首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. P. Wilson 《Plant Breeding》1997,116(3):239-243
Quantitative disease resistance should be exploited to complement the use of genes for qualitative or hypersensitive resistance. The expression and inheritance of partial rust resistance of pearl millet inbreds 700481-21-8 and ‘ICMP 501’ crossed to moderately susceptible Tift 383’ were evaluated in seedling assays in the greenhouse and in generation mean and single-seed descent populations in the field. Uredinium sizes on seedling leaves of hybrids were generally intermediate to those of the parental inbreds and consistent differences could be discerned in uredinium lengths. Area under the disease progress curves (AUDPCs) of individual plants of the parents, F1, F2, and backcross F1S to each parent were determined from field trials. Broad-sense heritability estimates for both crosses were 43%. In generation mean analyses, additive genetic effects were significant in the cross of 700481–21–8 × Tift 383′, whereas additive, dominance, and dominance × dominance epistatic effects were significant for ‘ICMP 501’בTift 383’. The number of genes conferring partial resistance was estimated to be two for 700481–21–8 and 2.5 for ‘ICMP 501’. A hierarchical single-seed descent analysis revealed significant differences in AUDPC among F3-derived F4 progenies in the F6 generation. Selection for progenies with greater resistance should be possible among F4 families. Higher levels of resistance were observed in progeny derived from ‘ICMP 501’. Because segregation of resistance differed among progeny derived from 700481–21–8 and ‘ICMP 501’, the genetic basis for resistance probably differs between the two inbreds.  相似文献   

2.
New sources of partial resistance to Fusarium head blight (FHB) in wheat have been identified over the past decade; however, little is known of their breeding value. A 20 parent partial diallel that included resistant genotypes from the U.S., Europe, China and South America was used to evaluate the potential of these sources of resistance as parents in wheat breeding programs. Eight plants replication−1 of each of 190 crosses and 20 parents were point-inoculated with Fusarium graminearum under greenhouse conditions in two replicated experiments. Both general (GCA) and specific combining ability (SCA) were significant. Most of the variance for FHB severity was associated with additive genes; however, estimates for SCA ranged from highly negative to highly positive in both resistant × resistant and resistant × susceptible crosses which suggest that improving FHB resistance through gene pyramiding strategies based on additive genetic variation may be complicated by interaction effects that condition FHB resistance.  相似文献   

3.
Prolificacy assumes significance for development of high‐yielding baby corn hybrids. “Sikkim Primitive” is a native landrace of North‐Eastern Himalaya, and is the highest prolific maize germplasm. So far, the genetics of prolificacy in “Sikkim Primitive” has not been deciphered. Here, a prolific inbred (MGU‐SP‐101) developed from “Sikkim Primitive” was crossed with four non‐prolific inbreds viz., LM13, BML7, HKI161 and HKI1128. Six generations (P1, P2, F1, F2, BC1P1 and BC1P2) of the crosses were evaluated at two locations during rainy season 2018. MGU‐SP‐101 possessed 2.50–3.78 ears per plant compared to 1.06–1.86 among non‐prolific inbreds. The variation for ears was the highest in F2s (1–8), followed by BC1P1 (1–7) and BC1P2 (1–5). The quantitative inheritance pattern of prolificacy with prevalence of non‐allelic interactions of duplicate epistasis type has been observed. Dominance × dominance effect was predominant over additive × additive and additive × dominance effects. Total number of major gene blocks ranged from 0.41 to 2.86, thereby suggesting the involvement of at least one major gene/QTL governing the prolificacy. This is the first report of genetic dissection of prolificacy in “Sikkim Primitive”.  相似文献   

