首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil salinity reduces cotton growth, yield, and fiber quality and has become a serious problem in the arid southwestern region of the Unites States. Development and planting of salt-tolerant cultivars could ameliorate the deleterious effects. The objective of this study was to assess the genetic variation of salt tolerance and identify salt tolerant genotypes in a backcross inbred line (BIL) population of 142 lines from a cross of Upland (Gossypium hirsutum) × Pima cotton (G. barbadense) at the seedling growth stage. As compared with the non-saline (control) conditions, seedlings under the salinity stress (200 mM NaCl) showed a significant reduction in all the plant growth characteristics measured, as expected. Even though the two parents did not differ in salt response as measured by percent reduction, significant genotype variations in the BIL population were detected for all traits except for leaf number. Based on percent reduction of the traits measured, several BILs were more salt tolerant than both parents. The results indicate that transgressive segregation occurred during the process of backcrossing and selfing even though both parents were not salt tolerant during seedling growth. Coefficients of correlation between all the traits were significantly positive, indicating an association between the traits measured. The estimates of broad-sense heritability were 0.69, 0.46, 0.47, 0.43, and 0.49 for plant height, fresh weight of shoot and root, and dry weight of shoot and root, respectively, indicating that salt tolerance during cotton seedling growth is moderately heritable and environmental variation plays an equally important role. The overall results demonstrate that backcrossing followed by repeated self-pollination is a successful strategy to enhance salt tolerance at the seedling stage by transferring genetic factors from Pima to Upland cotton.  相似文献   

2.
Maize (Zea mays L.) is susceptible to salinity but shows genotypic variation for salt tolerance. How maize genotypes with contrasting root morphological traits respond to salt stress remains unclear. This study assessed genotypic variation in salinity tolerance of 20 maize genotypes with contrasting root systems exposed to NaCl for 10 days (0, 50 mM or 100 mM NaCl, added in four increments every other day from 14 days after transplanting, DAT) in a semi-hydroponic phenotyping system in a temperature-controlled greenhouse. Considerable variation was observed for each of the 12 measured shoot and root traits among the 20 genotypes under NaCl treatments. Salt stress significantly decreased biomass production by up to 54% in shoots and 37% in roots compared with the non-saline control. The 20 genotypes were classified as salt-tolerant (8 genotypes), moderately tolerant (5) and salt-sensitive (7) genotypes based on the mean shoot dry weight ratio (the ratio of shoot dry weight at 100 mM NaCl and non-saline control) ± one standard error. The more salt-tolerant genotypes (such as Jindan52) had less reductions in growth, and lower shoot Na+ contents and higher shoot K+/Na+ ratios under salt stress. The declared salt tolerance was positively correlated with shoot height, shoot dry weight and primary root depth, and negatively correlated with shoot Na+ content at 100 mM NaCl. Primary root depth is critical for identifying salt responsiveness in maize plants and could be suggested as a selection criterion for screening salt tolerance of maize during early growth. The selected salt-tolerant genotypes have potentials for cultivation in saline soils and for developing high-yielding salt-tolerant maize hybrids in future breeding programmes.  相似文献   

3.
Screening for drought tolerance is severely handicapped by the lack of a simple and reliable phenotyping technique. The objective of this study was to develop a new screening technique based on seedling survivability, drought tolerance score, root and shoot length, and fresh and dry weight of roots and shoots of lentil plants exposed to drought under hydroponic conditions. Its effectiveness was compared with two soil culture techniques. The hydroponic technique involved removing 15‐day‐old seedlings of 80 genotypes from the nutrient solution and exposing them to air for 5 h daily for 6 days. Three genotypes received from ICARDA, ‘ILL‐10700’, ‘ILL ‐ 10823’ and ‘FLIP‐96‐51’, showed maximum seedling survivability and minimum reduction in the growth parameters with a drought score of 0.0–0.2 indicating higher tolerance to drought stress, while Indian genotypes ‘JL‐3’, ‘E‐153’ and ‘VL‐507’ showed no seedling survivability and maximum reduction in growth parameters with a drought score of 4.0 indicating low drought tolerance. The results suggest that this new phenotyping technique is effective, rapid and easy for screening a large number of genotypes.  相似文献   

