共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国农村水利水电》2017,(6)
为实现参考作物蒸散量(Reference Crop Evapotranspiration,ET_0)的准确计算和预测,利用广义回归神经网络(Generalized Regression Neural Network,GRNN)进行非线性映射,为减少人为因素影响采用粒子群算法(Particle Swarm Optimization,PSO)自动寻找神经网络最优参数,建立了基于粒子群算法和广义回归神经网络的参考作物蒸散量预测模型(PSO-GRNN)。研究气象数据缺失情况下模型模拟效果,在缺失风速和日照时数情况下,模型仍能取得较好效果(模型均方根误差和自相关系数分别为0.437%和91.865%)。将模型计算结果与Hargreaves、Priestly-Taylor、Makkink、Irmark-Allen等4种经验模型进行对比,得到模型的均方根误差和自相关系数为0.23%和97.709%,优于4种经验模型。以P-M模型求得的参考作物蒸散量为标准值,对2011-2015年预测得到的参考作物蒸散量进行求和,得到PSO-GRNN模型计算得到历年ET_0总和的相对误差为0.44%,优于4种经验模型(Hargreaves模型18.29%、Priestly-Taylor模型2.89%、Makkink模型3.27%、Irmark-Allen模型18.49%)。该研究建立的PSO-GRNN模型预测精度高,稳定性好,人为影响少,能够较好的进行ET_0模拟计算,为作物需水量智能决策提供参考。 相似文献
2.
为了解不同机器学习算法在预测不同气候区参考作物腾发量(ET_(0))方面的表现,以中国干旱区和湿润区共计20个气象站点1960-2019年的逐日气象数据为依据,以PM和HS公式计算的ET_(0)为参考,评价了多元逐步回归(SL)、支持向量机(SVM)和高斯过程回归(GPR) 3种机器学习算法的ET_(0)预测精度及其适用性。结果表明:(1)当分别以PM和HS公式计算的ET_(0)数值为标准时,3种机器学习算法模拟ET_(0)精度大小关系均表现为:GPR>SVM>SL,且GPR算法的模拟精度最高,其相关系数(R~2)均高达0.950以上。(2)当采用同一种机器学习算法时,其在以PM公式计算的ET_(0)为参考值情况下的R~2范围为0.965~0.995、RMSE的范围为0.212~0.260 mm/d、MAE的范围为0.151~0.201 mm/d;以HS公式计算结果为参考值时,其R~2范围为0.935~0.984、RMSE范围为0.832~0.964 mm/d、MAE范围为0.596~0.745mm/d。(3)在不同气候分区,以同一参考公式计算结果为标准值时采用机器学习算法模拟干旱区的ET_(0)精度均优于湿润区,其R~2提高了0.01。(4)对比不同机器学习算法的稳健性,SL和SVM算法在分别以PM和HS公式计算结果为参考值时的稳健性最高,其训练到模拟阶段的R~2变化幅度仅为0.16%和0.11%,而GPR算法稳健性均最低。(5)对比不同机器学习算法训练时间成本,SVM和GPR算法的计算成本显著高于SL算法。综合分析3种算法的ET_(0)预测精度、稳健性和计算成本,SVM算法可推荐为中国干旱区和湿润区较为精准预测参考作物腾发量的方法。且机器学习模拟精度与气象因子的定量关系表明,日照时数(N)变化是影响各算法预测精度的主要因子。 相似文献
3.
【目的】探讨BP、极限学习机、小波神经网络算法在广东典型气候代表站点的适用性,建立ET_0简化计算模型。【方法】以韶关、深圳、广州、揭西、湛江站为研究对象,收集各站1981—2010年逐日平均、最高、最低气温、相对湿度、日照时间、风速观测数据,以FAO-56Penman-Monteith ET_0计算值为基准,对比3种算法计算效结果,确定最优算法,并结合因子敏感性分析建立了ET_0简化计算模型。【结果】①P<0.05显著水平下,广州、韶关站各气象因子均差异显著;湛江、广州、揭西、深圳4站除日最高气温差异显著,其他气象因子差异均不显著;②ET_0因子敏感性分析中,韶关、广州、深圳3站日最低、最高气温、日照时间敏感系数较大,韶关站为0.040、0.113、0.223,广州站为0.043、0.101、0.208,深圳站为0.054、0.105、0.181;揭西和湛江站日最高气温、相对湿度、日照时间敏感系数较大,分别为:0.105、-0.040、0.216和0.098、-0.072、0.197,综合各站来看,日最高气温、日照时间最为敏感;③全因子输入条件下,ET_0计算精度表现为BP>极限学习机>小波神经网络;④ET_0简化计算精度表现为BP(全因子输入)>BP-1(日最高、最低气温,相对湿度,日照时间作输入)>BP-2(日最高气温、日照时间输入),但差值不大。【结论】因此,基于日最高气温、日照时间2因素的BP算法一定程度能简化计算ET_0。 相似文献
4.