4.
Root lodging is an important problem in corn fields. Fungi recovered from roots include seedling blight and stalk rot pathogens. The objective of this work was to study the inheritance of maize seedling resistance to pathogens causing maize lodging. The Fusarium graminearum strain, 241 Fr1, was isolated from maize lodged plants and identified as the most pathogenic isolate for root rotting. Nine inbred lines of maize and their diallel F1 crosses plus control genotypes were studied. Seedlings were inoculated at the stage of four-leaves. Disease severity was measured as percentage of the root rotted area. Highly significant differences between inoculated and non-inoculated genotypes were found. Four genetic models and two statistical approaches—the mixed model for the best linear unbiased prediction (BLUP) and the general linear model (GLM)—were used for the analysis. Favorable heterosis of resistance of hybrids over inbreds was the most important effect detected. The general combining ability (GCA) effects were significant for all genetic models and statistical methods studied, and a good agreement existed among the GCA estimates by the different methods. The type of gene action, either additive or dominance, showed a large variation among the parental inbreds and hybrids. Selection of additive effects based exclusively on inbred lines is not sufficient to confer resistance to hybrids, additional selection should be practiced on hybrids to look for favorable dominance effects. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The incidence and severity of northern leaf blight (NLB) disease has increased in Southern Africa in the past years with previously resistant cultivars being affected; implying more resistant sources have to be identified and inheritance of NLB resistance investigated. Therefore, 45 F1 hybrids generated in a half diallel mating of ten elite maize inbred lines were evaluated in six environments for combining ability, genotype × environment interaction and effect of NLB disease on grain yield. General and specific combining ability (GCA and SCA) were highly significant (P < 0.001) for both NLB disease and grain yield. The GCA/SCA ratio was close to unity for both NLB (0.96) and grain yield (0.89), indicating predominance of additive over non-additive gene action for the traits in these inbred lines. Parent P2 and P7 had good GCA for both NLB disease resistance and high grain yield. The NLB disease ratings on the maize hybrids and inbreds ranged from 1.0 to 8.5 (approximately 0–75 % severity). Negative slope coefficients of the linear regression indicated maize yield decrease of 280–610 kg ha?1 for NLB final disease severity of about 25–75 %, respectively, stressing the need for resistant cultivars to manage the disease. Genotype and (genotype × environment) (GGE) biplots indicated absence of crossover interaction and revealed positive associations among environments, signifying the suitability of all the environments for disease screening. Therefore, the significant additive effects for NLB disease and grain yield entail that breeding progress would be made through selection and a few disease ‘hot-spot’ sites, such as Cedara (South Africa) and Mpongwe (Zambia) can be used for disease screening.  相似文献   

6.
Identification of hybrids for commercialization is crucial for sustainable maize production in sub-Saharan Africa (SSA). One hundred and ninety test crosses, 10 tester × tester crosses + 10 hybrid checks were evaluated across 11 environments, 2017 to 2019. Inheritance of grain yield under Striga infestation, optimal and across environments was influenced by additive genetic action, but there was greater influence of nonadditive gene action under drought stress conditions. Nine, seven and two inbreds had significant and positive general combining ability (GCA) effects for grain yield under Striga-infested, optimal and drought stress environments, respectively, and would contribute high grain yield to their progenies. Heterotic grouping methods based on specific and GCA, GCA effects of multiple traits and DArTseq markers classified the inbreds into five, three and two heterotic groups, respectively, across research conditions. The DArTseq markers method that classified the inbred lines into two major heterotic groups and was one of the most efficient methods should be adopted for practical purposes in maize breeding programmes in SSA. Hybrids TZEI 7 × TZdEI 352, TZEI 1238 × TZEI 7 and TZEI 1252 × TZEI 7 had outstanding grain yield under contrasting environments and should be tested on-farm for commercialization in SSA.  相似文献   