4.
Phosphorus (P) deficiency is a major abiotic stress that limits plant growth and crop productivity throughout the world. In the present study, 184 recombinant inbred line (RIL) families developed from soybean varieties Kefeng No. 1 and Nanong 1138-2 were used to identify quantitative trait loci (QTL) associated with P deficiency tolerance. Seven traits of plant height (HT), weight of fresh shoot (FSW), weight of fresh root (FRW), weight of dry root (DRW), length of main root (RL), phosphorus content in leaf (LP), phosphorus content in root (RP), were used as parameters to assess the phosphorus deficiency tolerance. The QTL mapping for the seven traits was performed using the program WinQTLCart. Seven QTLs were detected and mapped on two linkage groups for three traits of weight of fresh shoot, phosphorus contents in leaf and in root. The QTLs that had LOD scores more than three were detected for all of the three traits above. Most of the QTLs explained more than 10% of the total variation. The two QTLs for phosphorus content in leaf explained more than 20% of the total variation, respectively. Five QTLs were mapped on linkage group F2, and two on linkage F1. It was suggested that the genes related to phosphorus deficiency tolerance located on linkage group F in soybean.Contributed equally to this work.  相似文献   

5.
不同小麦品种芽期耐盐性鉴定研究   总被引:1,自引:1,他引:0  
为研究不同小麦品种在芽期的耐盐性,本研究以6 种小麦品种为研究对象,用不同浓度NaCl (盐浓度分别为0%(CK)、1%、1.5%、2.0%)胁迫处理后,分别测定并分析小麦芽期的发芽率、芽长、根长、芽鲜重。试验结果表明:在盐胁迫下,不同小麦品种随着盐浓度的升高,小麦的发芽率、芽长、根长、芽鲜重都随之降低。其中,在高盐(1.5% NaCl)处理下,‘宁春4 号’、‘Drasdal’在芽期比较敏感,‘红芒麦’、‘毛火麦’在芽期表现出一定的耐盐性,‘宁春27号’、‘山融3号’表现出比较强的耐盐性。因此,在高盐胁迫下‘宁春27号’、‘山融3号’芽期具有较强的耐盐性。  相似文献   

6.
PI471938是从美国引进的大豆耐萎蔫抗旱种质资源。为更好了解和利用该材料,分别在灌水和干旱胁迫条件下比较PI471938与普通大豆品种Dare、丰收黄根系及地上部性状的差异,并配制杂交组合,构建分离群体,利用主基因-多基因混合遗传模型分析杂交后代根系性状的遗传规律。结果表明,在正常灌水和干旱处理条件下,PI471938的根干重、根体积、主根长均显著高于Dare和丰收黄(P<0.01),说明根系发达是PI471938耐萎蔫的重要原因。供试亲本和各世代材料的株高、地上部干重均与根干重及根体积显著正相关,可作为对根系性状进行间接选择的指标。在Dare×PI471938杂交组合的F2代,不论在灌水还是干旱条件下,根干重均以微效多基因控制为主,主基因遗传率较低;根体积在灌水条件下表现多基因遗传,而在干旱条件下则由2对加性-显性-上位性主基因+加性-显性多基因控制,主基因遗传率为54.63%。在干旱条件下,丰收黄 × PI471938组合的根干重、根体积均以多基因控制为主。以在干旱条件下种植的Dare×PI471938组合的F2代群体为材料,采用SSR标记对大豆根系及地上部性状进行QTL定位,检测到位于3个不同连锁群的5个主效QTL,表型贡献率在16.07%~38.44%之间。  相似文献   

