首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于MOD16的澴河流域蒸散发时空分布特征   总被引:6,自引:5,他引:1  
【目的】研究流域尺度上的蒸散发分布规律,为流域水资源评价和农业生产提供依据。【方法】基于2000―2013年的MOD16蒸散发数据集,选取澴河花园站以上流域为研究区,对年际、年内以及不同土地利用类型下的流域实际蒸散发(ET)和潜在蒸散发(PET)进行了研究。【结果】针对本流域ET与PET计算,MOD16数据集的精度总体上符合要求,可用于蒸散发研究;2000―2013年,研究区多年平均ET为635 mm,总体上呈北高南低、东高西低的趋势。多年平均PET为1 536 mm,总体上北部丘陵地区最低,山区最高,其他区域分布较为均衡;ET呈逐年下降趋势,年际变化率5.53 mm/a,显著下降区域分布在平原地区。PET呈上升趋势,年际变化率16.13 mm/a,显著上升区域集中于丘陵地区;以ET和PET差值D反映流域的干旱程度,流域干旱情况呈现上升趋势,在3―6月和9―10月更易出现干旱现象,易旱区域主要为平原地区;不同土地利用类型下的ET在3―11月表现出差异性,从大到小依次为林地草地农田城镇。PET从大到小依次为城镇农田草地林地,林地PET峰值出现在6月,其他均出现在5月。【结论】由于气候条件和人类活动的影响,2000―2013年,澴河流域内ET有所下降,而PET有所上升,平原地区缺水情况最为明显。  相似文献   

2.
蒸散量的时空格局分析不仅对理解气候变化对区域水资源和能量平衡的影响具有重要的意义,且为探讨旱涝灾害成因以及区域生态需水量研究提供一定的理论依据。以塔里木河流域为研究区域,利用MODIS全球蒸散产品MOD16数据,通过趋势分析法和相对变化率,统计分析了2000-2014年塔里木河流域地表实际蒸散(AET)与潜在蒸散(PET)的年际和年内时空变化特征与趋势。结果表明:MOD16-PET产品在塔里木河流域的验证精度达到极显著相关(R~2=0.81),能够满足蒸散量时空变化分析的要求;在年尺度上,塔里木河流域AET与PET的年际变化波动不大,AET为306.54~383.77 mm、PET为1 551.97~1 744.85 mm,多年平均AET与PET值分别为345.04 mm和1 641.52 mm,月尺度上,AET与PET呈先增大后减少的变化特征,夏季AET与PET之差最大,导致流域处于极端干旱、缺水状态;多年平均AET与PET的空间分布格局体现出从盆地中心往外环状分布的特征,且AET与PET值的增减趋势正好相反,流域外围天山、阿尔金山、昆仑山、帕米尔高原等边疆山区AET较高,PET较低。环塔里木盆地的山脚绿洲平原区AET较低,PET较高;2000-2014年,塔里木河流域AET总体上处于减少趋势,PET处于增加趋势,说明该地区近15 a内干旱加重。  相似文献   

3.
研究土地利用变化对横排头流域蒸散发的影响。以1980,1990,2000年土地利用专题地图和横排头流域1980-2009年30a资料,通过GIS技术与Matlab相结合的手段,首先检验了基于Budyko假设的傅抱璞公式在研究流域的适用性,而后应用它分析研究了土地利用变化时的蒸散发规律。研究表明:不同土地利用的傅抱璞公式的v从大到小依次为耕地未使用地林地城镇草地;研究流域砍林使得多年平均实际蒸散发平均增加193mm,而造林使得多年平均实际蒸散发变化平均减少290mm。  相似文献   

