首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
In this study, we isolated sargachromenol (SC) from Sargassum horneri and evaluated its anti-inflammatory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. SC did not show cytotoxicity at all concentrations and effectively increased the cell viability by reducing the nitric oxide (NO) and intracellular reactive oxygen species (ROS) production in LPS-stimulated RAW 264.7 macrophages. In addition, SC decreased the mRNA expression levels of inflammatory cytokines (IL-1β, IL-6, and TNF-α) and inflammatory mediators (iNOS and COX-2). Moreover, SC suppressed the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and mitogen-activated protein kinase (MAPK) signaling, whereas activated the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) signaling in LPS-stimulated RAW 264.7 macrophages. Interestingly, the anti-inflammatory effect of SC was abolished by the inhibition of HO-1 in LPS-stimulated RAW 264.7 macrophages. According to the results, this study suggests that the antioxidant capacity of SC leads to its anti-inflammatory effect and it potentially may be utilized in the nutraceutical and pharmaceutical sectors.  相似文献   

3.
Chitosan and its derivatives such as low molecular weight chitosans (LMWCs) have been found to possess many important biological properties, such as antioxidant and antitumor effects. In our previous study, LMWCs were found to elicit a strong immunomodulatory response in macrophages dependent on molecular weight. Herein we further investigated the molecular weight-dependent immunostimulative activity of LMWCs and elucidated its mechanism of action on RAW264.7 macrophages. LMWCs (3 kDa and 50 kDa of molecular weight) could significantly enhance the mRNA expression levels of COX-2, IL-10 and MCP-1 in a molecular weight and concentration-dependent manner. The results suggested that LMWCs elicited a significant immunomodulatory response, which was dependent on the dose and the molecular weight. Regarding the possible molecular mechanism of action, LMWCs promoted the expression of the genes of key molecules in NF-κB and AP-1 pathways, including IKKβ, TRAF6 and JNK1, and induced the phosphorylation of protein IKBα in RAW264.7 macrophage. Moreover, LMWCs increased nuclear translocation of p65 and activation of activator protein-1 (AP-1, C-Jun and C-Fos) in a molecular weight-dependent manner. Taken together, our findings suggested that LMWCs exert immunostimulative activity via activation of NF-κB and AP-1 pathways in RAW264.7 macrophages in a molecular weight-dependent manner and that 3 kDa LMWC shows great potential as a novel agent for the treatment of immune suppression diseases and in future vaccines.  相似文献   

4.
N,N-Didesmethylgrossularine-1 (DDMG-1), a compound with a rare α-carboline structure, was isolated from an Indonesian ascidian Polycarpa aurata as responsible for the observed inhibitory activity against TNF-α production in lipopolysaccharide-stimulated murine macrophage-like RAW264.7 cells. DDMG-1 inhibited the mRNA level of mTNF-α, IκB-α degradation, and binding of NF-κB to the target DNA site in LPS-stimulated RAW 264.7 cells. Moreover, DDMG-1 had an inhibitory effect on the production of IL-8, which is produced in CD14+-THP-1 cells stimulated by LPS. DDMG-1 is thus a promising drug candidate lead compound for the treatment of chronic inflammatory diseases, such as rheumatoid arthritis.  相似文献   

5.
6.
Inflammation is a complicated host-protective response to stimuli and toxic conditions, and is considered as a double-edged sword. A sulfated Saccharina japonica polysaccharide (LJPS) with a sulfate content of 9.07% showed significant inhibitory effects against lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells and zebrafish. Its chemical and structural properties were investigated via HPLC, GC, FTIR, and NMR spectroscopy. In vitro experiments demonstrated that LJPS significantly inhibited the generation of nitric oxide (NO) and prostaglandin E2 (PGE2) via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and suppressed pro-inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-1β production via the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signal pathways in LPS-induced RAW 264.7 cells. Moreover, LJPS showed strong protective effects against LPS-induced inflammatory responses in zebrafish, increasing the survival rate, reducing the heart rate and yolk sac edema size, and inhibiting cell death and the production of intracellular reactive oxygen species (ROS) and NO. Its convenience for large-scale production and significant anti-inflammatory activity indicated the potential application of LJPS in functional foods, cosmetics, and pharmaceutical industries.  相似文献   

