首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
有效获取温室出菇房的温湿度空间分布对于优化食用菌环境胁迫、病害预警、出菇房预调控至关重要,但传统的单点预测不能很好地满足菇房整体环境性能评估的需求。针对出菇房内温湿度时序性、非线性、空间分布差异性的特点,提出一种基于卷积神经网络(CNN)与门控循环单元神经网络(GRU)相结合的菇房多点温湿度预测方法。将温室室外历史气象数据、温室室内历史小气候环境数据、多点环境分布特征、通风信息和加湿信息多特征数据按照时间序列构造二维矩阵作为输入,采用CNN挖掘数据中蕴含的有效信息,提取反映温室环境数据相互联系的高维特征,将提取的特征向量构造为时间序列输入GRU网络进行多点温湿度预测。将该预测方法应用于北京市农林科学院的日光温室出菇房内多点温湿度预测,实验结果表明,该预测方法对于出菇房内各点温度RMSE平均值为0.211℃,MAE平均值为0.140℃,误差控制在±0.5℃范围内的平均比例为97.57%;对于出菇房内各点相对湿度RMSE平均值为2.731%,MAE平均值为1.713%,误差控制在±5%范围内的平均比例为92.62%;相比传统的BP神经网络、长短期记忆神经网络(LSTM)和门控循环单元神经网络(GRU),该预测方法具有更高的预测精度。  相似文献   

2.
春秋茬温室番茄光合速率预测模型通用性研究   总被引:1,自引:0,他引:1  
殷鉴  刘新英  张漫  李寒 《农业机械学报》2017,48(S1):327-333
基于无线传感器网络,建立了春秋茬温室番茄光合速率预测模型。在2014年秋季与2015年春季,采用无线传感器网络自动获取温室环境因子信息,包括空气温湿度、土壤温湿度、光强与CO2浓度。同时采用LI-6400XT型光合仪测定植物的单叶净光合速率,利用叶室小环境来扩展数据范围。将采集到的温室环境信息作为输入参数,单叶净光合速率作为输出参数,利用神经网络建立番茄光合速率预测模型。为了提高模型的预测精度,首先使用Z分数对输入参数进行标准化,然后对标准化后的数据进行主成分分析;其次,根据各主成分的累积贡献率选取主成分,然后经过K折交叉检验后建立神经网络预测模型。结果表明,采用2014年秋季数据建立的预测模型,相关系数为0.99;2015年春季为0.95;用两季数据联合建立的通用模型,相关系数为0.85。利用春秋茬联合数据建立的温室番茄光合速率预测模型通用性较好,可以为日光温室CO2气肥精细调控提供理论支持。  相似文献   

3.
针对目前冷链储运环境状态仅通过当前环境监测数据进行判断,未能对环境变化趋势做出预判,无法很好地满足冷链储运环境性能评估的需求,提出了一种基于K中心点算法(K-medoids)和长短时记忆网络(LSTM)相结合的冷藏车厢温湿度多步预测方法。将冷藏车厢内历史温湿度数据、采集节点分布特征按照时间序列作为输入,采用K-medoids对其进行数据融合,然后将融合后的数据按照时间序列输入LSTM网络进行温湿度预测。将该预测方法应用于舟山兴业集团的冷藏车内进行温湿度预测验证。试验结果表明:该预测方法对于冷藏车厢内温度预测的均方根误差、平均绝对误差、平均绝对百分比误差分别为0.343 8℃、0.273 0℃、1.51%;对于冷藏车厢内相对湿度均方根误差、平均绝对误差、平均绝对百分比误差分别为2.561 9%、1.995 6%、3.53%,相比于BP神经网络等其他浅层模型,该模型具有较好的预测精度和泛化能力,能够满足冷链储运环境预测的实际需求,可为冷链运输环境精细化管理和调控提供策略支持。  相似文献   

4.
为提高温室环境下参考作物蒸散量(Reference Crop Evapotranspiration,ET_0)的预测精度,提出烟花算法(Fireworks Algorithm, FWA)优化极限学习机(Extreme Learning Machine, ELM)的参考作物蒸散量预测模型,有效解决了极限学习机在数据预测过程中因随机输入权值矩阵和偏置矩阵导致的数据波动问题,提高了极限学习机的预测精度。以温室环境数据作为模型的输入,以参考作物蒸散量ET_0为输出,建立FWAELM模型,并将结果与ELM模型预测结果进行对比,结果表明,FWAELM模型的均方根误差、平均绝对误差和模型可决系数分别为:0.115 6、0.143 6、0.943 8,高于ELM模型的0.403 5、0.346 7和0.819 0,FWAELM模型预测精度较高。同时进行了气象参数缺失情况下的模型预测精度研究,结果表明参数在保留3个及以上时,模型的预测精度依然较高,适用于温室ET_0的预测研究。  相似文献   