4.
【目的】探究伊犁河流域2000—2014年蒸散量时空特征,为跨境水资源确权与分配提供依据。【方法】本文利用变异系数、Theil-Senmedian趋势分析、Mann-Kendall和Hurst指数方法研究了伊犁河流域2000—2014蒸散量时空变化特征及波动性。【结果】①伊犁河流域多年平均蒸散量值为249.80mm,其波动范围在224.03~274.10mm之间。②多年平均ET值在空间上具有明显差异,取值范围在115.6~758.79 mm之间,总体上呈自上游向下游减少的空间格局。③该流域年内蒸散量具有明显的季节差异,总体呈先增后减的单峰波趋势。④该流域内各土地利用多年平均蒸散量表现为:耕地(327.23 mm)林地(319.10 mm)草地(239.50 mm)稀疏植被(151.67 mm)。⑤2000—2014年该流域的多年平均ET整体上变异程度不明显,变异程度中比较稳定和稳定所占面积比为85.47%;变异系数在空间上取值范围为0.01~0.71,其平均值为0.097。⑥整个流域内ET减少的趋势和增加的趋势所占面积比例分别为64.48%和26.72%,变化趋势以减小为主,变化率为-1.152 mm/a,该流域未来ET的变化状况与过去一致,以持续性减少为主。【结论】利用变异系数、Theil-Senmedian趋势分析、Mann-Kendall和Hurst指数方法能够有效发现伊犁河流域时空变化特征,研究结果可为伊犁河流域规划及合理分配流域水资源提供依据。  相似文献   

5.
生态系统耗水(即蒸散发)是水循环的重要组成部分,准确估算生态系统耗水是资源型缺水区域实现"以供定需"水资源可持续管理的关键。以雄安新区所在的大清河流域为研究区域,利用遥感叶面积指数和蒸散发数据对水碳热耦合的生态水文模型(WAVES)率定,并用率定好的WAVES模型估算了典型生态系统(农田、草地和林地)耗水规律和特征。结果表明:大清河流域农田、草地、林地生态系统1982-2014年多年平均耗水量依次增加,分别为383.9、424.5、439.6 mm。耗水分量中,农田和草地土壤蒸发和植被腾散发的比重大致相当,均占总耗水的40%~50%;林地以植被腾散发为主,约占总耗水的70%。研究结果可为人类活动剧烈且水资源过度利用的大清河流域和雄安新区的水土资源管理提供参考。  相似文献   

6.
【目的】探索吉兰泰及周边地区蒸散发的时空变化规律。【方法】以吉兰泰为对象,利用MODIS数据通过SEBAL模型估算了研究区2017年植被生长季5—10月的日蒸散发,并分析了蒸散发与环境因子的相关性。【结果】①生长季日平均蒸散量整体趋势呈单峰型分布趋势,日均蒸散量最大值在7月(3.98 mm),最小值在10月(1.11 mm);②在空间分布上,研究区东南部蒸散发最高,东北部蒸散发最低;不同土地利用类型中蒸散发值由大到小分别为林地、耕地、草地、戈壁、沙漠;各土地利用类型蒸散发量的时间动态表现一致,呈生长期>生长初期>生长后期;③归一化植被指数、高程与蒸散发正相关,风速以及地表温度与蒸散发负相关。【结论】SEBAL模型估算的蒸散发与P-M作物系数法的蒸散发进行对比,相对误差在允许范围之内,表明SEBAL模型对本研究区蒸散发的估算是可靠的。研究区靠近山地的蒸散发大于荒漠区的蒸散发。在植被生长季中生长初期的蒸散发受温度和风速影响最大,生长期和生长后期的蒸散发受地表温度和高程影响最大。  相似文献   

7.
基于数据融合算法的灌区蒸散发空间降尺度研究   总被引:1,自引:0,他引:1  
采用Landsat和MODIS数据,通过增强自适应融合算法(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)对蒸散发进行空间降尺度,构建田块尺度蒸散发数据集;利用2015年田间水量平衡方法计算的蒸散发数据对融合结果进行评价。在融合蒸散发基础上,结合解放闸灌域2000—2015年间种植结构信息,提取不同作物各自生育期和非生育期内年际蒸散发量,并分析了大型灌区节水改造以来,作物蒸散发占比的年际变化。研究结果表明:融合蒸散发与水量平衡蒸散发变化过程较吻合,小麦耗水峰值出现在6月中下旬—7月初,玉米和向日葵峰值出现在7月份。在相关性分析中,玉米、小麦和向日葵的决定系数R2分别达到了0.85、0.79和0.82;生育期内玉米(5—10月份)、小麦(4—7月份)和向日葵(6—10月份)的均方根误差均不高于0.70 mm/d;平均绝对误差均不高于0.75 mm/d;相对误差均不高于16%。在农田蒸散发总量验证中,融合蒸散发与水量平衡蒸散发相关性较好,两者决定系数达到了0.64。基于ESTARFM融合算法生成的高分辨率蒸散发(ET)结果可靠,具有较好的融合精度。融合结果与Landsat蒸散发的空间分布和差异性一致,7月23日、8月24日和9月1日相关系数分别达到0.85、0.81和0.77;差值均值分别为0.24 mm、0.19 mm和0.22 mm;标准偏差分别为0.81 mm、0.72 mm和0.61 mm。ESTARFM融合算法在农田蒸散发空间降尺度得到较好的应用,可有效区分不同作物蒸散发之间的差异。不同作物在生育期和非生育期内耗水量差别较大;生育期内套种(4—10月份)耗水量最大,达到637 mm,玉米(5—10月份)和向日葵(6—10月份)次之,分别为598 mm和502 mm,小麦(4—7月份)最低为412 mm;非生育期内,小麦(8—10月份)耗水量最大,年均达到214 mm,玉米(4月份)和向日葵(4—5月份)分别为42 mm和128 mm。不同作物多年平均耗水量(4—10月份)差异较小,其年际耗水总量主要随作物种植面积的变化而变化。  相似文献   

