首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Weaning weights from Gelbvieh (GV; n = 82,138) and Limousin (LM; n = 88,639) calves were used to estimate genetic and environmental variance components with models that included different values for the correlation (lambda) between permanent environmental effects of dams and their daughters. Each analysis included fixed discrete effects of contemporary group, sex of calf, age of dam at calving, and month of calving, a fixed continuous effect of age of calf, random direct and maternal additive genetic effects, permanent environmental effects due to dams, and residual effects. The REML procedure was employed with a "grid search," in which the likelihood was computed for a series of values for lambda. For both breeds, models that included a nonzero value for lambda fitted the data significantly better than the model that did not include lambda. The maximum restricted likelihood was obtained for lambda of approximately -0.2 for both breeds. Estimates of residual and direct genetic variances were similar for all values of lambda, including zero; however, estimates of maternal genetic variance and maternal heritability increased slightly, and maternal permanent environmental variance and the proportion of the maternal variance to the total (phenotypic) variance decreased slightly, when the correlated structure for permanent environmental effects was assumed. As the value of lambda became more negative, absolute values of the direct-maternal genetic covariance and direct-maternal correlation estimates were decreased. Pearson and rank correlations for direct genetic, maternal genetic, and maternal environmental effects estimated with and without lambda were very high (>0.99). These results indicated that the linear relationship between maternal permanent environmental effects of dams and their daughters for weaning weight is negative but low in both breeds. Considering this relationship in the operational model did not significantly affect estimated breeding values, and thus, it may not be important in genetic evaluations.  相似文献   

2.
Weaning weights from nine sets of Angus field data from three regions of the United States were analyzed. Six animal models were used to compare two approaches to account for an environmental dam-offspring covariance and to investigate the effects of sire x herd-year interaction on the genetic parameters. Model 1 included random direct and maternal genetic, maternal permanent environmental, and residual effects. Age at weaning was a covariate. Other fixed effects were age of dam and a herd-year-management-sex combination. Possible influence of a dam's phenotype on her daughter's maternal ability was modeled by including a regression on maternal phenotype (fm) (Model 3) or by fitting grandmaternal genetic and grandmaternal permanent environmental effects (Model 5). Models 2, 4, and 6 were based on Models 1, 3, and 5, respectively, and additionally included sire x herd-year (SH) interaction effects. With Model 3, estimates of fm ranged from -.003 to .014, and (co)variance estimates were similar to those from Model 1. With Model 5, grandmaternal heritability estimates ranged from .02 to .07. Estimates of maternal heritability and direct-maternal correlation (r(am)) increased compared with Model 1. With models including SH, estimates of the fraction of phenotypic variance due to SH interaction effects were from .02 to .10. Estimates of direct and maternal heritability were smaller and estimates of r(am) were greater than with models without SH interaction effects. Likelihood values showed that SH interaction effects were more important than fm and grandmaternal effects. The comparisons of models suggest that r(am) may be biased downward if SH interaction and(or) grandmaternal effects are not included in models for weaning weight.  相似文献   

3.
Estimates of direct and maternal genetic parameters in beef cattle were obtained with a random regression model with a linear spline function (SFM) and were compared with those obtained by a multitrait model (MTM). Weight data of 18,900 Gelbvieh calves were used, of which 100, 75, and 17% had birth (BWT), weaning (WWT), and yearling (YWT) weights, respectively. The MTM analysis was conducted with a three-trait maternal animal model. The MTM included an overall linear partial fixed regression on age at recording for WWT and YWT, and direct-maternal genetic and maternal permanent environmental effects. The SFM included the same effects as MTM, plus a direct permanent environmental effect and heterogeneous residual variance. Three knots, or breakpoints, were set to 1, 205, and 365 d. (Co)variance components in both models were estimated with a Bayesian implementation via Gibbs sampling using flat priors. Because BWT had no variability of age at recording, there was good agreement between corresponding components of variance estimated from both models. For WWT and YWT, with the exception of the sum of direct permanent environmental and residual variances, there was a general tendency for SFM estimates of variances to be lower than MTM estimates. Direct and maternal heritability estimates with SFM tended to be lower than those estimated with MTM. For example, the direct heritability for YWT was 0.59 with MTM, and 0.48 with SFM. Estimated genetic correlations for direct and maternal effects with SFM were less negative than those with MTM. For example, the direct-maternal correlation for WWT was -0.43 with MTM and -0.33 with SFM. Estimates with SFM may be superior to MTM due to better modeling of age in both fixed and random effects.  相似文献   