5.
构建日光温室环境预测模型,准确预测温室环境变化有助于精准调控作物生长环境,促进果蔬生长。而温室小气候环境数据多参数并存、耦合关系复杂,且具有时序性和非线性,难以建立准确的预测模型。针对以上问题,提出一种基于麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)温室环境预测模型,实现了温室环境数据的精准预测。实验结果表明,采用SSA自动进行参数选优的方式,解决了LSTM模型参数手动选择的难题,大幅缩短模型训练时间,且最优的网络参数能够发挥模型的最佳性能。对日光温室内空气温湿度、土壤温湿度、CO2浓度和光照强度6种环境参数进行预测,SSA-LSTM平均拟合指数高达97.6%,相比BP、门控循环单元(GRU)、LSTM,其预测拟合指数分别提升8.1、4.1、4.3个百分点,预测精度明显提升。  相似文献   

6.
基于自然通风的日光温室内温湿度仿真模型   总被引:1,自引:0,他引:1  
为了模拟自然通风条件下日光温室内温湿度的变化,将通风口开度进行量化处理,根据热量平衡和水汽质量平衡原理构建了温室内气温和湿度的动态变化数学模型。利用Simulink仿真平台将二者结合,搭建了以通风为输入、以室内温湿度为输出的温室微气候系统仿真框图,利用2类典型天气条件下的实测数据对模型进行了仿真检验。研究结果表明,室内气温的标准误差最大为0.479 2℃,仿真有效性指数最小为73.03%;室内湿度的标准误差最大为1.943 7%,模型有效性指数最小为71.13%;仿真模型是有效的。  相似文献   

7.
玻璃温室小气候温湿度动态模型的建立与仿真   总被引:10,自引:4,他引:10  
胥芳  张立彬  陈教料  占红武 《农业机械学报》2005,36(11):102-105,131
分析了温室小气候中辐射、通风、对流和作物蒸腾作用引起的质热交换物理过程,基于能量和物质守恒,建立了温室小气候温湿度动态模型,并对模型进行了仿真.根据均方根误差算法分析了模拟值与测量值的误差,分析结果表明,动态模型能有效地预测温室内空气的温湿度值.  相似文献   

8.
基于积温理论的温室温度混杂系统预测控制   总被引:1,自引:0,他引:1  
温室温度系统作为典型的混杂系统,其输入包括离散的设备控制量以及可测不可控的多个室外环境扰动量。本文针对温室温度混杂系统,建立切换系统模型,基于此模型设计多输入预测控制。首先分别在4种离散状态(保温模式、自然通风模式、强制通风模式、湿帘-风机模式)下确定模型的主相关输入,采用带遗忘因子的递推最小二乘法建立子模型。然后设计预测控制器,利用双周期积温法规划预测控制设定值。求解多输入预测控制量问题为NP-hard问题,采用最优化剪枝法优化搜索。最后在实验温室应用控制算法进行实验,实验结果表明,多输入预测控制算法可以有效调控温室内温度,并且由于积温理论动态规划预测控制设定值,可减少设备的切换次数,降低能耗。  相似文献   

9.
针对目前温室环境系统中,环境监测数据只能反映当前环境状况,无法预测温室环境变化趋势,导致温室环境控制效果差的问题,提出一种基于Elman神经网络的温室环境因子预测方法。以采集的温室内温度、湿度以及二氧化碳浓度的历史数据作为预测模型的输入,建立Elman神经网络预测模型,进而实现精确的温室环境因子变化预测。结果表明,Elman模型优于BP和RBF模型,温度、湿度和二氧化碳浓度预测结果的均方误差分别为0.003 9、0.005 9和0.028 3,决定系数分别为0.991 5、0.967 8和0.973 9。该模型预测结果较理想,可以为温室环境调控提供一定的决策支持。  相似文献   