7.
This study involves enzymatic extraction of fucoidan from Sargassum swartzii and further purification via ion-exchange chromatography. The chemical and molecular characteristics of isolated fucoidan is evaluated concerning its anti-inflammatory potential in RAW 264.7 macrophages under LPS induced conditions. Structural properties of fucoidan were assessed via FTIR and NMR spectroscopy. NO production stimulated by LPS was significantly declined by fucoidan. This was witnessed to be achieved via fucoidan acting on mediators such as iNOS and COX-2 including pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), with dose dependent down-regulation. Further, the effect is exhibited by the suppression of TLR mediated MyD88, IKK complex, ultimately hindering NF-κB and MAPK activation, proposing its therapeutic applications in inflammation related disorders. The research findings provide an insight in relation to the sustainable utilization of fucoidan from marine brown algae S. swartzii as a potent anti-inflammatory agent in the nutritional, pharmaceutical, and cosmeceutical sectors.  相似文献   

8.
In the course of studies on bioactive metabolites from marine fungi, a new 10-membered lactone, named penicillinolide A (1) was isolated from the organic extract of Penicillium sp. SF-5292 as a potential anti-inflammatory compound. The structure of penicillinolide A (1) was mainly determined by analysis of NMR and MS data and Mosher’s method. Penicillinolide A (1) inhibited the production of NO and PGE2 due to inhibition of the expression of iNOS and COX-2. Penicillinolide A (1) also reduced TNF-α, IL-1β and IL-6 production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), a competitive inhibitor of HO activity, it was verified that the inhibitory effects of compound 1 on the production of pro-inflammatory mediators and NF-κB DNA binding activity were partially associated with HO-1 expression through Nrf2 nuclear translocation.  相似文献   

9.
10.
Alginate is a natural polysaccharide extracted from various species of marine brown algae. Alginate-derived guluronate oligosaccharide (GOS) obtained by enzymatic depolymerization has various pharmacological functions. Previous studies have demonstrated that GOS can trigger the production of inducible nitric oxide synthase (iNOS)/nitric oxide (NO), reactive oxygen species (ROS) and tumor necrosis factor (TNF)-α by macrophages and that it is involved in the nuclear factor (NF)-κB and mitogen-activated protein (MAP) kinase signaling pathways. To expand upon the current knowledge regarding the molecular mechanisms associated with the GOS-induced immune response in macrophages, comparative proteomic analysis was employed together with two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and Western blot verification. Proteins showing significant differences in expression in GOS-treated cells were categorized into multiple functional pathways, including the NF-κB signaling pathway and pathways involved in inflammation, antioxidant activity, glycolysis, cytoskeletal processes and translational elongation. Moreover, GOS-stimulated changes in the morphologies and actin cytoskeleton organization of RAW264.7 cells were also investigated as possible adaptations to GOS. This study is the first to reveal GOS as a promising agent that can modulate the proper balance between the pro- and anti-inflammatory immune responses, and it provides new insights into pharmaceutical applications of polysaccharides.  相似文献   

11.
12.
Chitosan oligosaccharides (COS) have been shown to have potential protective effects against colitis, but the mechanism underlying this effect has not been fully elucidated. In this study, COS were found to significantly attenuate dextran sodium sulfate-induced colitis in mice by decreasing disease activity index scores, downregulating pro-inflammatory cytokines, and upregulating Mucin-2 levels. COS also significantly inhibited the levels of nitric oxide (NO) and IL-6 in lipopolysaccharide-stimulated RAW 264.7 cells. Importantly, COS inhibited the activation of the NF-κB signaling pathway via activating PPARγ and SIRT1, thus reducing the production of NO and IL-6. The antagonist of PPARγ could abolish the anti-inflammatory effects of COS in LPS-treated cells. COS also activated SIRT1 to reduce the acetylation of p65 protein at lysine 310, which was reversed by silencing SIRT1 by siRNA. Moreover, COS treatment increased the diversity of intestinal microbiota and partly restored the Firmicutes/Bacteroidetes ratio. COS administration could optimize intestinal microbiota composition by increasing the abundance of norank_f_Muribaculaceae, Lactobacillus and Alistipes, while decreasing the abundance of Turicibacte. Furthermore, COS could also increase the levels of propionate and butyrate. Overall, COS can improve colitis by regulating intestinal microbiota and the PPARγ/SIRT1-mediated NF-κB pathway.  相似文献   