4.
In good environments, cow intake is sufficient for their own growth and for milk production to support their calf. In poor environments, cows lose BW or may reduce milk supply to maintain themselves. Heritability for direct genetic and maternal components of weaning weight as well as the correlations between these components might be expected to vary according to these circumstances. The purpose of this study was to estimate heritability and genetic correlations for the direct genetic and maternal components of weaning weight classified in 2 environments according to maternal BW gain and to identify whether a single heritability estimate is appropriate for the differing environments experienced by cows from year to year. Data used in this analysis was obtained from the Red Angus Association of America and consisted of 96,064 cow BW observations and 27,534 calf weaning weight observations. A dam's change in BW from one year to the next was used to classify each calf's weaning weight into 1 of 2 environmental groups, those being good or poor. Best linear unbiased estimates of the change in cow BW with age were obtained from analysis of cow BW using a repeatability model. If the phenotypic change in cow BW exceeded this average BW change, the calf's weaning weight associated with the end of this time frame was classified as having been observed in a good environment. If not, the calf's corresponding weaning weight was classified as having occurred in a poorer than average environment. Heritability estimates of 0.24 +/- 0.03, 0.24 +/- 0.03, 0.13 +/- 0.02, and 0.14 +/- 0.02 were obtained for weaning weight good direct, poor direct, good maternal, and poor maternal, respectively. Correlations between direct genetic and maternal weaning weight components in the good and poor environments were -0.47 +/- 0.08 and -0.20 +/- 0.09, respectively. These variance components are not sufficiently distinct to warrant accounting for dam nutritional environment in national cattle evaluation.  相似文献   

5.
To estimate adjustment factors and genetic parameters for gestation length (GES), AI and calving date records (n = 40,356) were extracted from the Canadian Charolais Association field database. The average time from AI to calving date was 285.2 d (SD = 4.49 d) and ranged from 274 to 296 d. Fixed effects were sex of calf, age of dam (2, 3, 4, 5 to 10, > or = 11 yr), and gestation contemporary group (year of birth x herd of origin). Variance components were estimated using REML and 4 animal models (n = 84,332) containing from 0 to 3 random maternal effects. Model 1 (M1) contained only direct genetic effects. Model 2 (M2) was G1 plus maternal genetic effects with the direct x maternal genetic covariance constrained to zero, and model 3 (M3) was G2 without the covariance constraint. Model 4 (M4) extended G3 to include a random maternal permanent environmental effect. Direct heritability estimates were high and similar among all models (0.61 to 0.64), and maternal heritability estimates were low, ranging from 0.01 (M2) to 0.09 (M3). Likelihood ratio tests and parameter estimates suggested that M4 was the most appropriate (P < 0.05) model. With M4, phenotypic variance (18.35 d2) was partitioned into direct and maternal genetic, and maternal permanent environmental components (hd2 = 0.64 +/- 0.04, hm2 = 0.07 +/- 0.01, r(d,m) = -0.37 +/- 0.06, and c2 = 0.03 +/- 0.01, respectively). Linear contrasts were used to estimate that bull calves gestated 1.26 d longer (P < 0.02) than heifers, and adjustments to a mature equivalent (5 to 10 yr old) age of dam were 1.49 (P < 0.01), 0.56 (P < 0.01), 0.33 (P < 0.01), and -0.24 (P < 0.14) d for GES records of calves born to 2-, 3-, 4-, and > or = 11-yr-old cows, respectively. Bivariate animal models were used to estimate genetic parameters for GES with birth and adjusted 205-d weaning weights, and postweaning gain. Direct GES was positively correlated with direct birth weight (BWT; 0.34 +/- 0.04) but negatively correlated with maternal BWT (-0.20 +/- 0.07). Maternal GES had a low, negative genetic correlation with direct BWT (-0.15 +/- 0.05) but a high and positive genetic correlation with maternal BWT (0.62 +/- 0.07). Generally, GES had near-zero genetic correlations with direct and maternal weaning weights. Results suggest that important genetic associations exist for GES with BWT, but genetic correlations with weaning weight and postweaning gain were less important.  相似文献   