10.
温室温度系统作为典型的混杂系统,其输入包括离散的设备控制量以及可测不可控的多个室外环境扰动量。本文针对温室温度混杂系统,建立切换系统模型,基于此模型设计多输入预测控制。首先分别在4种离散状态(保温模式、自然通风模式、强制通风模式、湿帘-风机模式)下确定模型的主相关输入,采用带遗忘因子的递推最小二乘建立子模型。然后设计预测控制器,利用双周期积温法规划预测控制设定值。求解多输入预测控制控制量问题为NP-hard问题,采用最优化剪枝法优化搜索。最后在试验温室应用控制算法,实验结果表明,多输入预测控制算法可以有效调控温室内温度,并且由于积温理论动态规划预测控制设定值,可减少设备的切换次数,降低能耗。  相似文献   

11.
针对智能温室变量施水的土壤水分预测问题,建立基于神经网络的土壤水分动态预测模型。以Delaunay三角剖分布点方法为基础,并将种植区域离散成若干单元。对各离散单元,模糊其土壤喷灌量,将单位时间土壤含水量的变化映射成土壤水势变化。考虑到土壤的时空特性,使用MATLAB建立以预测单元表层测量点土壤含水量、土壤温度和单位时间土壤含水量变化量作为输入,未来时刻该单元中心土壤深层含水量作为输出的BP神经网络和RBF神经网络预测模型。利用温室实际数据验证模型的准确性,通过比较两种神经网络模型结果,得出RBF神经网络模型具有较好实用性,为温室精细化变量施水的实现奠定基础。  相似文献   

12.
针对温室管理智能化的需要,提出了一种基于无线数据传输的温室环境参数监控系统。该系统以MSP430F169作为微控制器,通过数字温湿度传感器DHT11、土壤温湿度传感器SHT10P、光强数字转换芯片TSL2561和CO2气体传感器MG811检测温室环境中的空气温湿度、土壤温湿度、光照强度及CO2含量,以n RF24L01+作为射频无线通信模块实现下位机和上位机之间的数据通信,以TC35i作为GSM无线通信模块实现上位机和监控终端之间的数据通信。用户可以通过上位机或监控终端对温室环境参数进行检测和控制,使温室内环境参数控制在所希望的水平上,实现温室环境参数的智能化控制。  相似文献   

13.
针对智能温室变量施水的土壤水分预测问题,建立基于神经网络的土壤水分动态预测模型。以Delaunay三角剖分布点方法为基础,并将种植区域离散成若干单元。对各离散单元,模糊其土壤喷灌量,将单位时间土壤含水量的变化映射成土壤水势变化。考虑到土壤的时空特性,使用MATLAB建立以预测单元表层测量点土壤含水量、土壤温度和单位时间土壤含水量变化量作为输入,未来时刻该单元中心土壤深层含水量作为输出的BP神经网络和RBF神经网络预测模型。利用温室实际数据验证模型的准确性,通过比较两种神经网络模型结果,得出RBF神经网络模型具有较好实用性,为温室精细化变量施水的实现奠定基础。  相似文献   

14.
基于RBF神经网络的温室温度调控研究   总被引:1,自引:0,他引:1  
根据光合作用对温室环境因子的非线性,结合RBF神经网络对非线性的良好辨识能力,研究出一种温度调控技术。结合温室光照、温度变化规律,运用RBF神经网络建立温室生菜光合速率与二者的量化模型,通过生菜的光合作用速率来衡量生菜生长状况,在温室小气候里实现对生菜产量的量化控制。该模型预测精度较高,可作为温室测控系统环境因子调控依据。  相似文献   

15.
针对温室大棚控制系统中温湿度强耦合性特点,本文设计了一种温湿度模糊PID-解耦控制器。首先,结合传统PID控制和模糊控制方法,构造了温湿度模糊PID控制器。然后,利用多项式数据拟合法建立了温湿度补偿关系式,并设计了温湿度解耦控制器。最后,利用MATLAB/Simulink仿真平台搭建了温室大棚温湿度控制系统整体仿真模型,并对比分析了传统PID、模糊PID和模糊PID-解耦控制方法。结果表明:提出的模糊PID-解耦控制方法具有响应速度快、无超调振荡等特点,优化了控制系统的动态性能。  相似文献   

