首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vapor phase reaction of wood with maleic anhydride (MA) was investigated from the aspect of the mechanism of dimensional stabilization. Notably the existence of cross-links was examined by detailed analyses of dimensional stability and related properties, diffuse reflectance infrared Fourier transform (DRIFT) spectra, and changes in mechanical properties such as creep property and vibrational property. Higher reaction temperature resulted in less leaching of reagent. Also a peak in DRIFT spectra at 1730 cm−1 showed the esterification of wood components with MA, while that at around 1780 cm−1, which became remarkable with increasing reaction temperature, suggested the formation of cross-linking. The loss tangent decreased and the creep deformation was restrained for the specimens treated at high temperature. From these results it is plausible that MA mainly forms monoester with wood components at lower temperature; however, at elevated temperature cross-linking appears in addition to formation of the monoester.  相似文献   

2.
Five wood species were acetylated with acetic anhydride (AA) solution of glucose pentaacetate (GPA) at 120°C for 8h, and the effect of GPA on the dimensional stability of the acetylated wood was investigated. Some GPA was introduced into the wood cell wall during acetylation. The GPA remaining in the cell lumen penetrated the cell wall effectively after heating to more than 140°C for 10min. The bulking effects of GPA resulted in a 10%–30% increase in the anti-swelling efficiency of the acetylated wood with 20% GPA/AA solution in place of AA. Hydrophobic GPA did not deliquesce under highly humid conditions and it remained in the cell wall after boiling in water.Part of this paper was presented at the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, April 1988  相似文献   

3.
Microwave heating was used as the heat source for butyrylation of wood with the aim of reducing the reaction time. The photostability and dimensional stability of butyrylated wood were also investigated in this study. Chemical changes of wood were confirmed by cross polarization/magic angle spin 13C-nuclear magnetic resonance and diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) after butyrylation by microwave heating. Results from DRIFT with the Si-Carb sampling technique revealed that, using microwave heating, a higher degree of butyrylation of maple wood occurred in the middle of the specimen than on the outer surface. The increase in yellowness index of butyrylated wood treated with microwave heating was much less than that of untreated wood after the lightfastness test, indicating that photoyellowing of wood is effectively inhibited by butyrylation using microwave heating. The dimensional stability of wood was also improved after modification.  相似文献   

4.
木材液相乙酰化处理及处理材尺寸稳定性和耐腐性的研究   总被引:2,自引:0,他引:2  
本文论述了马尾松、白桦和青杨三种木材的液相乙酰化条件及各种乙酰化木材的尺才稳定性和耐菌腐能力。以乙酸酐和二甲苯为处理液,反应的最佳条件是:温度120℃,时间7到11小时,乙酸酑与二甲苯配比1:1。当处理试样的增重到15%时,抗收缩率可达60%以上。增重为11.75—17.98%的不同处理试块,其耐菌腐能力可提高3—34倍。  相似文献   

5.
Ezomatsu wood blocks were impregnated with potassium acetate (KAc) and then exposed to acetic anhydride vapor at 25°C and 120°C. The KAc-impregnated wood was rapidly acetylated at 120°C, and only 6 min was needed to achieve 20% weight percent gain (WPG). The WPG increased with increasing catalyst loading (CL), but it turned to decrease above 20% CL probably because the diffusion of acetic anhydride vapor was hindered by excess KAc depositing in the cell lumina. Thus, careful control of CL is necessary in the vapor-phase acetylation. KAc was also effective in catalyzing the vapor-phase acetylation at 25°C: the KAc-impregnated wood attained 20% WPG within 7 days, whereas the WPG did not exceed 10% even after 1 month in the uncatalyzed system. Irrespective of treatment methods, the hygroscopicity of wood was reduced and its dimensional stability was improved with an increase of WPG. These results confirm that the use of KAc simplifies the acetylation process at room temperature with minimal loss of acetic anhydride.  相似文献   

6.
This research work aimed at studying the effects of oleothermal modification of fir wood by using combined soybean oil with maleic anhydride (OHT–MA) to achieve lower treatment temperatures and enhance physico-mechanical properties. Wood blocks were oleothermally treated with soybean oil and OHT–MA at five different treatment temperatures (100, 120, 140, 160 and 180 °C) for three different holding times (30, 60 and 180 min). Afterward, physical and mechanical properties of the treated samples were determined, i.e., density, water absorption and volumetric swelling as the physical properties and bending strength, compression parallel to grain and impact load resistance as the mechanical properties. Results revealed increases in densities and reduction in water absorption as well as volumetric swelling of all treated samples. The mechanical properties were affected by OHT–MA treatment at different temperatures. Bending modulus of elasticity as well as compression parallel to grain was increased due to OHT–MA treatment. In addition, there was less reduction in impact load resistance of the treated samples. It was revealed that the OHT–MA enhanced wood properties at low treatment temperatures as well as shorter holding times.  相似文献   