7.
Phenolic compounds have been suggested as one of the defence mechanisms to cocoa swollen shoot virus disease (CSSVD), but not well studied. Correlation and genetic variation of total phenolic content (TPC) and CSSVD resistance among 53 cocoa families were investigated. Three‐month‐old seedlings of 15 families obtained from an incomplete 6 × 3 NCII mating design, of 24 families from a 3 × 8 NCII mating design and of 14 other families were evaluated for CSSVD and TPC. Plants were inoculated with viruliferous mealybugs carrying the New Juaben CSSV strain (1A) in a gauze house facility. A single seedling randomization within blocks procedure was followed, using the gauze house units as blocks. There were six blocks with five seedlings of each family randomized within each block. Disease severity scores on leaf flushes at the first, second, third and seventh flushes after inoculation were recorded. The TPC before and 3 months after inoculation was also determined. Family effects were highly significant (P ≤ 0.01) for CSSVD severity scores and TPC. Narrow‐ and broad‐sense heritability estimates were low for CSSVD severity but moderate to high for TPC evaluations. Correlations between severity scores and TPC were weak (= ?0.22 to 0.40) suggesting that the TPC may be of little value in selecting CSSVD resistance varieties in cocoa. Additive effect in terms of significant GCA was important for CSSVD severity scores whereas both additive and non‐additive effects were important for TPC values when the 3 × 8 and 6 × 3 NCII mating designs were analysed. Only clones GU 239/H, GU 290/H and GU 225/V had favourable GCA effects for CSSVD symptom expression indicating their potential for developing progeny with high levels of resistance to CSSVD infection.  相似文献   

8.
The resistant accession, LA1312, and the susceptible cultivar ‘Peto 343′, were crossed to develop F1, F2 and BC1 populations for genetic analysis of resistance in tomatoes to Phytophthora parasitica Dastur, the causal agent of Phytophthora root rot. There was no maternal effect on resistance. Generation means analysis indicated that tolerance to Phytophthora root rot was under genetic control with both simple (additive and dominance) and digenic interaction (additive × additive and additive × dominance) effects contributing to the total genetic variation among generation means. Weighted least square regression analysis indicated that the majority (ca. 96 %) of the genetic variation could be explained by simple additive effects alone. Narrow sense heritability was estimated as 0.22. Based on effective factor formulae, at least five effective factors controlled the resistance. Implications for breeding procedures are discussed.  相似文献   

9.
L. M. Reid  X. Zhu  A. Parker  W. Yan 《Euphytica》2009,165(3):567-578
Preliminary field observations in our maize breeding nurseries indicated that breeding for improved resistance to gibberella ear rot (Fusarium graminearum) in maize may indirectly select for resistance to another ear disease, common smut (Ustilago zeae). To investigate this, we compared the disease severity ratings obtained on 189 maize inbreds, eight of which included our inbreds developed with selection for gibberella ear rot resistance after field inoculation and breeding for 8–10 years. No correlation was found between disease severities for the 189 inbreds but the eight gibberella-resistant lines were consistently more resistant to smut. To further examine this relationship and to determine if these eight inbreds would be useful for developing inbreds with either common smut or fusarium ear rot (F. verticilliodes) resistance, we conducted a Griffing’s diallel analysis on six inbreds of maize, four with high levels of gibberella ear rot resistance representing all of the pedigree groups in our eight gibberella lines, and two with very low levels. Our most gibberella ear rot resistant inbreds, CO433 and CO441, had the lowest disease ratings for all three diseases, the consistently largest general combining ability effects and several significant specific combining ability effects. It was concluded that some inbreds bred specifically for gibberella ear rot would also be useful in breeding for resistance to common smut and fusarium ear rot.  相似文献   

