首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
椰壳活性炭和煤基活性炭是应用最为广泛的2种活性炭材料,本研究通过扫描电子显微镜对其进行了表面形貌的表征。结果证明,椰壳活性炭表面存在较为均匀的孔结构,且大孔的孔壁上布满更小的孔,具有缺陷的位置孔结构更为发达;而煤基活性炭表面的孔结构较少,二次堆积孔比较多,二次孔的孔壁也可以看到更小的孔存在。通过对于甲醛和甲苯的气体吸附性能测试,发现椰壳活性炭和煤基活性炭的吸附性能大体相当,要好于活性氧化铝和麦饭石等其他多孔材料。  相似文献   

2.
通过吸附平衡和动力学模型研究,探讨椰壳活性炭CS850A对苯酚液相吸附作用。850℃温、CO2条件下,椰壳经理化活化转化为高质量的活性炭。首先,椰壳在700℃炭化。将得到的焦炭与氢氧化钾按质量比1:1进行浸渍。为评价CS850A的吸附效率,进行了一系列静态吸附试验,苯酚初始浓度为100~500毫克/升,吸附剂载入为0.2克,  相似文献   

3.
【目的】探讨椰壳生物炭对偶氮染料酸性红73(AR73)的吸附性能及吸附机理。【方法】以椰壳生物质为原料制备生物炭,并对其结构、形貌等基本性能及吸附特征进行研究。【结果】椰壳生物炭表面具有丰富的活性官能团,形貌为蜂窝状孔隙结构。其对AR73的吸附时间为360 min时,吸附达到平衡,吸附率为95.27%。吸附过程符合准二级动力学模型和Langmuir等温吸附模型,其是一个吸热、熵增自发的反应。【结论】因此,椰壳基生物炭是1种对AR73的吸附效率高的吸附材料。  相似文献   

4.
通过研究水溶液中椰壳活性炭对甲磺酸培氟沙星(PFLX)的吸附及缓释性能,对比不同温度下的吸附等温线,用Langmuir及 Freundlich方程对吸附自由能、焓、熵进行计算。结果表明:活性炭对甲磺酸培氟沙星的吸附符合Freundlich方程,测得ΔH=6.405 9kJ/mol , 说明活性炭对PFLX的吸附过程为吸热过程; 且ΔH< 20kJ/mol, 表明吸附过程为物理吸附;同时测得吉布斯自由能ΔG< 0, 表明吸附质从溶液到吸附剂表面的吸附过程是自发过程,其吸附主要是熵驱动。硝酸氧化改性制备的活性炭较椰壳活性炭的缓释性能有较大的改变,不同活性炭对PFLX的缓释均符合Higuchi方程释药模式。  相似文献   

5.
6.
以椰壳为原料制得活性炭C-1,采用KOH电镜、粉末衍射仪等仪器对C-1和C-2进行表征。结果表明,C-2含有较多的含氧官能团,会形成新的孔隙;以铀(VI)溶液为研究目标,C-1对铀的吸附量为3.01mg/g,C-2对铀的吸附容量为3.62mg/g,Lagergren准二级动力学方程和Langmuir吸附等温式能很好的描述C-1和C-2对铀(VI)的吸附。  相似文献   

7.
pH对生物质炭吸附诺氟沙星和磺胺甲恶唑的影响   总被引:1,自引:0,他引:1  
为解决水体中抗生素去除及芦苇秸秆资源化利用等问题,以芦苇秸秆制备的生物质炭为吸附材料,考察不同pH条件下诺氟沙星(NOR)和磺胺甲恶唑(SMX)在芦苇秸秆生物质炭上的等温吸附过程及吸附动力学。结果表明,生物质炭的吸附与NOR和SMX在不同溶液pH下的存在形态有关。随pH的增加,生物质炭对NOR的吸附量先增加后减小,最高吸附量为7.80 mg·g-1;生物质炭对SMX的吸附量在溶液pH 1~3时逐渐减小,在pH 3~5时逐渐增加,pH>5时吸附量逐渐降低。拟二级动力学模型可较好地拟合NOR和SMX在生物质炭上的吸附,生物质炭吸附NOR和SMX受到表面吸附、颗粒内扩散等作用的共同影响。吸附等温线符合Langmuir方程,吸附过程以单分子层吸附为主。溶液不同的pH会影响芦苇秸秆生物质炭对NOR和SMX的吸附效果,这为生物质炭吸附水中抗生素的合理应用提供一定的数据支持。  相似文献   