6.
Estimates of heritabilities and genetic correlations were obtained for weaning weight records of 23,681 crossbred steers and heifers and carcass records from 4,094 crossbred steers using animal models. Carcass traits included hot carcass weight; retail product percentage; fat percentage; bone percentage; ribeye area; adjusted fat thickness; marbling score, Warner-Bratzler shear force and kidney, pelvic and heart fat percentage. Weaning weight was modeled with fixed effects of age of dam, sex, breed combination, and birth year, with calendar birth day as a covariate and random direct and maternal genetic and maternal permanent environmental effects. The models for carcass traits included fixed effects of age of dam, line, and birth year, with covariates for weaning and slaughter ages and random direct and maternal effects. Direct and maternal heritabilities for weaning weight were 0.4 +/- 0.02 and 0.19 +/- 0.02, respectively. The estimate of direct-maternal genetic correlation for weaning weight was negative (-0.18 +/- 0.08). Heritabilities for carcass traits of steers were moderate to high (0.34 to 0.60). Estimates of genetic correlations between direct genetic effects for weaning weight and carcass traits were small except with hot carcass weight (0.70), ribeye area (0.29), and adjusted fat thickness (0.26). The largest estimates of genetic correlations between maternal genetic effects for weaning weight and direct genetic effects for carcass traits were found for hot carcass weight (0.61), retail product percentage (-0.33), fat percentage (0.33), ribeye area (0.29), marbling score (0.28) and adjusted fat thickness (0.25), indicating that maternal effects for weaning weight may be correlated with genotype for propensity to fatten in steers.  相似文献   

7.
Genetic parameters of mature weight are needed for effective selection and genetic evaluation. Data for estimating these parameters were collected from 1963 to 1985 and consisted of 32,018 mature weight records of 4,175 Hereford cows that were in one control and three selection lines that had been selected for weaning weight, for yearling weight, or for an index combining yearling weight and muscle score for 22 yr. Several models and subsets of the data were considered. The mature weight records consisted of a maximum of three seasonal weights taken each year, at brand clipping (February and March), before breeding (May and June), and at palpation (August and September). Heritability estimates were high (0.49 to 0.86) for all models considered, which suggests that selection to change mature weight could be effective. The model that best fit the data included maternal genetic and maternal permanent environmental effects in addition to direct genetic and direct permanent environmental effects. Estimates of direct heritability with this model ranged from 0.53 to 0.79, estimates of maternal heritability ranged from 0.09 to 0.21, and estimates of the genetic correlation between direct and maternal effects ranged from -0.16 to -0.67 for subsets of the data based on time of year that mature weight was measured. For the same subsets, estimates of the proportions of variance due to direct permanent environment and maternal permanent environment ranged from 0.00 to 0.09 and 0.00 to 0.06, respectively. Using a similar model that combined all records and included an added fixed effect of season of measurement of mature weight, direct heritability, maternal heritability, genetic correlation between direct and maternal effects, proportion of variance due to direct permanent environmental effects, and proportion of variance due to maternal permanent environmental effects were estimated to be 0.69, 0.13, -0.65, 0.00, and 0.04, respectively. Mature weight is a highly heritable trait that could be included in selection programs and maternal effects should not be ignored when analyzing mature weight data.  相似文献   