7.
Ezomatsu wood blocks were acetylated in a mixture of acetic anhydride and acetic acid containing excess potassium acetate (KAc). The mixture method enabled rapid acetylation at 120°C: a 20% weight gain (weight percent gain; WPG) was achieved within 30 min while the WPG did not exceed 18% after 120 min of conventional uncatalyzed acetylation. At 40°C, however, a satisfactory WPG was not achieved with the mixture method because both the wood swelling and KAc concentration in the reagent solution were limited at that temperature. In addition, the antiswelling efficiency attained by the mixture method was irregularly low, probably because of nonuniform reaction involving shrinkage of the cell lumina. These results suggest that the mixture method is not advantageous for low-temperature acetylation, whereas it enables simple and rapid acetylation at high temperature.  相似文献   

8.
Fiberboards were prepared from acetylated fibers with various weight gains: 0, 4.7, 9.4, 18.5, and 24.8 weight percent gain (WPG). The effects of low bondability of acetylated fibers on mechanical properties and dimensional changes were determined. The decreased mechanical properties of acetylated fiberboard are mainly due to low bondability. To improve bending strength, high face density is also needed. The thickness swelling according to JIS and the linear expansion under relative humidity changes decreased with increasing WPG. As for accelerated weathering and the outdoor exposure test, the thickness changes in 4.7–18.5 WPG boards were much higher than those in OWPG board and 24.8 WPG board. The high thickness change in 4.7–18.5 WPG boards is due to low bondability. Although 24.8 WPG board also has low bondability, the thickness change of 24.8 WPG board decreased. The high dimensional stability of acetylated fibers, caused by high WPG, probably outweighs the dimensional change caused by low bondability. On the other hand, during the boiling test the thickness changes in 24.8 WPG board and the 4.7–18.5 WPG boards were higher than those in 0 WPG board. The effect of the boiling test on the boards is more severe than that seen with the accelerated weathering and outdoor exposure test; therefore, the effects of the low bondability probably cancel the effects of the high WPG. It is necessary to increase the bondability of acetylated fibers to improve the dimensional stability and the mechanical properties.  相似文献   

9.
马来酸酐接枝苯乙烯-乙烯-丁烯-苯乙烯(MA-SEBS)用作聚丙烯/木纤维复合体系的界面相容剂及冲击改性剂,来提高其界面粘接及冲击强度。研究了MA-SEBS含量对PP/WF复合材料冲击断裂行为的影响,当MA-SEBS含量达到8%时,冲击性能达到了最大值,进一步增加到10%并未提高其断裂韧性,但动态热机械分析(DMA)表明复合材料刚性的提高,这归因于PP/WF界面的改善,当MA-SEBS超过8%,聚丙烯与木纤维分子间的相互作用增强。扫描电子显微镜(SEM)分析了样品的断裂表面,表明木纤维与聚丙烯表面强烈的界面粘结。图5表1参11。  相似文献   

10.
郭垂根  王清文 《林业研究》2007,18(3):203-207
MA-SEBS as compatibilizer and impact modifier was incorporated into Polypropylene/Wood Fiber (PP/WF) to enhance interface adhesion and impact strength of the composite. The effect of MA-SEBS content on the impact fracture behavior of PP/WF composites was studied. The impact properties of composites with 8% MA-SEBS reached the maximum value. And further increasing of MA-SEBS content to 10% did not improve the fracture toughness, but improved the stiffness of composites by DMA analysis. This was attributed to the improved PP/WF adhesion. As the MA-SEBS content is more than 8%, the molecule interaction of PP and WF was expected to much stronger than lower MA-SEBS. Scanning electron microscopy (SEM) was performed to analyze the impact fracture surface and showed a stronger affinity for the wood surfaces.  相似文献   