10.
European flint maize (Zea mays L.)cannot be considered an uniform group of germplasm based on its origin and area of adaptation. However, maize breeders have not taken full advantage of the variability within the European flint germplasm. The objective of this work was to study the heterotic relationships among European maize inbreds from different origins. Nine European flint inbreds were crossed in a diallel that was evaluated in three environments in northwestern Spain. The variability within the European flint germplasm and the agronomic value of some inbreds could be utilized for maize breeding programs as an alternative to the systematic introduction of U.S. dent germplasm that is narrowing the germplasm base of breeding programs even in places where it is poorly adapted. Some European flint inbreds may also be valuable sources of earliness (F7 and EP42), resistance to root lodging (EA1070), and yield (EP42).These results suggest that, within the European flint germplasm, there could be some heterotic patterns, such as ‘north-central Europe × southern Europe’, which could provide an alternative to the heterotic pattern ‘European flint × U.S. dent’. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The genetic nature of early blight resistance in tomato was studied in three crosses at seedling and adult plant stages. A six generation mean analysis of the cross Arka Saurabh (susceptible) × IHR1939 (resistance) and its reciprocal cross revealed that the resistance to early blight was conferred by recessive polygenes at both seedling and adult plant stages. This polygenic early blight resistance revealed the importance of additive and additive × additive gene effects at seedling stage and higher magnitude of dominance and dominance× dominance gene effects at adult plant stage. Evaluation of parents, F1, F2 and backcross generations of IHR1816 (resistance) × IHR1939 (resistance) revealed that the early blight resistance genes in IHR1816 (Lycopersicon esculentum NCEBR-1) and IHR1939 (Lycopersicon pimpinellifolium L4394) are independent. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Summary S1 to S5 inbred lines, derived from a maize population bred for its overall resistance to three tropical viruses, were screened for resistance to maize streak virus (MSV) by artificial plant infection using viruliferous leafhoppers. Symptoms were rated and intra-line frequency distributions studied for all pedigree inbred lines. Mortality due to MSV was very low among these inbreds. Symptoms appeared later, developed slower and were less severe than in the susceptible control hybrid. Results of a study of 500 S1 and 93 S2 lines suggested that resistance is under genetic control via a system involving loci with major genes (with dominance for resistance) controlling high to complete resistance, associated with a genetic system involving loci with minor genes controlling partial resistance. Lines expressing complete resistance to MSV were developed from 5 cycles of inbreeding and selection. The relevance of such complete and partial resistance is discussed.Abbreviations MRPS Mean Rating for Plants exhibiting Symptoms  相似文献   

13.
Inheritance of resistance to yellowberry in durum wheat   总被引:1,自引:1,他引:0  
F. Bnejdi  M. El Gazzah 《Euphytica》2008,163(2):225-230
Resistance to grain yellowberry in durum wheat (Triticum durum Desf.) was investigated using generation mean analysis in four resistant or intermediate-resistant X susceptible crosses. Significant differences in resistance were observed between generations in all crosses. Generation mean analysis indicated a complex gene action controlling this trait, with additive, dominance and epistatic effects. Additive (d) components were positive in all crosses, suggesting that additive effects contributed more to resistance than to susceptibility. In contrast dominance (h) effects were negative in majority of crosses. The minimum number of genes controlling resistance was estimated at 1.41. Mid-parent heterosis ranged from 28.5 to 52.1 indicating dominance of resistance. Broad-sense heritability estimates ranged from 0.52 to 0.88, while narrow-sense heritability estimates ranged from 0 to 0.79. Estimates of genetic gain for resistance ranged from low to high. Estimates of broad and narrow sense heritabilities indicated that genetic effects were larger than environmental effects. Additive effects represented the largest components of genetic effects.  相似文献   

14.
A. Menkir 《Plant Breeding》2006,125(2):131-139
Striga hermonthica is the most widespread and destructive obligate root parasite infecting maize and other cereals in Africa. Maize inbred lines supporting reduced S. hermonthica emergence can form an important basis for developing Striga‐resistant maize cultivars. Twenty new inbred lines selected for field resistance to S. hermonthica, and five inbred checks with known resitance, tolerance and susceptibility reactions to S. hermonthica were evaluated in pots, greenhouse and field experiments under artificial Striga infestation for 3 years. The experiments were conducted to determine the extent of variation in parasite attachment to the roots of these lines and its relationship with emerged Striga plants and other traits. Significant differences (P < 0.0001) were detected among the inbred lines for the numbers of attached and emerged Striga plants and the results were consistent across test environments. Also, the lines exhibited significant differences for Striga damage symptom ratings and other traits recorded in the field. Parasite attachment to the roots was significantly correlated with emerged Striga count in the screenhouse (r = 0.67–0.68, P < 0.001) and in the field (r = 0.82–0.84, P < 0.0001) and with levels of grain yield reduction due to Striga (r = 0.71, P < 0.0001). Regression analysis of the numbers of attached parasites on the first principal component axis scores that integrated several traits recorded in the field was significant (P < 0.0001) and accounted for 62% of the total variation in numbers of attached parasites. The new inbred lines and the resistant inbred check were the least affected by S. hermonthica and exhibited yield losses of 0–37% compared with the yields of the tolerant and the susceptible inbred checks, which were reduced by 40–85%. Sixteen new inbred lines supported significantly fewer attached parasites compared with the susceptible inbred check. Some of these lines also supported significantly fewer emerged parasites and sustained lower damage symptoms and percentage yield losses due to Striga compared with the susceptible inbred check. These inbred lines would be useful in breeding programmes for developing resistant maize cultivars.  相似文献   