8.
Direct and maternal genetic and environmental variances and covariances were estimated for weaning weight and growth and maturing traits derived from the Brody growth curve. Data consisted of field records of weight measurements of 3,044 Angus cows and 29,943 weaning weight records of both sexes. Growth traits included weights and growth rates at 365 and 550 d, respectively. Maturing traits included the age of animals when they reached 65% of mature weight, relative growth rates, and degrees of maturity at 365 and 550 d. Variance and covariance components were estimated by REML from a set of two-trait animal models including weaning weight paired with a growth or maturing trait. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects. For growth and maturing traits, a random direct genetic effect was included in the model. Direct heritability estimates for growth traits ranged from .46 to .52 and for maturing traits from .31 to .34. Direct genetic correlations between weaning weight and weights and growth rates at 365 and 550 d ranged from .56 to .70. Correlations of maternal weaning genetic effects with direct genetic effects on weights at 365 and 550 d were positive, but those with growth rates were negative. Between weaning weight and degrees of maturity at both 365 and 550 d, direct genetic correlation estimates were .55 and maternal genetic correlations estimates were -.05, respectively. Direct genetic correlations of weaning weight with relative growth rates and age at 65% of mature weight ranged from .04 to .06, and maternal-direct genetic correlation estimates ranged from -.50 to -.56, respectively. These estimates indicate that higher genetic capacity for milk production was related to higher body mass and degrees of maturity between 365 and 550 d of age but was negatively related to absolute and relative growth rates in that life stage.  相似文献   

9.
The (co)variance components of BW at weaning (WW) were estimated for a Colombian multibreed beef cattle population. A single-trait animal model was used. The model included the fixed effect of contemporary group (sex, season, and year), and covariates including age of calf at weaning, age of cow, individual and maternal heterozygosity proportions, and breed percentage. Direct genetic, maternal genetic, permanent environmental, and residual effects were included as random effects. Direct, maternal, and total heritabilities were 0.23 +/- 0.047, 0.15 +/- 0.041, and 0.19, respectively. The genetic correlation between direct and maternal effects was -0.42 +/- 0.131, indicating that there may be antagonism among genes for growth and genes for maternal ability, which in turn suggests that improving WW by direct and maternal EPD may be difficult. A greater value for the direct heterosis effect compared with the maternal heterosis effect was found. Furthermore, the greater the proportion of Angus, Romosinuano, and Blanco Orejinegro breeds, the less the WW.  相似文献   

10.
The phenotypic ratio of a calf's weaning weight to its dam's weight is thought to be an indicator of efficiency of the cow. Thus, the objectives of this research were to 1) estimate genetic parameters for the ratio of 200-d calf weight to mature-equivalent cow weight at weaning, its components, and other growth traits; and 2) evaluate responses to selection based on the ratio. Phenotypes evaluated were the ratio (100 kg/ kg; n = 4,184), birth weight (kg; n = 5,083), 200-d weight (kg; n = 4,902), 365-d weight (kg; n = 4,626), and mature-equivalent cow weight at weaning (kg; n = 4,375). In 1989, a randomly selected and mated control line and a line selected for greater values of the ratio were established. Average generation intervals were 3.39 +/- 0.05 and 3.90 +/- 0.08 yr in the ratio selected line and control line, respectively. The ratio selection line (n = 895) accumulated approximately 4.7 SD more selection differential than the control line (n = 912) over 2.5 generations. Data were analyzed with a multiple-trait Gibbs sampler for animal models to make Bayesian inferences. Heritability estimates (posterior mean +/- SD) for direct effects were 0.20 +/- 0.03, 0.46 +/- 0.04, 0.48 +/- 0.03, 0.58 +/- 0.04, and 0.76 +/- 0.02 for ratio, birth weight, 200-d weight, 365-d weight, and cow weight, respectively. Estimates for heritability of maternal effects were 0.58 +/- 0.05, 0.10 +/- 0.02, 0.13 +/- 0.02, and 0.10 +/- 0.02 for ratio, birth weight, 200-d weight, 365-d weight, respectively. Significant response to selection was limited to maternal effects: 1.32 +/- 0.38 ratio units per generation. As the ratio was a trait of the calf, estimated maternal genetic effects on the ratio contained both genetic effects due to dams that environmentally affected progeny performance and direct effects on the reciprocal of cow weight. In the control line, genetic trends in direct and maternal 200-d weight were -1.28 +/- 0.91 and 0.62 +/- 0.92 kg/generation, respectively, and the genetic trend in direct effects on cow weight was -5.72 +/- 2.80 kg/ generation. In the selection line, genetic trends in direct and maternal 200-d weight were 1.43 +/- 0.79 and 2.90 +/- 0.80 kg/generation and the genetic trend in cow weight was -2.79 +/- 2.43 kg/generation. Significant correlated responses were observed in direct effects on birth weight and maternal effects on 365-d weight. Results contraindicate use of the ratio of calf weaning weight to cow weight as a selection criterion.  相似文献   