7.
Nitrogen (N) deficiency is a major yield‐limiting factor in rice production. The objective of this study was to identify putative QTLs for low‐N stress tolerance of rice, using an advanced backcross population derived from crosses between an indica cultivar ‘93‐11’ and a japonica cultivar ‘Nipponbare’ and genotyped at 250 marker loci. Plant height, maximum root length, root dry weight, shoot dry weight and plant dry weight under two N conditions and their relative traits were used to evaluate low‐N tolerance at the seedling stage. A total of 44 QTLs were identified on chromosomes 1, 2, 3, 4, 5, 6, 8 and 9. Eight intervals on five chromosomes were identified to harbour multiple QTLs, suggesting pleiotropism or multigenic effects according to the contributor of alleles. Some QTL clusters were found in the nearby regions of genes associated with N recycling in rice, indicating that the key N metabolism genes might have effects on the expression of QTLs. Several unique QTLs for relative traits were detected, which suggested the specific genetic basis of relative performance.  相似文献   

8.
An F2 : 4 population derived from the cross between salt‐tolerant variety ‘Gharib’ (indica) and salt‐sensitive variety Sepidroud (indica) was used to determine the germination traits. The seeds were treated with 80 mm NaCl (salt stress), and 11 traits were determined as indicators for salt‐tolerant including germination rate, germination percentage, radicle length, plumule length, coleoptile length, plumule fresh and dry weight, radicle fresh and dry weight and coleoptile fresh and dry weight. A linkage map of 2475.7 cM with an average interval of 10.48 cM was constructed using 105 amplified fragment length polymorphism (AFLP) markers and 131 SSR markers. As many as that 17 quantitative trait loci (QTLs) were detected related to germination traits under salt stress condition; some of them are being reported for first time. Also, overlapping of QTLs related to salt tolerance was observed in this study. The identification of genomic regions associated with salt‐tolerant and its components under salt stress will be useful for marker‐based approaches to improve salt‐tolerant for farmers in salt‐prone rice environments.  相似文献   

9.
为筛选出耐盐性较高的甜菜品种,营养液培养33份甜菜幼苗,并进行盐胁迫处理。通过比较这些材料处理组与对照组幼苗的根长、株高等指标,对甜菜种质资源苗期的耐盐性进行综合评价。结果表明:(1)盐胁迫对甜菜幼苗根的影响最大,对SPAD值影响最小,对株高、植株鲜重和地上部鲜重3个指标影响一般。(2)最终将33个供试材料分为3类:第1类为耐盐材料,包括‘54338’、‘FLORES’、‘44581’等19个材料;第2类为敏盐材料,包括‘52212-1’、‘2928’、‘54303’等6个材料;第3类为耐盐性一般的材料,包括‘44176’、‘28010’、‘KUHN1387’等8个材料。研究结果可为甜菜的耐盐处理研究和耐盐育种提供材料基础。  相似文献   

10.
In semiarid regions of the Mediterranean basin, water and salinity stresses restrict crop establishment. The effects of salt and water stress on seed germination and early embryo growth (radicle and shoot growth) were investigated in laboratory in two cultivars of sweet sorghum [Sorghum bicolor (L.) Moench] – cv. ‘90‐5‐2′ and cv. ‘Keller’ – to verify how these stresses may limit crop growth during the very early stages of growing season. Six water potentials (ψ) of the imbibition solution (from 0 to ?1.0 MPa) in NaCl or polyethylene glycol (PEG) for salt and water stress tests, respectively, were studied. Daily germination was recorded, and radicle and shoot lengths and dry weights (DWs) were measured 2 days after initial germination. Seed germination was reduced (8–30% lower than control) by water stress at ψ 相似文献   

11.
为了探究小麦新品种‘宛麦632’的抗旱性,以‘周麦18’为对照试验材料,采用PEG模拟干旱和田间自然干旱的方法测定抗旱指标。无干旱胁迫条件下,‘宛麦632’与‘周麦18’的各项抗旱指标均无显著差异,其产量分别为7052 kg/hm2和6916 kg/hm2。干旱胁迫条件下,在萌发期,‘宛麦632’的发芽率、发芽势分别较‘周麦18’高44.23%、106.25%;在苗期,‘宛麦632’的苗高、根长、茎叶鲜重和根鲜重分别较‘周麦18’高62.90%、55.32%、83.33%和60.00%;在成株期,‘宛麦632’的株高、最高分蘖、有效穗、穗粒数、千粒重和产量分别较‘周麦18’高2.99%、1.94%、1.44%、14.71%、10.61%和6.80%。除有效穗外,其他性状差异均达显著水平。此外,‘宛麦632’和‘周麦18’的综合抗旱指数分别为0.901、0.582。据此认为,在干旱胁迫条件下,‘宛麦632’生长受抑制程度小,其各项抗旱指标均优于‘周麦18’;‘宛麦632’具有较好的抗旱性,在干旱环境下有产量优势。  相似文献   