8.
【目的】揭示内陆河流域集水区土地利用/覆被变化对水文过程的影响及其成因。【方法】基于能够逐年调用土地利用/覆被数据的LU-SWAT模型,并结合控制变量法研究了黑河流域集水区黑河上游1990—2009年土地利用/覆被变化对地表径流、侧向流、蒸散发量、地下径流以及总产水量的影响。【结果】LU-SWAT模型对于黑河上游月、年出山径流模拟结果较好,其月径流模拟的纳什系数为0.93,相关性系数为0.94;其年径流模拟的纳什系数为0.83,相关性系数为0.86。此外,其对各个水文要素的模拟结果符合西北干旱区内陆河流域集水区的水文特征;1990—2001年黑河上游土地利用变化主要表现在林地的减少,而2002—2009年土地利用的变化除了林地和草地的增加之外,还表现在裸地的大面积减少;1990—2001年黑河上游地表径流、侧向流、蒸散发量以及总产水量都呈现增加趋势,而地下径流呈减少趋势,2002—2009年流域地表径流、侧向流、蒸散发量以及总产水量减少,而地下径流量增加。在黑河上游,干旱条件下各水文要素对于土地利用覆被变化的响应更明显。【结论】1990—2001年林地的减少可能是流域地表径流、侧向流、蒸散发量以及总产水量都呈现增加趋势而地下径流呈减少趋势的主要原因。2002—2009年裸地的大面积减少可能是流域地表径流、侧向流、蒸散发量以及总产水量减少而地下径流量增加的主要原因。  相似文献   

9.
探究区域作物生育期实际蒸散发及其空间分布特征,为区域节水潜力评价提供依据.研究结合多源数据(种植结构、遥感数据和气象数据等)和遥感陆面蒸散反演方法,得到作物实际蒸散发(ET),并根据作物不同生长阶段的变化特点结合气象资料估算遥感数据缺失时期的ET.①基于遥感数据和SEBAL模型能够准确反演流域空间尺度的日蒸散发量,其生育初期和中期平均误差分别为11.49%和6.22%.5-7月,日蒸散发逐渐增大,且在7月达到峰值,8-10月日蒸散发逐渐降低,9-10月降低趋势较大;②不同作物之间,生育期ET差异明显,甜菜>土豆>玉米>小麦,分别为619.72 mm、558.67 mm、492.51 mm、456.58 mm.作物生育期ET变化范围分别在476.02~795.73 mm、405.41~684.84 mm、345.11~683.35 mm和313.34~604.62 mm之间;③同种作物因灌溉制度不同,其作物生育期ET在空间上表现出差异性.受流域南北降雨不均影响,4种主要作物生育期ET呈现明显的由南向北递减趋势.北部湖泊附近的小麦,因土壤含水量较高,其生育期ET高于周边其他区域.针对内蒙古察汗淖尔流域内作物生育期ET空间分布差异明显,部分区域地下水超采严重等特点,调整流域内种植结构及灌溉制度尤为重要.  相似文献   