11.
This study was aimed at evaluating the effect of thermal modification temperature on the mechanical properties, dimensional stability, and biological durability of Picea mariana. The boards were thermally modified at different temperatures 190, 200 and 210 °C. The results indicated that the thermal modification of wood caused a significant decrease in the modulus of rupture (MOR) after 190 °C, while the modulus of elasticity (MOE) seemed less affected with a slight increase up to 200 °C and slight decrease with further increase in temperature. The hardness of the thermally modified wood increased in the axial direction. This increase was also observed in tangential and axial directions but at a lesser extent. The final value was slightly higher in axial direction and lower in radial and tangential directions compared to those of the untreated wood. Dimensional stability improved with thermal modification in the three directions compared to the dimensional stability of unmodified wood. The fungal degradation results showed that the decay resistance of thermally modified wood against the wood-rotting fungi Trametes versicolor and Gloephyllum trabeum improved compared to that of the untreated wood. By contrast, the thermal modification of P. mariana had a limited effect on the degradation caused by the fungus Poria placenta.  相似文献   

12.
Acetylation of wood was carried out in acetic anhydride only, acetic anhydride/xylene 1:1 (v/v), and acetic anhydride/pyridine 4:1 (v/v) solutions. The antishrink efficiency (ASE), hygroscopic properties, vibrational properties, and bending strength were compared among the three reaction solutions. The ASE was a simple function of weight gain (WG); the equilibrium moisture content at a given WG differed among the reaction solutions. Based on this fact and the results of repeated water soaking and oven-drying tests, it was found that the bulking effect was a major factor, and that decreased hygroscopicity contributes only slightly to the dimensional stabilization by acetylation. The difference in equilibrium moisture content among reaction solutions appears more significant in block samples than wood meal, probably due to the fiber-to-fiber bonds in the former. The tendencies for change in the specific Youngs modulus and the loss tangent differed among reaction solutions, whereas in the static bending test the difference was not marked.Part of this report was represented at the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, April 2002  相似文献   

13.
阻燃剂WFRJ1改性木材的体积稳定性和涂饰性能   总被引:3,自引:0,他引:3  
用阻燃剂WFRJ1处理大青杨木材并对处理材的阻燃性能、涂饰性能和体积稳定性进行测定。结果表明:WFRJ1可用于木制品的阻燃处理。当WFRJ1浓度为10%时,氧指数可达到50%以上,与水溶性RF树脂复配,可大幅度提高处理材的抗胀缩率和阻湿率,增加体积稳定性。经WFRJ1处理后杨木单板的涂饰性能未受影响。  相似文献   

14.
Influences of moisture content on the catalysis of sulfur dioxide and physical properties of reaction products were examined for a vapor-phase treatment of spruce wood with formaldehyde. The reaction rate was strongly dependent on the amounts of water and sulfur dioxide in the reaction system, and this was consistent with a proposal that the hydroxymethylsulfonic acid (HOCH2SO3H) formed from sulfur dioxide, water, and formaldehyde acts as a catalyst for the reaction. However, not all water molecules contributed to the formation of HOCH2SO3H, because some were adsorbed by the wood components. When the initial moisture content was high, polymeric cross-linking was likely because the ultimate weight gain was much greater than the value estimated based on monomeric cross-links. The lower values of antiswelling efficiency and higher equilibrium moisture content at a specific level of weight gain also suggested the existence of polymeric cross-links. However, the difference in the length of cross-links did not significantly influence the mechanical properties.Part of this research was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, April 2003  相似文献   

15.
We investigated the effects of high-temperature drying schedules (120°–130°C) on decay and termite feeding of Japanese larch timbers. Thermogravimetric analysis was conducted to investigate changes of the wood components. Decay and termite feeding tests showed that specimens dried under high-temperature schedules were susceptible against a decaying fungus Fomitopsis palustris and attacks from termites Coptotermes formosanus and Reticulitermes speratus. These drying schedules changed chemical components, which were suggested by the thermal analytical result compared to the control sample. The results of this study indicated that the acceleration of termite feeding takes place even under temperatures that are comparatively lower than that used in our previous research in which 170°C steaming treatment was applied to Japanese larch wood. Decay durability against a brown rot fungus also decreased, possibly from production of low molecular weight fragments when hemicellulose decreased during the high-temperature drying processes.  相似文献   