8.
活性炭纤维对水中3,4-二氯苯胺的吸附行为   总被引:1,自引:0,他引:1  
通过静态吸附实验和动态吸附实验,研究了pH值、电解质(NaCl)、活性炭纤维用量等因素对用棉花秸秆制备的活性炭纤维吸附水中3,4-二氯苯胺的影响,同时从动力学和热力学角度考察了活性炭纤维对3,4-二氧苯胺的吸附行为.结果表明,棉花秸秆制备的活性炭纤维可以有效地吸附3,4-二氯苯胺,电解质(NaCl)的存在对吸附有抑制作用;准二级动力学模型能够很好地描述3,4-二氯苯胺在活性炭纤维上的吸附行为;吸附等温线符合Langmuir方程,吸附行为是一个自发放热的物理吸附过程.  相似文献   

9.
以白酒废水污泥(LWS)为原料制备白酒废水污泥基生物炭(LWSB),设计静态吸附试验,研究不同初始pH、吸附剂用量及吸附时间等因素对LWSB吸附水溶液中亚甲基蓝(MB)的影响。通过比表面积分析仪(BET)、扫描电镜(SEM)、电子能谱仪(XPS)和傅立叶变换红外光谱(FTIR)探究LWSB对MB的吸附机理。结果表明,与LWS相比,LWSB的比表面积和孔容显著增加,而平均孔径有所减小。在溶液初始pH为8、投加量为1.0 mg/L、吸附时间为360 min及温度为44.85℃的条件下,理论最大吸附量为213.86mg/g;吸附动力学符合准二级反应动力学;Redlich-Peterson等温线模型能较好地描述LWSB吸附MB的吸附等温过程。LWSB对MB的吸附是自发的、吸热的、熵增的过程。吸附机理与静电相互作用、氢键、配位络合作用、π-π和n-π相互作用等有关。  相似文献   

10.
以椰衣和椰壳作为原材料,在300、500和700℃条件下热解制备生物质炭,表征其物理化学性质;同时,研究所制备的生物质炭对溶液中Pb~(2+)的吸附特征与机制.结果表明:随着热解温度升高,所制备的生物质炭的含氧官能团减少,灰分、pH值、阳离子交换量、比表面积和碱性官能团的含量随之升高.热解温度升高可促进生物质炭对Pb~(2+)的吸附;Langmuir模型可较好地描述所制备的生物质炭对Pb~(2+)的等温吸附;在供试的6种生物质炭中,吸附量最高的是在700℃条件下制备的椰衣生物质炭,且优于大多数已报道的用其他材料制备的生物质炭.拟合发现,所制备的生物质炭的阳离子交换量和灰分含量是影响其吸附Pb~(2+)的重要因子,在初始Pb~(2+)质量浓度为200mg/L条件下,椰衣生物质炭对Pb~(2+)的稳定吸附量为9.83~13.91mg/g,椰壳生物质炭为9.68~25.16mg/g.这表明椰壳生物质炭吸附态Pb~(2+)比椰衣生物质炭吸附态Pb~(2+)更稳定.  相似文献   

11.
木屑和稻秆基生物质炭对汞的吸附特性比较   总被引:1,自引:0,他引:1  
在600℃热解条件下制得木屑和稻秆两种生物质炭,用于比较不同类型的生物质炭对水溶液中重金属Hg(Ⅱ)的吸附特性,通过分析溶液p H值、吸附剂投加量和吸附时间对吸附的影响,探讨了其吸附动力学行为和汞的去除机理。实验结果表明,溶液p H值为5时,两种生物质炭对溶液中Hg(Ⅱ)的去除效果最佳;等温线数据能较好地拟合Langmuir方程,假二阶动力学方程则能较好地描述吸附动力学过程,由粒子内扩散模型分析可知两种生物质炭的吸附过程均受内扩散和膜扩散共同控制。SEM-EDS分析结果表明,生物质炭对Hg(Ⅱ)的吸附机制涉及离子交换作用,同时还可能包括还原作用和生物质炭羟基与羧基与汞的络合作用。  相似文献   

12.
研究了吸附时间、初始染料浓度和吸附温度对吸附能力的影响,考察了相应的吸附动力学、平衡吸附等温线和吸附热力学。结果表明,拟二级吸附动力学方程可以很好地描述废报纸对甲基蓝的吸附过程;粒内扩散模型分两个阶段,说明粒内扩散并非吸附过程中惟一的速率控制步骤;Freundich和Temkin等温线相比于Langmuir等温线更符合吸附平衡数据;吸附热力学数据表明废报纸对甲基蓝是一个自发、放热的物理吸附过程。废报纸吸附剂可以用乙醇脱附再生,经4次循环仍可保持80%以上的吸附能力。  相似文献   