10.
根据内蒙古自治区河套灌区解放闸灌域多年遥感蒸散发数据(2000-2014年),分析了农田实际蒸散发年际变化、空间分布特征以及其与地下水埋深的相关性。结合水量平衡模型对灌域灌溉用水效率进行了评价,同时对大型灌区续建配套及节水改造以来灌域水循环要素年际变化进行了统计分析。结果表明:解放闸灌域农田蒸散发量年际变化呈增加趋势,多年平均蒸散发量为8.56亿m~3(597.30mm);2000、2003、2006、2009、2012和2014年农田蒸散在空间上表现为西部和东北部区域高于其他区域,其空间差异性并未随时间发生明显变化,与地下水埋深空间分布特征相似,蒸散发高值区域发生在地下水埋深较浅区域,潜水蒸发对农田蒸散发量影响不可忽视。节水改造实施以来,灌域净灌溉引水量有所减少,灌溉水利用系数得到提高,地下水位由1.76m降到2.16m,由此表明了节水改造对该地区生态环境改变的积极影响。  相似文献   

11.
阿克苏河流域灌区土地利用变化对蒸散耗水的影响   总被引:2,自引:1,他引:1  
土地利用变化导致蒸散耗水过程和流域水资源供需关系发生变化。【目的】合理估算灌区蒸散耗水量。【方法】以新疆阿克苏河流域灌区为研究对象,结合对土地利用/覆被变化的遥感解译,分析了2000—2014年阿克苏河流域灌区土地利用/覆被变化及其对灌区蒸散耗水量的影响。【结果】(1)2000—2014年,阿克苏河流域灌区土地利用/覆被发生了明显变化,突出表现为耕地面积的显著增加。灌区耕地面积以159.8 km2/a的速度增加,其中,阿克苏河、库河、塔河、托河温宿及托河乌什灌区分别以37.3、37.2、66.1、4.9、20.0 km2/a的速度增加;(2)伴随绿洲耕地面积的扩张,灌区的蒸散发量表现出明显增加趋势。在2000—2014年,阿克苏河流域灌区蒸散耗水量以0.3×108m3/a的速率增加,年内表现为夏季增加最明显;(3)灌区耕地面积的变化直接影响地表蒸散过程。阿克苏河流域灌区的耕地多年平均蒸散发量约为244.3 mm/a,大于天然草地的多年平均蒸散发量150.1 mm/a。【结论】在全球变暖背景下,快速升温和灌区垦植面积的不断扩大,使灌溉引水、蒸散耗水和人类活动用水不断增加,是导致灌区蒸散耗水增加的主要原因。  相似文献   

12.
小理河流域土地利用空间自相关格局与影响因素分析   总被引:2,自引:0,他引:2  
为揭示土地利用空间自相关格局与自然社会经济因素的耦合关系,以黄土丘陵沟壑区的小理河流域为研究区,基于全局Moran’s I、Moran散点图和Anselin local Moran’s I分析了500 m×500 m格网尺度上流域土地利用全局和局部空间自相关格局,利用GIS技术研究各类用地在p0.05显著性水平下局部聚集区与高程、坡度、坡向、与水域距离、与道路距离、与居民点距离的关系。结果表明,各土地利用类型都表现出全局空间正自相关特性,但空间正自相关性随着距离的增加而逐渐减弱,且在32 km以内不同土地利用类型自相关程度的空间衰减强度不同。耕地、草地的空间分布呈显著的HH(高值-高值)、LL(低值-低值)聚集趋势,而园地、林地、建设用地和未利用地呈显著的HH聚集趋势。草地HH聚集区主要分布在流域中、上游的丘陵或山地区,林地HH聚集区主要分布在流域下游沟壑区和上游山地区,其他地类HH聚集区集中分布在流域下游宽阔黄土梁或开阔河谷区。随高程和坡度增加,各地类HH、LL聚集区面积总体呈先增加后减小的趋势。在1 000~1 300 m高程区、15°~25°的坡度区以及正阳向和正阴向区域,是各地类HH聚集分布最多样、面积最集中的区域。建设用地和林地HH聚集区主要分布在1 000~1 100 m高程区,耕地、园地和未利用地HH聚集区主要分布在1 100~1 200 m高程区,草地HH聚集区主要分布在1 200~1 300 m高程区。各地类HH聚集区按平均坡度由小到大依次为:建设用地、耕地、园地、林地、未利用地、草地。建设用地、园地和耕地HH聚集区主要分布在正阳向和半阳向区域(正阳向面积最多),林地和草地HH聚集区主要分布在正阴向和正阳向区域(正阴向面积最多)。距水域和道路越远,除未利用地外,各地类HH聚集区面积呈不断减小的趋势;距居民点越远,草地HH聚集区面积呈先增加后减小趋势,而其他地类HH聚集区面积呈不断减小的趋势。各地类HH、LL聚集区集中分布在距水域、道路1.5 km范围内和距居民点3 km范围内。距水域、道路和居民点越近,建设用地、园地和耕地的HH聚集区面积迅速增加。相比HH聚集区,耕地LL聚集区主要分布在1 200 m以上高程区,平均坡度增大,正阳向面积略大于其他坡向面积,与水域和居民点的距离较远且面积呈先增后减的趋势;草地LL聚集区主要分布在1 000~1 200 m高程区、15°~35°坡度区,各坡向上分布面积相差不大,与水域、道路和居民点的距离较近且面积呈不断减小趋势。  相似文献   