12.
不同棉花基因型种子萌发响应铜胁迫的差异   总被引:1,自引:0,他引:1  
在铜污染耕地种植棉花对提高耕地利用效率和棉农收入具有重要意义,但铜胁迫对棉花种子萌发的影响仍不清楚。以7个陆地棉品种(系)为试验材料,设置0、10、100和2 000μmol/L 4个Cu2+浓度处理进行发芽试验,记录10d后棉花种子的发芽率和幼苗的鲜重、根长和芽长。以幼苗鲜重、根长和芽长为指标,采用耐性指数和隶属函数对不同品种(系)种子的耐受性进行综合评价。结果表明,在Cu2+浓度10~2 000μmol/L范围内随着浓度的升高,幼苗鲜重、根长和芽长所受抑制增强,且根长的受抑制程度高于芽长。在中低浓度下(10~100μmol/L)能将不同基因型种子萌发对铜胁迫的耐受性较好地区分开来,鄂抗棉10号的耐性指数和隶属函数平均值均居首位,而SGK321均居末位。研究结果初步表明,鄂抗棉10号为铜胁迫钝感基因型,而SGK321为敏感基因型。  相似文献   

13.
Cotton breeders in the United States strive to develop region‐specific genotypes adapted to low temperatures and variable soil moistures during early‐season planting. Nine elite upland cotton germplasm (Gossypium hirsutum L.) lines, representing public breeding programmes from nine states across the cotton belt, were evaluated for cold and drought stresses during seed germination and seedling growth stages. Lines were subjected to three treatments, such as low temperature well‐watered (22/14°C, WW), optimal temperature drought stress (30/22°C, DS) and optimal temperature well‐watered (30/22°C, WW; control), to examine genotypic variability for cold and drought tolerance. The treatment including drought stress was irrigated at 50% of the control. Shoot and root traits measured at 25 days after planting were significantly affected by drought and low temperature, where significant genetic variability among lines was observed for both shoot and root parameters. Response indices were developed to quantify variation in the degree of tolerance among the lines to low temperature and drought. Accordingly, OA‐33 was identified as the most low‐temperature‐tolerant line and Acala 1517‐99 as the most drought‐tolerant line. Identification of both cold‐ and drought‐tolerant genotypes suggests existing genotypic variability could provide breeders the opportunity to improve cultivar response to early‐season drought or cold conditions.  相似文献   

14.
Screening for root traits has been one of the most difficult areas to practise over large number of genotypes. Hydroponic systems enable easy access to roots while high‐molecular weight polyethylene glycol (PEG) is used to induce water stress. A total of 838 genotypes were evaluated for root length in a hydroponic trial under PEG‐induced stress and non‐stress growing conditions. Augmented complete block design with seven blocks and six standard control varieties was used. Root length differences were highly significant (P < 0.01) under both stress and non‐stress growing conditions among genotypes. Osmotic stress has caused an average reduction of 54 % in root length. Among the genotypes, root length ranged from 1.4 to 13.3 cm under stress, and 4.4 to 23.3 cm under non‐stress conditions, respectively. The best control variety for drought resistance was significantly (P < 0.05) outperformed by four new entries namely Colotana 296‐52, Compare, Santa Elena and Tammarin Rock, while the shortest roots were measured on genotypes Aus 16356, Elia, Camm, Portugal 3, and Sentinel. Differences among ploidy levels, domesticated and wild forms were also significant (P < 0.05). Hexaploid wheat showed significantly longer roots in both growing conditions while wild tetraploids showed the shortest roots under stress. There was a change in the ranking of genotypes under the two water regimes, which indicates the difficulty of selecting drought resistant varieties under optimum environments.  相似文献   