16.
As an essential preliminary evaluation for understanding the hydration behavior of wood-cement-water mixtures, an isothermal calorimetry and experimental method were used to measure the hydration heat of woodcement-water mixtures. The compatibility of 38 wood species with ordinary portland cement was studied using this procedure. Based on the results, all the wood species tested were classified into two groups. The 24 species included in the first group showed a moderating influence on the hydration reaction of cement, and a maximum temperature (T max) peak during the exothermic reaction while the cement set appeared within 24h for each species. The other 14 species inhibited cement hydration completely. According to the maximum hydration temperature (T max) and the time (T max) required to reach the maximum temperature of the mixture, the suitability of each species in the first group was estimated when used as a raw material during production of cement-bonded particleboard. By testing mechanical properties [modulus of rupture (MOR) and internal bonding strength (IB)] during the board-making experiment using the same composition of wood-cement-water, a positive correlation was found betweenT max andt max and MOR and IB. The results imply that the method can be used as a predictor of the general inhibitory properties and feasibility of using wood species as raw materials prior to manufacture of cement-bonded particleboard.Part of this report was presented at the 49th annual meeting of the Japan Wood Research Society, Tokyo, April 1999  相似文献   

17.
A carbonaceous sorbent was prepared from the wood of Japanese larch (Larix leptolepis) by dehydration with concentrated sulfuric acid in a 69% yield. The abilities of the sorbent to remove Cr(VI) from aqueous solutions were investigated. Research parameters included the initial solution pH, temperature, and initial concentration of Cr(VI) in solution. The removal of Cr(VI) was highly solution pH dependent and was mainly governed by physicochemical sorption under weak acidic conditions. The equilibrium data fit well in the Langmuir isotherm model. The Langmuir constants were calculated at different temperatures, and the sorption capacity increased with rising temperature, indicating the endothermic nature of the Cr(VI) sorption onto the sorbent. The desorption experiments suggest that the Cr(VI) sorption is generally irreversible, owing to strong interaction of HCrO 4 with the active sites of the sorbent.  相似文献   

18.
Abstract

The moisture sorption and swelling of spruce specimens impregnated with linseed oil and unimpregnated controls were studied in two sorption experiments: from 0 to 55% relative humidity (RH) and from 55% RH to water saturation. Sorption isotherms were also determined using a sorption balance. The impregnated specimens had lower rates of both moisture sorption and swelling than the unimpregnated controls; however, there was no significant difference in final moisture contents. In addition, the linseed oil impregnation did not improve the dimensional stability of the wood; in most cases the specimens impregnated with linseed oil swelled more than the unimpregnated controls. For the impregnated specimens, reductions in swelling rates were in most cases seen without corresponding reductions in final swelling. The moisture sorption rate was reduced for the impregnated specimens but there were generally no reductions in equilibrium moisture content.  相似文献   

19.
The balance of strength between the flange and web parts of veneer strand flanged I-beam was investigated by the following methods: (1) use of different web material types, such as plywood, oriented strand board (OSB), particleboard (PB), and medium density fiberboard (MDF), that have different strength properties; and (2) fabrication of I-beams with low-density flanges using low-density strands with PB web material. Replacing PB or MDF with plywood showed slight significant improvement in the modulus of rupture but not in the modulus of elasticity of the entire I-beam. However, PB and MDF showed competent performance in comparison with OSB, thus strengthening the promising future of the use of PB or MDF as web material to fabricate I-beams. Hot-pressing conditions used for I-beam production exerted slightly adverse effects on the bending properties of PB, but not on MDF, OSB, and plywood web materials. The flange density of 0.60 g/cm3 was considered to be the lower limit that provides I-beams with balanced mechanical properties and dimensional stability.  相似文献   

20.
The deformation behavior of low molecular weight phenol formaldehyde (PF) resin-impregnated wood under compression in the radial direction was investigated for obtaining high-strength wood at low pressing pressures. Flat-sawn grain Japanese cedar (Cryptomeria japonica) blocks with a density of 0.34g/cm3 were treated with aqueous solution of 20% low molecular weight PF resin resulting in weight gain of 60.8%. Oven-dried specimens were compressed using hot plates fixed to a testing machine. The temperature was 150°C and the pressing speed was 5mm/min. The impregnation of PF resin caused significant softening of the cell walls resulting in collapse at low pressures. The cell wall collapse was strain-dependent and occurred at a strain of 0.05–0.06mm/mm regardless of whether the wood was treated with PF resin. Thus, pressure holding causing creep deformation of the cell walls was also effective in initiating cell wall collapse at low pressure. Utilizing a combination of low molecular weight PF resin impregnation and pressure holding at 2MPa resulted in a density increase of PF resin-treated wood from 0.45 to 1.1g/cm3. At the same time, the Youngs modulus and bending strength increased from 10GPa to 22GPa and 80MPa to 250MPa, respectively. It can be concluded that effective utilization of the collapse region of the cell wall is a desirable method for obtaining high-strength PF resin-impregnated wood at low pressing pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号