16.
为解决温室温度、湿度环境精准控制问题,基于PID算法并结合温度、湿度热力学分析,提出了一种温室温湿度耦合控制方法。通过实验结合参数辨识方法建立温室温度、湿度的数学模型;从热力学角度分析温度与湿度之间存在的耦合关系,得出温湿度耦合函数;将耦合函数作为温湿度之间的影响关系添加到基于PID算法的控制模型中,最终建立了基于PID算法的温湿度耦合控制模型。实验结果表明:加入温湿度耦合关系后,耦合控制相较于无耦合控制方法,温度控制与湿度控制系统的系统稳态时间分别减少73.3%和50%,系统稳态误差均为0,系统更加稳定准确。温湿度独立控制方法很难实现温室温度与湿度的协调准确控制,而采用耦合控制方法能够大幅度提高控制系统的稳定性、快速性及准确性,实现了温室温湿度的精准控制,从而提高了温室作物的生产品质。  相似文献   

17.
自然通风状态下温室内空气温度的合理估测是全开型玻璃温室夏季温度控制的重要依据.为此,建立了基于RS-485总线的分布式多传感器温度测控网络,并采用分布图法和基于均值的数据融合方法对测量结果修正融合,实现了全开型玻璃温室温、湿度的精确测量.在此基础上,以室外空气温度、太阳辐射强度、室内通风速率以及室内空气相对湿度作为室内空气温度的影响因子,针对各因子的非平稳时间序列建立了室内空气温度时间序列模型,同时引入了协整方法避免伪回归现象,引入了误差修正方法提高模型预测精度.实际验证表明,时间序列模型预测数据与实测数据吻合良好,可较好地预测温室内温度,该研究成果为全开型玻璃温室的温度控制提供了理论依据.  相似文献   

18.
温度是设施生产中作物生长的主要制约因素之一,提前预测温室温度对精准调控温室环境具有重要的指导意义。因此提出一种基于灰狼优化算法的长短期记忆网络模型预测温室温度,该模型利用灰狼优化算法(Grey Wolf Optimizer, GWO)对长短期记忆网络(Long Short-Term Memory, LSTM)模型参数进行调整优化。以江苏省农业科学院阳光板温室2020年9月23日—12月21日期间的试验数据对该方法进行验证。结果显示:在预测时间步长30 min时,GWO-LSTM的预测均方根误差、平均绝对误差、平均绝对百分比误差和决定系数分别为0.677 6、0.411 4、0.168 7和0.960 4。在预测时间步长60 min内,GWO-LSTM模型预测精度均高于标准LSTM和反向传播人工神经网络(Back Propagation Artificial Neural Network, BP-ANN)。说明所提出的GWO-LSTM模型能够准确地预测未来温室内温度变化,可为制定温室环境智能调控策略提供有效的数据支撑。  相似文献   

19.
为了在改变温室通风口开度的条件下模拟室内气温,根据热量平衡原理,考虑太阳辐射、长波辐射、对流、通风及作物蒸腾等5个主要模块,对温室系统的热量交换进行描述,构建了温室气温动态变化的数学模型,然后通过Simulink仿真平台搭建了以通风为输入以室温为输出的模型仿真框图,并利用典型天气条件下的实测数据对仿真结果进行检验。仿真结果证明了该模型的有效性:在晴天和阴雨天,标准误差分别为0.755 8℃和0.096 3℃,仿真有效性指数分别为92.29%和92.76%。  相似文献   

20.
温室番茄光合速率的准确预测对于番茄的生长和产量评估具有重要意义。然而,由于温室环境的复杂性和多变性,传统的光合速率预测模型往往难以满足精准预测的需求。因此,为了进一步提高预测模型的准确性和稳定性,本研究提出了一种基于多模型融合策略的温室番茄光合速率预测方法。首先,采集温湿度、光照强度、CO2浓度不同组合下的番茄光合速率,构建样本集,并采用五折交叉验证法(Cross-Validation)对数据进行预处理。以预处理的数据为基础,分别基于粒子群优化支持向量机(PSO-SVR)、布谷鸟优化极限学习机(CS-ELM)和北方苍鹰优化高斯过程回归(NGO-GPR)算法建立番茄光合速率预测模型对光合速率进行初步预测,然后采用Stacking算法通过基于决策树的集成学习模型(XGBoost)组合各基础模型的预测结果,进而实现多模型融合。仿真分析结果表明,与单一预测模型相比,基于多模型融合的光合速率预测模型充分发挥了各基础模型的优势,可以进一步提高光合速率预测的准确性和稳定性,该模型验证集MAE为0.5697μmol/(m2·s),RMSE为0.7214μmol/(m2·s)。因此,本文提出的方法在温室作物光合速率预测方面具有一定的优势,可为温室番茄等作物光环境优化调控提供一定的理论基础和技术支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号