15.
Antioxidants play an important role in adapting plants to abiotic stress by detoxifying reactive oxygen species (ROS). Involvement of antioxidant enzymes in abiotic stress tolerance of highly stress‐tolerant quinoa was studied in a climatic chamber at 6 mOsm (milliosmolar) ionic (300 mm NaCl) and non‐ionic (600 mm mannitol) salts combined with increasing levels of potassium K1 and K2 (6, 12 mm ), respectively. Fifteen days of salt treatment (both ionic and non‐ionic) decreased plant growth (shoot and root fresh weight), stomatal conductance and chlorophyll content index. Furthermore, both forms of salt stress increased the activities of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase up to 2.33‐, 3.98‐, 4.78‐ and 5.55‐folds, respectively, compared to no salt treatment, whereas membrane stability index decreased corresponding to increase in lipid peroxidation (malondialdehyde), with salt treatments compared to non‐stressed plants. However, no significant effect of potassium and salt treatments has been noticed on the maximal photochemical efficiency of PSII. The results suggested that enhanced antioxidant enzymes activity under salt stress could be one of the factors responsible for abiotic stress tolerance in quinoa.  相似文献   

16.
Plant genotypes with higher drought tolerance through improved root characteristics are poorly studied in orchardgrass. In the current research, 30 orchardgrass genotypes were polycrossed and the resulting half‐sib families evaluated under both normal and water stress environments. Under water stress conditions, values for most root traits decreased at 0–30 cm soil depth, while at 30–60 cm depths, the root length (RL), root area (RA), root volume, percentage of root dry weight (RDW) and the ratio of root to shoot were increased. We identified drought‐tolerant genotypes with a high combining ability for root characteristics and a high yield potential. High estimates of heritability as well as genetic variation for root traits indicated that phenotypic selection would be successful in order to achieve genetic progress. Indirect selection to improve dry matter yield was most efficient when selecting for RL and RDW under water stress conditions. Significant associations between a drought tolerance index and RL, RA and root volume confirmed the importance of these traits in conferring drought tolerance of orchardgrass.  相似文献   

17.
The biomass allocation pattern of plants to shoots and roots is a key in the cycle of elements such as carbon, water and nutrients with, for instance, the greatest allocations to roots fostering the transfer of atmospheric carbon to soils through photosynthesis. Several studies have investigated the root to shoot ratio (R:S) biomass of existing crops but variation within a crop species constitutes an important information gap for selecting genotypes aiming for increasing soil carbon stocks for climate change mitigation and food security. The objectives of this study were to evaluate agronomic performance and quantify biomass production and allocation between roots and shoots, in response to different soil water levels to select promising genotypes for breeding. Field and greenhouse experiments were carried out using 100 genotypes including wheat and Triticale under drought‐stressed and non‐stressed conditions. The experiments were set‐up using a 10 × 10 alpha lattice design with two replications under water stress and non‐stress conditions. The following phenotypic traits were collected: number of days to heading (DTH), number of productive tillers per plant (NPT), plant height (PH), days to maturity (DTM), spike length (SL), kernels per spike (KPS), thousand kernel weight (TKW), root biomass (RB), shoot biomass (SB), root to shoot ratio (R:S) and grain yield (GY). There was significant (p < 0.05) variation for grain yield and biomass production because of genotypic variation. The highest grain yield of 247.3 g/m2 was recorded in the genotype LM52 and the least was in genotype Sossognon with 30 g/m2. Shoot biomass ranged from 830 g/m2 (genotype Arenza) to 437 g/m2 (LM57), whilst root biomass ranged between 603 g/m2 for Triticale and 140 g/m2 for LM15 across testing sites and water regimes. Triticale also recorded the highest R:S of 1.2, whilst the least was 0.30 for wheat genotype LM18. Overall, drought stress reduced total biomass production by 35% and R:S by 14%. Genotypic variation existed for all measured traits useful for improving drought tolerance, whilst the calculated R:S values can improve accuracy in estimating C sequestration potential of wheat. Wheat genotypes LM26, LM47, BW140, LM70, LM48, BW152, LM75, BW162, LM71 and BW141 were selected for further development based on their high total biomass production, grain yield potential and genetic diversity under drought stress.  相似文献   