13.
Protein tyrosine phosphatase 1B (PTP1B) plays a major role in the negative regulation of insulin signaling, and is thus considered as an attractive therapeutic target for the treatment of diabetes. Bioassay-guided investigation of the methylethylketone extract of marine-derived fungus Penicillium sp. JF-55 cultures afforded a new PTP1B inhibitory styrylpyrone-type metabolite named penstyrylpyrone (1), and two known metabolites, anhydrofulvic acid (2) and citromycetin (3). Compounds 1 and 2 inhibited PTP1B activity in a dose-dependent manner, and kinetic analyses of PTP1B inhibition suggested that these compounds inhibited PTP1B activity in a competitive manner. In an effort to gain more biological potential of the isolated compounds, the anti-inflammatory effects of compounds 1–3 were also evaluated. Among the tested compounds, only compound 1 inhibited the production of NO and PGE2, due to the inhibition of the expression of iNOS and COX-2. Penstyrylpyrone (1) also reduced TNF-α and IL-1β production, and these anti-inflammatory effects were shown to be correlated with the suppression of the phosphorylation and degradation of IκB-α, NF-κB nuclear translocation, and NF-κB DNA binding activity. In addition, using inhibitor tin protoporphyrin (SnPP), an inhibitor of HO-1, it was verified that the inhibitory effects of penstyrylpyrone (1) on the pro-inflammatory mediators and NF-κB DNA binding activity were associated with the HO-1 expression. Therefore, these results suggest that penstyrylpyrone (1) suppresses PTP1B activity, as well as the production of pro-inflammatory mediators via NF-κB pathway, through expression of anti-inflammatory HO-1.  相似文献   

14.
Osteoarthritis (OA) remains a prevalent chronic disease without effective prevention and treatment. Amentadione (YP), a meroditerpenoid purified from the alga Cystoseira usneoides, has demonstrated anti-inflammatory activity. Here, we investigated the YP anti-osteoarthritic potential, by using a novel OA preclinical drug development pipeline designed to evaluate the anti-inflammatory and anti-mineralizing activities of potential OA-protective compounds. The workflow was based on in vitro primary cell cultures followed by human cartilage explants assays and a new OA co-culture model, combining cartilage explants with synoviocytes under interleukin-1β (IL-1β) or hydroxyapatite (HAP) stimulation. A combination of gene expression analysis and measurement of inflammatory mediators showed that the proposed model mimicked early disease stages, while YP counteracted inflammatory responses by downregulation of COX-2 and IL-6, improved cartilage homeostasis by downregulation of MMP3 and the chondrocytes hypertrophic differentiation factors Col10 and Runx2. Importantly, YP downregulated NF-κB gene expression and decreased phosphorylated IkBα/total IkBα ratio in chondrocytes. These results indicate the co-culture as a relevant pre-clinical OA model, and strongly suggest YP as a cartilage protective factor by inhibiting inflammatory, mineralizing, catabolic and differentiation processes during OA development, through inhibition of NF-κB signaling pathways, with high therapeutic potential.  相似文献   

15.
Seven rare C3-C6 reduced 3-acyl tetramic acid derivatives, lecanicilliumins A–G (1–7), along with the known analogue cladosporiumin D (8), were obtained from the extract of the deep-sea-derived fungus Lecanicillium fusisporum GXIMD00542 within the family Clavipitacae. Their structures were elucidated by extensive spectroscopic data analysis, quantum chemistry calculations and chemical reaction. Compounds 1, 2, 5–7 exhibited moderate anti-inflammatory activity against NF-κB production using lipopolysaccharide (LPS) induced RAW264.7 cells with EC50 values range of 18.49–30.19 μM.  相似文献   

16.
Considerable literature has been published on polysaccharides, which play a critical role in regulating the pathogenesis of inflammation and immunity. In this essay, the anti-inflammatory effect of Mytilus coruscus polysaccharide (MP) on lipopolysaccharide-stimulated RAW264.7 cells and a dextran sulfate sodium (DSS)-induced ulcerative colitis model in mice was investigated. The results showed that MP effectively promoted the proliferation of RAW264.7 cells, ameliorated the excessive production of inflammatory cytokines (TNF-α, IL-6, and IL-10), and inhibited the activation of the NF-κB signaling pathway. For DSS-induced colitis in mice, MP can improve the clinical symptoms of colitis, inhibit the weight loss of mice, reduce the disease activity index, and have a positive effect on the shortening of the colon caused by DSS, meliorating intestinal barrier integrity and lowering inflammatory cytokines in serum. Moreover, MP makes a notable contribution to the richness and diversity of the intestinal microbial community, and also regulates the structural composition of the intestinal flora. Specifically, mice treated with MP showed a repaired Firmicutes/Bacteroidetes ratio and an increased abundance of some probiotics like Anaerotruncus, Lactobacillus, Desulfovibrio, Alistipe, Odoribacter, and Enterorhabdus in colon. These data suggest that the MP could be a promising dietary candidate for enhancing immunity and protecting against ulcerative colitis.  相似文献   