15.
I. Simko    S. Costanzo    V. Ramanjulu    B. J. Christ    K. G. Haynes 《Plant Breeding》2006,125(4):385-389
Potato tuber blight is a disease caused by the oomycete Phytophthora infestans (Mont.) de Bary. Due to the significant economic impact of this disease, introgression of durable resistance into the cultivated potato is one of the top priorities of breeding programmes worldwide. Though numerous resistance loci against this devastating disease have already been mapped, most of the detected loci are contributing towards foliar resistance while specific information on tuber resistance is limited. To identify the genetic components of tuber resistance and its relationship to foliar resistance and plant maturity we have investigated the host‐pathogen interaction in a segregating diploid hybrid Solanum phureja × S. stenotomum family. Mature tubers from this mapping family were inoculated with a sporangial suspension of P. infestans (US‐8 clonal lineage) and evaluated for lesion expansion. No significant correlation was detected between late blight resistance in foliage and tubers, and between plant maturity and tuber resistance. Four chromosomal regions were significantly associated with tuber resistance to the disease. The largest effect was detected near the marker locus PSC (LOD 10.7) located on chromosome 10. This locus explained about 63% of the total phenotypic variation of the trait. The other three resistance‐related loci were mapped on chromosomes 8 (GP1282, LOD 4.4), 6 (CP18, LOD 4.0) and 2 (CP157, LOD 3.8). None of the four tuber resistance loci coincides with the foliage resistance loci detected in this same family. Tuber blight resistance quantitative trait loci (QTL) on chromosomes 2, 8 and 10 are distinct from the maturity QTLs and have an additive effect on tuber resistance. These results indicate that different genes are involved in foliar and tuber resistance to P. infestans in the present family and that some of the resistance genes might be associated with late maturity.  相似文献   

16.
Random S5 inbreds derived from three F2 maize (Zea mays L.) populations (L1934 × LP918, LP915 × LP2541 and L7310 × L7266) were selected for ear rot resistance after inoculation with a low-fumonisin producing isolate belonging to F. proliferatum. The four less susceptible and the four most susceptible inbreds from each population were crossed and F1 seeds were pooled. Resistant and susceptible pools from each population were evaluated for disease severity (percentage of the ear visibly diseased) after inoculation with the isolate used for selection, and high toxigenic isolates belonging to F. verticillioides and F. graminearum. Grain mycotoxin concentration was assessed by ELISA. Differences in disease resistance to each fungus were observed between resistant and susceptible pools in most populations and environments indicating that selection after inoculation with a single species might be effective to develop broad-based resistance to Fusarium. Resistant pools exhibited, after inoculation with F. verticillioides, low grain fumonisin concentrations in most populations and years. Positive genotypic correlations between disease severity and fumonisin concentration (0.89 < rg < 0.98, depending on fungal species and year) indicate that selection for disease severity accounted for most of the variability for field fumonisin accumulation. Selection seemed to be also effective to reduce grain deoxynivalenol and zearalenone concentrations after inoculation with F. graminearum. Ratios between grain deoxynivalenol concentration and disease severity were lower in L7310 × L7266 than those observed in the other populations suggesting that mechanisms affecting mycotoxin accumulation might exist in this population and additional responses should be feasible if including deoxynivalenol concentration as another selection parameter.  相似文献   