18.
Cadmium (Cd) is a non-essential element and toxic to plants. To investigate the genetics of Cd tolerance and accumulation in rice, quantitative trait loci (QTL) associated with Cd tolerance and accumulation at the seedling stage were mapped using a doubled haploid (DH) population derived from a cross between a japonica JX17 and an indica ZYQ8. A total of 22 QTLs were found to be associated with shoot height (SH), root length (RL), shoot dry weight (SDW), root dry weight (RDW), total dry weight (TDW) and chlorophyll content (CC), and 10 and 12 QTLs were identified under the control and Cd stress conditions, respectively. For Cd tolerant coefficient (CTC), 6 QTLs were detected on chromosomes 1, 3, 5, 8 and 10. Under Cd stress, 3 QTLs controlling root and shoot Cd concentrations were mapped on chromosome 6 and 7. One QTL for shoot/root rate of Cd concentration was identified on chromosome 3. The results indicated that Cd tolerance and accumulation were quantitatively inherited, and the detected QTLs may be useful for marker-assistant selection (MAS) and identification of the genes controlling Cd tolerance and accumulation in rice.  相似文献   

19.
Plants are often subjected to periods of water stress. There are little data examining the effect of water stress on the forage species Plantago lanceolata and Cichorium intybus. In two pot experiments with P. lanceolata and C. intybus, morphological responses under optimum, dry, and very‐dry water treatments with weekly, fortnightly and 3‐weekly defoliation intervals and physiological responses under optimum and very‐dry water treatments were measured. A third experiment compared the rooting depths of P. lanceolata and C. intybus under field conditions. These findings suggest that both P. lanceolata and C. intybus can survive and continue to grow under water stress conditions with the main differences between the two species being attributable to morphological characteristics (root mass, taproot diameter and shoot mass fraction) rather than differences at a physiological level. Overall, the results suggest plantain may be more productive under moderate drought due to its greater shoot mass fraction, whereas chicory may be more productive and persistent under severe drought due to its greater root mass, taproot diameter and root depth under field conditions.  相似文献   

20.
Z. Lin    D. He    X. Zhang    Y. Nie    X. Guo    C. Feng  J. McD. STEWART 《Plant Breeding》2005,124(2):180-187
Tetraploid cotton is one of the most extensively cultivated species. Two tetraploid species, Gossypium hirsutum L. and G. barbadense L., dominate the world's cotton production. To better understand the genetic basis of cotton fibre traits for the improvement of fibre quality, a genetic linkage map of tetraploid cotton was constructed using sequence‐related amplified polymorphisms (SRAPs), simple sequence repeats (SSRs) and random amplified polymorphic DNAs (RAPDs). A total of 238 SRAP primer combinations, 368 SSR primer pairs and 600 RAPD primers were used to screen polymorphisms between G. hirsutum cv. Handan208 and G. barbadense cv. Pima90 which revealed 749 polymorphic loci in total (205 SSRs, 107 RAPDs and 437 SRAPs). Sixty‐nine F2 progeny from the interspecific cross of ‘Handan208’בPima90’ were genotyped with the 749 polymorphic markers. A total of 566 loci were assembled into 41 linkage groups with at least three loci in each group. Twenty‐eight linkage groups were assigned to corresponding chromosomes by SSR markers with known chromosome locations. The map covered 5141.8 cM with a mean interlocus space of 9.08 cM. A × test for significance of deviations from the expected ratio (1: 2: 1 or 3: 1) identified 135 loci (18.0%) with skewed segregation, most of which had an excess of maternal parental alleles. In total, 13 QTL associated with fibre traits were detected, among which two QTL were for fibre strength, four for fibre length and seven for micronaire value. These QTL were on nine linkage groups explaining 16.18‐28.92% of the trait variation. Six QTL were located in the A subgenome, six QTL in the D subgenome and one QTL in an unassigned linkage group. There were three QTL for micronaire value clustered on LG1, which would be very useful for improving this trait by molecular marker‐assisted selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号