基于BP神经网络算法的温室番茄CO2增施策略优化 总被引:6,自引:0,他引:6
CO2浓度是植物光合作用的主要原料之一,确定植株生长阶段的最适CO2浓度需求量,对日光温室内CO2浓度调控具有重要意义。以开花期番茄植株为研究对象,将定植后的番茄分为4个CO2浓度梯度处理组,其中,C1、C2、C3处理组CO2增施摩尔比分别为(700±50)、(1 000±50)、(1 300±50)μmol/mol,CK处理组为温室内自然状态下CO2摩尔比(约450μmol/mol)。实验利用无线传感器网络节点实时监测温室环境因子,包括空气温湿度、光照强度和CO2浓度;利用LI-6400XT型便携式光合速率仪进行光合日动态和环境因子交互影响实验测定。光合日动态组间差异性研究表明,对开花期番茄增施1 000~1 300μmol/mol的CO2时,可使番茄单叶净光合速率提高约37.13%~40.42%。以环境因子为输入参数,建立基于BP神经网络的光合速率预测模型,用于不同CO2浓度梯度下的光合日动态预测。结果表明,模型训练集和测试集的相关系数分别为0.98和0.93,预测精度较高;C1、C2、C3和CK处理组的日动态预测相关系数分别为0.96、0.94、0.78和0.96,与实测结果吻合度较高且相对误差较小,因此该模型可以为可变环境下的番茄光合日变化动态预测提供依据。 相似文献
5.
6.
生物质直燃发电是目前应用最广、规模最大的生物质能利用方式。然而由于生物质种类繁多、理化性质多变、燃烧不稳定,使得发电量难以准确预计,这为电网调度、安全运行带来隐患。为此,提出一种基于互信息参数优化BP神经网络的生物质发电量预测模型。从生物质电厂收集发电量以及物料参数、锅炉参数、汽机参数、环境参数等实际生产数据,采用平均影响值分析、相关分析和互信息分析对发电量的影响因素进行优化选择,并利用电厂实际数据建立BP神经网络模型。测试结果表明,采用优化影响因素建立的神经网络模型预测误差大幅度降低,其中互信息分析优化效果最佳,平均预测误差从未优化模型的4.59%降至0.66%,且进一步优化神经网络参数后,平均预测误差降至0.50%。 相似文献
7.
针对传统的土壤墒情预测方法精度较低、训练周期长的问题,本文对BP神经网络预测模型进行研究,提出一种改进樽海鞘算法优化BP神经网络的预测方法。首先,在标准樽海鞘群算法(Salp Swarm Algorithm, SSA)中引入变异算子增强种群的多样性,提高算法的全局探索能力;同时,采用动态权重调整策略增强局部开发性能,改善收敛速度,在位置更新过程中加入动态权重,进一步平衡全局探索和局部开发能力;其次,考虑到BP预测网络收敛精度低、易陷入局部最优等缺点,将改进樽海鞘算法引入到BP中形成ASSA-BP的预测模型算法,该算法缩短了训练时间、提高了预测精度。最后,将ASSA-BP与PSO-BP、BP不同预测模型进行对比,结果表明ASSA-BP的最优预测相对误差平均值3.37%,绝对误差平均值0.025 8,比BP模型预测误差有所下降。克服了BP预测模型收敛精度低、易陷入局部最优的缺点,具有更好的鲁棒性和预测精度。 相似文献
8.
9.