17.
AFLP analysis was used to estimate genetic variability within and among 14 populations of Striga asiaticaL. Kuntze collected from different locations within the Republic of Benin. The mean within-population genetic distances ranged from 0.028 to 0.038, while the mean among-population genetic distances ranged from 0.019to 0.088, with an assumed minimum genetic distance of0.01 in each case. Intra- and inter-population variation was reflected by a highly significant R2 of 0.61for the regression of geographic distance versus genetic distance. Interactions of the different Strigapopulations with susceptible host genotypes, 8338-1 (Zea mays) and CK60B (Sorghum bicolor),indicated a high degree of host-specialization, with CK60B failing to support growth of the parasite from any of the populations. The various Striga populations also exhibited different degrees of virulence on susceptible host plants. Our results support the hypothesis that different populations of this parasite may well be considered and treated as ecotypes in plant breeding programs developing resistance to S. asiatica. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The inheritance of resistance of sunflower to phomopsis (Diaporthe helianthi) was studied on 10 inbred lines representing a range of resistance and susceptibility levels, and 25 hybrids from a factorial cross of these lines. Analyses of observations over a 3-year period, of semi-natural infection (presence of stem lesions greater than 5 cm) on the hybrids indicated that additive gene control was predominant, with no significant interactions between parental effects. Correlations between infection of parental lines and the mean of their hybrids were not always significant, with certain inbreds which appeared quite susceptible giving hybrids with good levels of resistance. In order to predict hybrid values, it appears necessary to determine the general combining abilities of parental lines. Some inbreds gave very high levels of resistance, others gave very high levels of susceptibility. A test measuring the rate of extension of D. helianthi mycelium on leaves was significantly correlated with the results of natural infections. In particular, it permitted distinction of the most susceptible genotypes, and thus could be used in first generations of breeding to eliminate the most susceptible plants.  相似文献   

19.
Maize grey leaf spot (GLS) disease remains an important foliar disease in sub-Saharan Africa accounting for more than 25% yield losses in maize. Information on inheritance of GLS resistance of germplasm adapted to African environments is required in new sources being identified. Therefore, hybrids generated from a 10 × 10 half-diallel mating of tropical advanced maize inbred lines were evaluated in six environments to determine combining ability, genotype × environment interaction (G × E) and the impact of GLS disease on grain yield. General combining ability effects were highly significant and accounted for 72 and 68% of the variation for GLS resistance and grain yield, respectively. Significant specific combining ability effects associated with reduced disease levels were observed in some hybrids when one parent was resistant, and these may be exploited in developing single cross maize hybrids. Regression analysis showed a 260–320 kg ha?1 decrease in maize grain yield per each increase in GLS disease severity score, and significant associations (r = ?0.31 to ?0.60) were observed between grain yield and GLS severity scores. This showed the potential of GLS disease to reduce yield in susceptible varieties grown under favourable disease conditions, without control measures. Genotype and genotype × environment biplots and correlation analysis indicated that the significant G × E observed was not due to changes in hybrid ranking, implying absence of a significant crossover interaction. Therefore, predominance of additive gene effects imply that breeding progress for GLS disease resistance would be made through selection and this could be achieved at a few hot-spot sites, such as Baynesfield and Cedara locations in South Africa, and still deploy the resistant germplasm to other environments in which they are adapted.  相似文献   

20.
D. E. Hess  G. Ejeta 《Plant Breeding》1992,109(3):233-241
Striga hermonthica (Del.) Benth., a parasitic weed of grasses, causes major yield reductions in the principal cereal crops of semi-arid Africa. Cultivar resistance is the most economic control measure, since adapted, resistant cultivars can be grown without additional input from the subsistence farmer. Information on the genetics of resistance to S. hermonthica is scant. This is partially attributable to the rarity of germplasms which exhibit stable resistance across geographical regions. The objective of this study was to determine if the stable resistance observed in sorghum [Sorghum bicolor (L.) Moench] cultivar SRN39 is heritable. Crosses were made between SRN39 and a susceptible parent, P954063. Parental, F1, F2 and backcross generations were grown in infested pots and development of both host and parasite was monitored. Significant variation among genotypes was observed for both host traits and effects on parasite populations. The F1 did not differ significantly in Striga resistance from the susceptible parent, suggesting recessive inheritance. However, hybrid vigor was exhibited by the F1 which yielded and developed as well as the resistant parent. Broad sense heritability ranged from 0.23 to 0.55 for host traits and from 0.10 to 0.43 for effect of genotypes on the Striga population. Joint scaling tests showed that observed variation in each host or parasite trait consisted of additive and dominance components, suggesting possible progress could be made with appropriate selection schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号