbance in Japan, frequency or magnitude of typhoon disturbance may influence these differences in the gap-disturbance regimes. In addition to the disturbance, tree architectures seem to affect some of these differences; narrower crown size of conifers compared with broad-leaved trees is considered one major cause for smaller gap size of the conifer forest.  相似文献   

15.
Abstract

This paper presents estimations of aboveground tree biomass (combined for boles and branches) in Nepal's Schima-Castanopsisdominated warm-temperate forests. The biomass estimations are presented for five forest stands purposively sampled in a larger study to represent different harvesting intensities. Two categories of biomass estimates are provided: (1) for living trees that are standing, and (2) for cut trees that have been removed. Biomass of standing trees were estimated by using diameter at breast height (dbh) and total height measurements as predictor variables in appropriate regression models. Biomass of cut trees were estimated in two steps: measurements of stump diameters and heights were used first to predict dbh and total heights of cut trees; these values were then regressed to obtain biomass estimates for the missing trees. Data were gathered from 2,361 live trees and 2,962 stumps in 170 sample plots across the five forest stands. Estimates of mean standing-alive biomass ranged from a minimum of 16 ton/ha in the severely disturbed forest to a maximum of 479 ton/ha in a relatively undisturbed (reference) forest. Estimates of mean cut biomass ranged from a minimum of 24 ton/ha in a second reference forest to a maximum of 183 ton/ha in the severely disturbed forest. The biomass estimates in the relatively-undisturbed, reference forests are well above the 95% upper confidence interval of the global mean. Similar findings of high productivity have been reported for temperate forests of the Central Himalaya in India and Eastern Himalaya in Sik-kim. The findings of this study in the Nepalese Central Himalaya support the conclusion that productivity potential is high in the temperate Himalayan forests. The study's findings and methodology should be useful for preliminary development of guidelines in the region to regulate forest biomass growth, yield, and harvest.  相似文献   

16.
17.
Abstract

The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

18.
We selected sites of natural broad-leaved forests and adjacent coniferous plantations (Cunninghamia konishii and Calocedrus formosana of 30 and 80 years old, respectively) in central Taiwan to evaluate the effects of plantations on soil organic matter (SOM) characteristics and composition. SOM was characterized by chemical analyses, solid-state 13C cross-polarization magic-angle nuclear magnetic resonance (CPMAS 13C NMR), and optical measurements. Semiquantitative analysis of CPMAS 13C NMR spectra showed the litter of broad-leaved forests to be less resistant to decomposition than that of coniferous forests. The humification degree of SOM was higher under broad-leaved than coniferous forests because of the relatively high percentage of aromatic C and carboxyl C in the humic acids (HAs) of A horizons under broad-leaved forests. Additionally, the E 4/E 6 ratio of HAs was lower in the A horizon under broad-leaved than coniferous forests, which reflected more condensation of SOM. High alkyl C content under coniferous forests could be attributed to needle litter quality, which has a high content of waxes or lipids. Afforestation with conifers induced accumulation of the litterfall layer, gradually increased SOM concentrations, and changed the composition structures of SOM in the topsoils.  相似文献   

19.
In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconiferous boreal taiga. We compared measured carbon pools to those calculated from the forest inventory records containing volume stock and species composition data. The inventory data heavily underestimated the pools in the study area(Stolby State Nature Reserve, central Krasnoyarsk Territory, Russian Federation). The carbon pool estimated from the forest inventory data varied from 25(t ha-1)(low-density stands) to 73(t ha-1)(highly stocked stands). Our estimates ranged from 59(t ha-1)(lowdensity stands) to 147(t ha-1)(highly stocked stands). Our values included living trees, standing deadwood, living cover, brushwood and litter. We found that the proportion of biomass carbon(living trees): soil carbon varied from99:1 to 8:2 for fully stocked and low-density forest stands,respectively. This contradicts the common understanding that the biomass in the boreal forests represents only16–20 % of the total carbon pool, with the balance being the soil carbon pool.  相似文献   

20.
We surveyed the forest litter amount at the Lianxiahe watershed in the Three Gorges Reservoir Area and analyzed some hydrological characteristics such as the maximum water-holding capacity and water absorption rate of litter in six types of forests, i.e. the Cupressus funebris forest, the coniferous mixed forest, the coniferous and broad-leaved mixed forest, the broad-leaved forest, the Pinus massoniana forest, the bush forest. Results showed that the litter amount follows the order of the coniferous and broad-leaved mixed forest > the pure C. funebris forest, the P. massoniana forest > the coniferous mixed forest > the broad-leaved forest > the bush forest. The maximal water holding capacity of the undecomposed litter is in the order of the C. funebris forest > the coniferous mixed forest > the bush forest > the coniferous and broad-leaved mixed forest > the broad-leaved forest > the P. massoniana forest. The maximal water-holding capacity of the half-decomposed litter is the P. massoniana forest > the coniferous and broad-leaved mixed forest > the C. funebris forest > the coniferous mixed forest > the broad-leaved forest > the bush forest. In this watershed, the water holding capacity of the litter in the C. funebris forest is the highest, followed by the coniferous mixed forest, coniferous and broad-leaved mixed forest, P. massoniana forest, broad-leaved forest and bush forest. When the soil is covered only by litter, both the maximal rainfall amount and intensity in different forest stands are different if there is no water infiltration and runoff from the ground surface. __________ Translated from Journal of Huazhong Agricultural University, 2005, 27(2): 207–212 [译自: 华中农业大学学报, 2005, 24(2): 207–212]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号