基于优化后的反向传播神经网络,提出了一种新能源汽车锂电池SOH(状态健康)预测模型。该模型利用历史电池数据和当前电池参数作为输入,预测电池的SOH。为了优化模型性能,使用遗传算法对模型进行训练和优化,提高了预测精度和鲁棒性。试验结果表明,该模型能够在不同工况下准确预测锂电池的SOH,并且相对于传统方法具有更好的性能。基于优化BP神经网络的SOH预测模型具有广泛的应用前景,可以为新能源汽车锂电池的健康管理提供有力的支持。 相似文献
10.
在RBF神经网络中采用差分进化算法来优化RBF神经网络的模型结构,并对其重要参数进行全局寻优。实例仿真结果表明,经过差分算法优化的RBF神经网络不仅相对BP网络学习收敛速度更快,而且提高了发动机故障识别的精确度,从而验证了此种方法的正确性和有效性。 相似文献
11.
12.
基于温湿度的ET_0估算模型应用研究 总被引:1,自引:1,他引:1
针对大面积灌区作物蒸发蒸腾量(ET0)分布式监测所需参数较多的问题,开展利用易获取的少量气象参数估算ET0的研究对我国灌区的作物需水量监测和灌区水资源的管理有重要意义。利用人工神经网络技术建立基于温、湿度的ET0月份估算模型,对作物蒸发蒸腾量进行了估算;在此基础上,针对ET0的季节性特征,将估算模型由月份尺度拓展到季节尺度;最后运用陕西省6个基本站点的气象数据对该优化模型进行普适性分析。结果表明,优化后的季节估算模型,在春夏二季的平均相对误差在10%以内,在秋冬二季的平均绝对误差在0.20mm以下,且每对基准站点和邻近站点得到的估算结果具有很好的一致性和稳定性,表明该模型在作物需水估算方向上较强的实用推广价值。 相似文献
13.
为了提高农业机械化水平、农业生产效率和优化农业产业结构,保证在农业机械生产与实际需求的一致性,在制订农业机械化水平发展规划过程中需要对农业机械数量进行预测。为此,采用基于遗传算法的BP神经网络预测算法,对我国从1997-2013年期间以农机总动力、中大型拖拉机数量和小型拖拉机数量为内容的主要农业装备数量进行预测。预测结果表明,利用遗传算法与BP神经网络相结合的方法预测全国农业机械装备数量,农机总动力预测值与绝对值平均误差为1.080%、农用大中型拖拉机数量预测值与绝对值平均误差为1.352%、小型拖拉机数量预测值与绝对值平均误差为1.765%,预测精度稳定,该预测方法适用于本时间序列预测问题。 相似文献
14.
15.
基于改进BP神经网络的农业机械数据预测研究 总被引:1,自引:0,他引:1
为提高河南省农业机械数据预测的精度,获得更可靠的预测结果,提出基于自适应粒子群算法(APSO)优化的误差方向传播(BP)神经网络预测方法,利用APSO算法优越的全局搜索能力更新BP神经网络的权值和阈值,有效结合两种算法的优势,并引用河南省1986-2017年农业机械数据进行测试。仿真结果表明,本文提出的APSO-BP算法比同等条件下BP神经网络算法和PSO-BP算法预测误差平均可降低2.4%和1.35%,可以有效提高预测的速度和精度。 相似文献
16.
17.
针对传统BP神经网络预测农业灌水量时存在易陷入局部最小值、难以选择合适学习率的问题,提出了一种基于遗传算法和Adam算法并行优化BP神经网络的农业灌水量预测模型.该模型利用遗传算法对BP神经网络进行初始权值和阈值的预筛选,然后采用Adam算法来实现学习率自适应于参数梯度不断更新.收集黄河流域陇中片灌溉分区内7个典型灌区... 相似文献
18.
19.
ET_0的主因子和主成分神经网络模型比较 总被引:1,自引:0,他引:1
为了简化BP神经网络预测ET0的模型,将气象因子包括最高、最低和日平均温度、日照时数、相对湿度和风速进行主成分分析和偏相关分析,提取主成分和主因子,分别建立了基于主成分和主因子的三层BP神经网络模型,并对两种模型的训练和预测结果进行比较。选取湟水流域的乐都气象站2003年到2006年5月逐日的气象资料,采用Matlab神经网络工具箱进行模型训练与预测。结果表明主成分神经网络训练和预测模型的精度都优于主因子神经网络模型。主要是由于两种模型选取输入层的因子不同造成的。 相似文献