13.
土地利用方式变化对水循环过程响应机制研究   总被引:2,自引:0,他引:2  
以挠力河流域为研究区,利用1990年和2013年土地利用类型,结合基于格子玻尔兹曼方法(LBM)的TOPMODEL模型定量评价了土地利用方式变化对水循环时空变化过程的影响。结果表明:基于LBM法的TOPMODEL模型可以很好模拟挠力河流域降雨径流水循环过程,对研究区具有较高的适用性;研究区林地、草地和建设用地面积变化不大,对于土地结构变化贡献比较小,而未利用地和旱田部分转为水田对土地结构变化贡献大;由于种植水田,导致5月到10月间的流域总蒸散发量增加、根系区缺水量减少、非饱和带缺水量减少、地表水量减少、地下水量增加;蒸散发增幅达8.9%,根系区缺水量降幅达10.5%,地表水量减少达43%;水田对水文情势影响的差异主要体现在水稻生育期的差异上,分蘖期对蒸散发量、根系区缺水量和非饱和带缺水量影响较大;水田灌溉对水循环过程的影响按变化幅度从大到小的顺序为非饱和带缺水量、根系缺水量、蒸散发量、入根系区水量、出根系区水量和地下径流量,其中入根系区水量差值和出根系区水量差值接近。  相似文献   

14.
以盘龙江流域为研究区,运用SWAT模型,通过设置不同极端土地利用情景,定量分析流域内主要土地利用类型产流的贡献顺序,以及流域内植被覆盖变化对径流过程的具体影响,并进一步探讨了流域补水工程、丰枯水期径流等对盘龙江径流的影响。结果表明:(1)流域内林地、草地和耕地三种土地利用类型对河川径流的产流贡献为:耕地最强,草地稍次之,但与耕地对径流形成的影响程度大体相当,而林地最弱;(2)2007-2014年间,盘龙江流域植被覆盖结构变化显著。其中,林地面积下降了7.31%,草地与城镇建设用地则分别增加了5.05%、2.82%,减少的林地绝大部分转化为了草地和城镇建设用地,林地与草地、城镇用地构成的此消彼长虽然增强了流域的产汇流作用,但却加剧了径流的年内变化,弱化了流域植被涵养水源、调节径流的功能。(3)补水工程运行后,盘龙江年径流在2014年呈现较大增长,与2007-2013年的逐年减少趋势截然相反,且枯水期的径流增加量明显高于丰水期,径流调节作用明显。(4)枯水期径流量的变化是2007-2014年盘龙江年径流量趋势变化的主要原因。  相似文献   

15.
宁夏地处干旱半干旱地区,地表蒸散发较为强烈,目前对于区域尺度蒸散发的反演是一大难点,常见的蒸散发产品分辨率较低。基于SEBAL模型对宁夏地区地表蒸散发进行了反演,并采用现有数据集对其估算精度进行了验证,结果发现,利用P-M模型和气象站水面蒸发数据验证,相关系数R2的平均值都保持在0.80和0.79以上,利用MOD16蒸散量产品验证,得到R2的平均值保持在0.90以上,均方根误差的平均值为1.03,偏差的平均值为1.76;宁夏地表蒸散量时空变化特征,在空间上,基本呈现为北部平原向南部山区增加趋势特征,在时间上,2001-2021年蒸散量整体呈上升趋势;分析不同土地利用类型地表蒸散量的分布规律,不同土地利用类型地表蒸散量的能力大小依次为:林地>耕地>水域>草地>城市建设用地>裸地,蒸散量均值依次为10.18、8.18、8.12、7.83、7.70、7.48 mm/d。研究结果表明,基于SEBAL模型反演得到的地表蒸散量有较高的精确度,同时该结果具有较高的分辨率以及在干旱半干旱地区有更广的适用性。  相似文献   