17.
Seaweed of Saccharina japonica is the most abundantly cultured brown seaweed in the world, and has been consumed in the food industry due to its nutrition and the unique properties of its polysaccharides. In this study, fucoidan (LJNF3), purified from S. japonica, was found to be a novel sulfated galactofucan, with the monosaccharide of only fucose and galactose in a ratio of 79.22:20.78, and with an 11.36% content of sulfate groups. NMR spectroscopy showed that LJNF3 consists of (13)-α-l-fucopyranosyl-4-SO3 residues and (16)-β-d-galactopyranose units. The molecular mechanism of the anti-inflammatory effect in RAW264.7 demonstrated that LJNF3 reduced the production of nitric oxide (NO), and down-regulated the expression of MAPK (including p38, ENK and JNK) and NF-κB (including p65 and IKKα/IKKβ) signaling pathways. In a zebrafish experiment assay, LJNF3 showed a significantly protective effect, by reducing the cell death rate, inhibiting NO to 59.43%, and decreasing about 40% of reactive oxygen species. This study indicated that LJNF3, which only consisted of fucose and galactose, had the potential to be developed in the biomedical, food and cosmetic industries.  相似文献   

18.
Fucosterol is a phytosterol that is abundant in marine brown algae and is a renowned secondary metabolite. However, its ability to protect macrophages against particulate matter (PM) has not been clarified with regard to inflammation; thus, this study aimed to illustrate the above. Padina boryana, a brown algae that is widespread in Indo–Pacific waters, was applied in the isolation of fucosterol. Isolation was conducted using silica open columns, while identification was assisted with gas chromatography-mass spectroscopy (GC-MS) and NMR. Elevated levels of PM led the research objectives toward the implementation of it as a stimulant. Both inflammation and oxidative stress were caused due the fact of its effect. RAW 264.7 macrophages were used as a model system to evaluate the process. It was apparent that the increased NO production levels, due to the PM, were mediated through the inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and pro-inflammatory cytokines (i.e., interleukin-6 (IL-6), interleukin-1 (IL-1β) and tumor necrosis factor-α (TNF-α), including prostaglandin E2 (PGE2)). Further, investigations provided solid evidence regarding the involvement of NF-κB and mitogen-activated protein kinases (MAPKs) in the process. Oxidative stress/inflammation which are inseparable components of the cellular homeostasis were intersected through the Nrf2/HO-1 pathway. Conclusively, fucosterol is a potent protector against PM-induced inflammation in macrophages and hence be utilized as natural product secondary metabolite in a sustainable manner.  相似文献   

19.
Previous studies have revealed that excessive exposure to UV irradiation is the main cause of skin photoaging and the signaling pathways of MAPK and NF-κB are involved in this progression. The present study aims to investigate the anti-photoaging effects of low molecular weight hydrolysates from Theragra chalcogramma (TCH) and to clarify the underlying mechanism. The degradation of mechanical barrier functions in photoaged skin was substantially ameliorated after TCH administration; meanwhile, TCH significantly elevated the antioxidant capacity and suppressed the over-production of inflammatory cytokine IL-1β. Moreover, the histopathological deteriorations such as epidermal hyperplasia and dermal loss were significantly alleviated, along with the increase in procollagen type I content and decrease in MMP-1 activity (p < 0.05). Furthermore, TCH effectively blocked the MAPK and NF-κB signaling pathways through inhibition of the phosphorylation of p38, JNK, ERK, iκB, and p65 proteins. Collectively, these data indicate that TCH has potential as a novel ingredient for the development of anti-photoaging foods.  相似文献   

20.
The phospholipids (PLs) from Antarctic krill oil were purified (>97.2%) using adsorption column chromatography. Forty-nine PL molecular species were characterized by ultrahigh-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS). Most of molecular species contained eicosapentaenoic acid (EPA, 20:5), docosahexaenoic acid (DHA, 22:6), docosapentaenoic acid (DPA, 22:5), and arachidonic acid (AA, 20:4). Notably, a special species PC (20:5/22:6) (1298.17 nmol/g) and many ether PLs were detected. The Antarctic krill PL liposome (IC50 = 0.108 mg/mL) showed better anti-inflammatory activity than crude Antarctic krill oil (IC50 = 0.446 mg/mL). It could block NF-κB signaling pathway via suppression of IκB-α degradation and p65 activation and dose-dependently reduce the cellular content of inflammatory mediators including nitric oxide (NO), reactive oxygen species (ROS), and inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. In addition, it can suppress carrageenan-induced mouse paw swelling. Results from the present study could provide a reference for better evaluation of nutritional and medicinal values of Antarctic krill oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号