11.
Weaning weights from nine parental breeds and three composites were analyzed to estimate variance due to grandmaternal genetic effects and to compare estimates for variance due to maternal genetic effects from two different models. Number of observations ranged from 794 to 3,465 per population. Number of animals in the pedigree file ranged from 1,244 to 4,326 per population. Two single-trait animal models were used to obtain estimates of covariance components by REML using an average information method. Model 1 included random direct and maternal genetic, permanent maternal environmental, and residual environmental effects as well as fixed sex x year and age of dam effects. Model 2 in addition included random grandmaternal genetic and permanent grandmaternal environmental effects to account for maternal effects of a cow on her daughter's maternal ability. Non-zero estimates of proportion of variance due to grandmaternal effects were obtained for 7 of the 12 populations and ranged from .03 to .06. Direct heritability estimates in these populations were similar with both models. Existence of variance due to grandmaternal effects did not affect the estimates of maternal heritability (m2) or the correlation between direct and maternal genetic effects (r(am)) for Angus and Gelbvieh. For the other five populations, magnitude of estimates increased for both m2 and r(am) when estimates of variance due to grandmaternal effects were not zero. Estimates of the correlation between maternal and grandmaternal genetic effects were large and negative. These results suggest that grand-maternal effects exist in some populations, that when such effects are ignored in analyses maternal heritability may be underestimated, and that the correlation between direct and maternal genetic effects may be biased downward if grandmaternal effects are not included in the model for weaning weight of beef cattle.  相似文献   

12.
Genetic association between individual birth weight (IBW) and litter birth weight (LBW) was analyzed on records of 14,950 individual pigs born alive between 1988 and 1994 at the pig breeding farm of the University of Kiel. Dams were from three purebred lines (German Landrace, German Edelschwein, and Large White) and their crosses. Phenotypically, preweaning mortality of pigs decreased substantially from 40% for pigs with < or = 1 kg weight to less than 7% for pigs with > 1.6 kg. For these low to high birth weight categories, preweaning growth (d 21 of age) and early postweaning growth (weaning to 25 kg) increased by more than 28 and 8% per day, respectively. Bayesian analysis was performed based on direct-maternal effects models for IBW and multiple-trait direct effects models for number of pigs born in total (NOBT) and alive (NOBA) and LBW. Bayesian posterior means for direct and maternal heritability and litter proportion of variance in IBW were .09, .26, and .18, respectively. After adjustment for NOBT, these changed to .08, .22, and .09, respectively. Adjustment for NOBT reduced the direct and maternal genetic correlation from -.41 to -.22. For these direct-maternal correlations, the 95% highest posterior density intervals were -.75 to -.07, and -.58 to .17 before and after adjustment for NOBT. Adjustment for NOBT was found to be necessary to obtain unbiased estimates of genetic effects for IBW. The relationship between IBW and NOBT, and thus the adjustment, was linear with a decrease in IBW of 44 g per additionally born pig. For litter traits, direct heritabilities were .10, .08, and .08 for NOBT, NOBA, and LBW, respectively. After adjustment of LBW for NOBA the heritability changed to .43. Expected variance components for LBW derived from estimates of IBW revealed that genetic and environmental covariances between full-sibs and variation in litter size resulted in the large deviation of maternal heritability for IBW and its equivalent estimate for LBW. These covariances among full-sibs could not be estimated if only LBW were recorded. Therefore, selection for increased IBW is recommended, with the opportunity to improve both direct and maternal genetic effects of birth weight of pigs and, thus, their vitality and pre- and postnatal growth.  相似文献   