16.
基于SEBS模型反演凌河流域尺度地表蒸散发量   总被引:2,自引:1,他引:1  
利用NOAA/AVHRR数据和气象资料,结合反演陆面蒸发较为准确的SEBS(Surface Energy Balance System)模型,反演了2011年我国辽宁西部地区凌河流域蒸散发量的时空分布。研究表明,凌河流域各月的蒸散发量变化范围在0~7mm之间,少数地区超过7mm。研究为大面积获取我国辽西北干旱地区的蒸散发情况奠定了基础。  相似文献   

17.
为定量研究大纵湖流域土地利用类型与水质之间的关系,利用ENVI对大纵湖流域2012年和2016年Landsat TM遥感图像解译,采用监督分类法将土地分为6种类型,并与水质进行灰色关联。结果表明:①大纵湖流域以耕地和建设用地为主,两者比例超过总面积的70%。从2012-2016年,耕地和未利用地面积不断减少,主要流入林地和水域。②2012-2016年大纵湖水质指标总体均呈现先略有下降后缓慢改善的趋势。③湖泊水质整体上与土地利用类型的灰色关联度最大的是建设用地,其次是未利用地和水域,林地、耕地和草地的灰色关联度相对较低;各水质指标与土地利用的灰色关联度差异较大。研究表明,林地、草地对水质改善有着积极作用,因此在大纵湖流域上游多植树种草,有利于维护生态环境健康。  相似文献   

18.
【目的】明确石羊河流域典型畦灌玉米蒸散发量变化规律及其驱动因素。【方法】基于涡度相关系统,在2015—2018年于中国农业大学石羊河试验站对西北典型畦灌玉米蒸散发量进行了连续观测。基于偏相关分析及结构方程模型分析了玉米蒸散发量与环境因子之间的关系。【结果】畦灌玉米生育期平均蒸散发量为524.3 mm,日平均蒸散发量为3.5 mm/d,生育期内日蒸散发量呈先上升后下降的单峰变化趋势,在7月达到峰值。净辐射量与蒸散发量之间的相关性最高,对蒸散发量影响程度较大的环境因子为净辐射量、温度、饱和水汽压差。结构方程结果表明,叶面积指数作为中间变量与蒸散发量之间存在正相关性。【结论】畦灌玉米生育期内日蒸散发量呈先上升后下降的变化趋势,净辐射量、温度、饱和水汽压差是对蒸散发量影响较大的环境因子。  相似文献   

19.
准确评估可用水资源量对水资源规划管理、维护生态完整性和社会经济发展至关重要。基于流域下垫面特征的概率Budyko方程和降尺度后的CMIP5气候模式数据,预估了4个典型流域未来水文气象变量及其可用水资源比率的分布和不确定性。结果表明:4个典型流域(黑河流域、滦河山区、汉江丹江口以上流域和赣江栋背以上流域)未来潜在蒸散发量均显著增加,而降水的增加趋势不明显;流域可用水资源比率值随着湿润程度的增加而增加,且可用水资源比率的不确定性从高到低依次是滦河山区、赣江栋背以上流域、汉江丹江口以上流域和黑河流域;不同的排放情景对4个典型流域可用水资源比率的分布及其不确定性影响较小;在加入相同的下垫面因素(植被覆盖指数)后,干旱区域(黑河流域)比湿润区域(赣江栋背以上流域)可用水资源比率的预估更加精确。  相似文献   

20.
下垫面土地利用类型及其变化对蒸散发(ET)的影响机制是一个重要课题,对旱区农业发展具有十分重要的意义。随着气候变化和人类活动范围扩张,中国旱区黄土高原的下垫面土地利用类型发生了巨大的改变,区域蒸发能力发生显著变化。结合卫星遥感数据和地面观测数据,基于Penman-Monteith-Leuning蒸散发反演模型,收集2010-2015年旱区内98个站点的土地利用类型数据,对区域ET值变化特征进行定量研究。分析不同下垫面土地利用类型的蒸发能力变化特征,重点观察水田、旱地、草地转变为城市的过程对蒸散发的影响。发现旱地城镇化过程显著增加了区域蒸散发能力,ET变化幅度为0.044 9 mm/a。草地城镇化削弱了区域蒸发能力,ET变化幅度为-0.024 8 mm/a。水田城镇化过程中,区域蒸发能力没有明显变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号