13.
Genetic and environmental parameters for mature weight in Angus cattle   总被引:2,自引:0,他引:2  
Genetic and environmental variances and covariances and associated genetic parameters were estimated for weaning weight, asymptotic mature weight, and repeated mature weights. Data consisted of a set of weight measurements of 3,044 Angus cows born between 1976 and 1990. Mature weight was predicted by individually fitting Brody growth curves (asymptotic weight) and by using weights repeatedly measured after 4 yr of age. Variance and covariance components for mature weight were estimated by REML from a single-trait animal model with asymptotic weight, a two-trait animal model with asymptotic and weaning weight, and a two-trait animal model with repeated weights and weaning weight. Weaning and cow contemporary groups were defined as fixed effects. Random effects for weaning weight included direct genetic, maternal genetic, and permanent environmental effects; and for mature weight, direct genetic and repeated measurements (if in the model). Heritability estimates for weaning weight were similar for both two-trait models (.53 and .59). Estimates of heritability for mature weight were .44, .52, and .53 for the single-trait model with asymptotic weight, two-trait model with asymptotic weight, and two-trait model with repeated measures weights, respectively. The estimate of the genetic correlation between mature and weaning weight was higher for the repeated measures model (.85 vs. .63). A lower heritability estimate for mature weight from the single-trait model was likely due to postweaning culling. Therefore, a genetic evaluation of mature weight from field data should include a trait recorded earlier in life that is less subjected to selective data reporting.  相似文献   

14.
Parameters for direct and maternal dominance were estimated in models that included non-additive genetic effects. The analyses used weaning weight records adjusted for age of dam from populations of Canadian Hereford (n = 467,814), American Gelbvieh (n = 501,552), and American Charolais (n = 314,552). Method R estimates of direct additive genetic, maternal additive genetic, permanent maternal environment, direct dominance, and maternal dominance variances as a proportion of the total variance were 23, 12, 13, 19, and 14% in Hereford; 27, 7, 10, 18, and 2% in Gelbvieh; and 34, 15, 15, 23, and 2% in Charolais. The correlations between direct and maternal additive genetic effects were -0.30, -0.23, and -0.47 in Hereford, Gelbvieh, and Charolais, respectively. The correlations between direct and maternal dominance were -0.38, -0.02, and -0.04 in Hereford, Gelbvieh, and Charolais, respectively. Estimates of inbreeding depression were -0.20, -0.18, and -0.13 kg per 1% of inbreeding for Hereford, Gelbvieh, and Charolais, respectively. Estimates of the maternal inbreeding depression were -0.01, -0.02, and -0.02 kg, respectively. The high ratio of direct dominance to additive genetic variances provided some evidence that direct dominance effects should be considered in beef cattle evaluation. However, maternal dominance effects seemed to be important only for Hereford cattle.  相似文献   

15.
The present study was carried out from 1999 to 2003 to determine the genetic and environmental influences of faecal egg count (FEC), an indicator of host resistance, in adult Jamunapari goats with naturally acquired gastrointestinal nematode parasite infections (predominantly Haemonchus contortus). FEC data on 670 records of Jamunapari goats descended from 54 bucks and 208 does were used in this study. Analyses were carried out by restricted maximum likelihood estimation, fitting an animal model. Four different animal models ignoring or including maternal genetic or permanent environmental effects were fitted. Different environmental effects, that is, sampling year, month and the sex of the animals, significantly (P<0.01) influenced FECs in the goats. Direct heritability estimates were inflated substantially for this trait when maternal effects were ignored. The direct heritability estimates for the trait ranged from 0.11 to 0.16 depending on the model used. Low estimates of maternal heritability (m(2)=0.06) and the fraction of variance due to maternal permanent environmental effects (c(2)=0.09) for FECs were observed in the present study. The results suggest that direct and permanent environmental maternal effects were important for this trait; however, maternal additive effects had less impact on this trait. These results also indicate that modest rates of genetic progress appear possible for FECs.  相似文献   

16.
Data collected by the National Livestock Research Institute of the Rural Development Administration of Korea were used to estimate genetic parameters for yearling (YWT, n = 5,848), 18-mo (W18, n = 4,585), and slaughter (SWT, n = 2,279) weights for Korean Native cattle. Nine animal models were used to obtain REML estimates of genetic parameters: DP-2 included genetic, uncorrelated dam, and residual random effects; DQ-2 included genetic, sire x region x year-season interaction, and residual random effects; DPQ-2 was based on DQ-2 but included both interaction and dam effects; DMP-2 was based on DP-2 but with dam effect partitioned to include maternal genetic and permanent environmental effects; and DMPQ-2 was based on DMP-2 but also included sire interaction effects. Those five models included two fixed factors: region x year-season and age of dam x sex effects. Models DP-3, DQ-3, DPQ-3, and DMPQ-3 were based on DP-2, DQ-2, DPQ-2, and DMPQ-2 but included as a third fixed factor whether or not identification of the sire was known. Estimates of heritability with DMPQ-3 for YWT, with DPQ-3 for W18 and SWT when analyzed with single-trait analyses were .14, .11, and .17, respectively, and were nearly the same with bivariate analyses. Estimate of maternal heritability for YWT from single-trait analysis was .04, with estimates for other traits near zero. For bivariate analyses, the estimate for YWT was .01. With single trait analysis, estimate of the direct-maternal genetic correlation for YWT was negative (-.81). Estimates of direct genetic correlations between YWT and W18, YWT and SWT, and W18 and SWT were .99, 1.00, and .97, respectively. Estimates of environmental correlations varied from .60 to .81; the largest was between W18 and SWT. Including a fixed factor for whether sire identification was missing or not missing reduced the estimate of heritability for slaughter weight. The results suggest that the sire x region x year-season interaction is important for yearling weight and may be needed in a model for slaughter weight. Maternal effects may be of slight importance for yearling weight but of no importance for W18 and SWT. Models for national cattle evaluations for Korean Native cattle for YWT should be considered that include maternal genetic and permanent environmental as well as sire x region x year-season interaction effects, but those effects seem not to be needed for models for W18 and SWT. Not much reranking of sires occurred when ranked was based on the different models for W18 and SWT.  相似文献   

17.
Estimates of heritabilities and genetic correlations for calving ease over parities were obtained for the Italian Piedmontese population using animal models. Field data were calving records of 50,721 first- and 44,148 second-parity females and 142,869 records of 38,213 cows of second or later parity. Calving ability was scored in five categories and analyzed using either a univariate or a bivariate linear model, treating performance over parities as different traits. The bivariate model was used to investigate the genetic relationship between first- and second- or between first- and third-parity calving ability. All models included direct and maternal genetic effects, which were assumed to be mutually correlated. (Co)variance components were estimated using restricted maximum likelihood procedures. In the univariate analyses, the heritability for direct effects was .19 +/- .01, .10 +/- .01, and .08 +/- .004 for first, second, and second and later parities, respectively. The heritability for maternal effects was .09 +/- .01, .11 +/- .01, and .05 +/- .01, respectively. All genetic correlations between direct and maternal effects were negative, ranging from -.55 to -.43. Approximated standard errors of genetic correlations between direct and maternal effects ranged from .041 to .062. For multiparous cows, the fraction of total variance due to the permanent environment was greater than the maternal heritability. With bivariate models, direct heritability for first parity was smaller than the corresponding univariate estimate, ranging from .18 to .14. Maternal heritabilities were slightly higher than the corresponding univariate estimates. Genetic correlation between first and second parity was .998 +/- .00 for direct effects and .913 +/- .01 for maternal effects. When the bivariate model analyzed first- and third-parity calving ability, genetic correlation was .907 +/- .02 for direct effects and .979 +/- .01 for maternal effects. Residual correlations were low in all bivariate analyses, ranging from .13 for analysis of first and second parity to .07 for analysis of first and third parity. In conclusion, estimates of genetic correlations for calving ease in different parities obtained in this study were very high, but variance components and heritabilities were clearly heterogeneous over parities.  相似文献   

18.
M. Chimonyo  K. Dzama  E. Bhebhe   《Livestock Science》2006,105(1-3):69-77
Genetic parameters for individual birth weight (IBWT), total number of pigs born (NBT), number of pigs born alive (NBA), number of pigs born dead (NBD) and litter weight at birth (LBWT) were estimated using 1961 Mukota pigs kept at the University of Zimbabwe Farm, Harare, Zimbabwe. Variance components were estimated for IBWT based on a direct-maternal genetic effects model. The genetic relationships among NBT, NBA, NBD and LBWT were assessed using a multi-trait direct effects model. For LBWT, the direct, maternal and common environmental litter proportions on the phenotypic variance were 0.090, 0.033 and 0.009, respectively. After adjustment of IBWT for NBA, phenotypic fractions were 0.091, 0.034 and 0.011 for direct, maternal and litter effects. The correlation between the direct and maternal genetic effects of IBWT was − 0.354 and − 0.295, with and without adjustment for NBT. Heritabilities for NBT, NBA, NBD and LBWT were 0.020, 0.030, 0.088 and 0.196, respectively. Differences in the maternal heritability and the heritability for LBWT, a trait of the dam, are different due to accumulation of observations per litter. Maternal genetic effects are, therefore, of less importance than in highly selected European breeds.  相似文献   

19.
Birth weights (4,155) and weaning weights (3,884) of Line 1 Herefords collected at the Fort Keogh Livestock and Range Research Laboratory in Miles City, MT, between the years of 1935 to 1989 were available. To study the effect of misidentification on estimates of genetic parameters, the sire identification of calf was randomly replaced by the identification of another sire based on the fraction of progeny each sire contributed to a yearly calf crop. Misidentification rates ranged from 5 to 50% with increments of 5%. For each rate of misidentification, 100 replicates were obtained and analyzed with single-trait and two-trait analyses with a restricted maximum likelihood (REML) algorithm. Two different models were used. Both models contained year x sex combinations and ages of dam as fixed effects, calendar birth date as a fixed covariate, and random animal and maternal genetic effects and maternal permanent environment effects. Model 2 also included sire x year combinations as random effects. As the rate of misidentification increased, estimates of the direct-maternal genetic correlation increased for both traits, with both models, for all analyses. With singletrait analyses, estimates of the fraction of variance that were due to sire x year interaction effects increased slightly for birth weight (near zero) and decreased slightly (0.015 to 0.004) for weaning weight as misidentification increased. With two-trait analyses, estimates of fraction of variance that were due to sire x year effects gradually decreased for weaning weight as misidentification increased. With the two-trait analyses, and with both models, as the level of sire misidentification increased, estimates of the genetic correlation between direct effects gradually increased, and estimates of the correlation between maternal effects gradually decreased. Estimates of the direct-maternal genetic correlation were more positive with Model 2 than with Model 1 for all levels of misidentification. Results of this study indicate that misidentification of sires would severely bias estimates of genetic parameters and would reduce genetic gain from selection.  相似文献   

20.
Records of 9,055 lambs from a composite population originating from crossing Columbia rams to Hampshire x Suffolk ewes at the U.S. Meat Animal Research Center were used to estimate genetic parameters among growth traits. Traits analyzed were weights at birth (BWT), weaning (7 wk, WWT), 19 mo (W19), and 31 mo (W31) and postweaning ADG from 9 to 18 or 19 wk of age. The ADG was also divided into daily gain of males (DGM) and daily gain of females (DGF). These two traits were analyzed with W19 and with W31 in three-trait analyses. (Co)variance components were estimated with REML for an animal model that included fixed effects of sex, age of dam, type of birth or rearing, and contemporary group. Random effects were direct and maternal genetic of animal and dam with genetic covariance, maternal permanent environmental, and random residual. Estimates of direct heritability were .09, .09, .35, .44, .19, .16, and .23 for BWT, WWT, W19, W31, ADG, DGM, and DGF, respectively. Estimates of maternal permanent environmental variance as a proportion of phenotypic variance were .09, .12, .03, .03, .03, .06, and .02, respectively. Estimates of maternal heritability were .17 and .09 for BWT and WWT and .01 to .03 for other traits. Estimates of genetic correlations were large among W19, W31, and ADG (.69 to .97), small between BWT and W31 or ADG, and moderate for other pairs of traits (.32 to .45). The estimate of genetic correlation between DGM and DGF was .94, and the correlation between maternal permanent environmental effects for these traits was .56. For the three-trait analyses, the genetic correlations of DGM and DGF with W19 were .69 and .82 and with W31 were .67 and .67, respectively. Results show that models for genetic evaluation for BWT and WWT should include maternal genetic effects. Estimates of genetic correlations show that selection for ADG in either sex can be from records of either sex (DGM or DGF) and that selection for daily gain will result in increases in mature weight but that BWT is not correlated with weight at 31 mo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号