13.
以木质纤维素为原料,采用限氧热解法制备木质纤维素生物炭,以亚甲基蓝和四环素为目标污染物,通过批试验方法考察了生物炭热解温度和溶液初始pH值条件等对吸附的影响,以及吸附的动力学和热力学.研究结果发现,热解温度为300℃时木质纤维素生物炭对2种污染物的吸附能力最强.酸化和未酸化处理木质纤维素生物炭对2种污染物的吸附能力有明...  相似文献   

14.
以文冠果加工剩余物为原料,根据湿法焙烧技术在室内制备了文冠果水热炭,探讨其对模拟废水中苯酚的吸附性能.利用傅里叶红外光谱仪、X射线衍射仪、扫描电镜、氮吸附比表面积及孔径测定仪等分析测试手段对水热炭进行了结构表征.通过正交试验与单因素试验分别考察了水热炭处理苯酚废水过程中苯酚废水初始质量浓度、吸附时间、文冠果水热炭投加量、pH等的影响显著程度与最佳吸附条件,并进行了吸附动力学与热力学研究.结果 表明,制备的文冠果水热炭表面含有丰富的含氧官能团,水热炭吸附苯酚过程中影响吸附效果的主次因素为吸附剂投加量>苯酚废水初始质量浓度>pH>吸附时间,最佳的吸附条件为:温度25℃,pH=5,水热炭加量0.3g,吸附时间80min,苯酚废水初始质量浓度50mg/L;水热炭对苯酚的吸附动力学特征符合准二级动力学模型,其吸附过程主要受化学吸附机理控制;在25~45℃范围内,Freundlich模型可以较好地解释水热炭吸附苯酚的等温吸附过程;水热炭吸附苯酚是吸热过程,该过程可自发进行.该研究可为开发廉价高效的有机污染物吸附剂提供科学依据.  相似文献   

15.
为探索热解稻壳生物炭对尿素态氮的吸附特性,采用自制的无轴螺旋连续热解装置制备了热解温度分别为350、450、550℃和650℃的稻壳生物炭(RHB),研究了热解温度对RHB各项理化特性的影响规律,及其对水溶液中尿素态氮的吸附能力,并用吸附动力学模型和吸附等温线模型对尿素态氮的吸附过程进行拟合,结合吸附前后RHB的微观形貌特征,探讨了RHB对尿素态氮的吸附机制。结果表明,RHB的BET比表面积及孔容均随着热解温度的升高而逐渐增大,而平均孔径则逐渐减小;与热解温度为550℃和650℃制得的RHB相比,350、450℃制得的RHB保留了更多数量的酸性含氧有机官能团。650℃制得的RHB对尿素态氮的吸附能力更强(350℃和650℃RHB的平衡吸附量分别为30.59 mg·g~(-1)和33.16 mg·g~(-1)),等温吸附模型拟合及吸附动力学拟合结果表明,RHB对尿素态氮的吸附过程可用Langmuir-Freundlich模型和Elovich模型描述,其对尿素态氮的吸附同时受到物理吸附和化学吸附的作用。RHB对尿素态氮的吸附过程为尿素分子首先通过自由扩散运动穿透液膜表面抵达RHB颗粒表面,并与RHB表面的官能团吸附位点发生化学吸附反应,然后尿素分子从RHB颗粒外表面进入到内部的复杂多孔结构中并被"封锁"于孔隙内部,之后逐渐趋于动态平衡。不同热解温度制得的RHB的吸附机制表现为低热解温度RHB通过表面含氧官能团与尿素分子形成氢键发生化学吸附,而高热解温度制得的RHB通过形成更多的复杂孔隙结构与尿素分子发生物理吸附。  相似文献   

16.
采用室内培养试验法对添加生物质炭的茶园土壤水溶性氟吸附特性进行了研究。结果表明,茶园土壤随生物质炭添加量增加对水溶性氟的吸附量和吸附率均逐渐降低,应用等温吸附Langmuir方程、Freundlich方程和Temkin方程均能够较好地描述其吸附规律,其中以Freundlich方程拟合曲线最佳。随生物质炭添加量的增加土壤氟净吸附量逐渐降低。各处理土壤的氟吸附动力学过程包含吸附快反应和慢反应阶段,平衡时间小于120 min区间为吸附量快速上升期,平衡时间达到1 440 min后0.25%和0.50%生物质炭添加量处理土壤基本达到平衡状态。从双常数方程、Elovich方程和一级动力学方程拟合方程计算得到的理论吸附量与试验实测吸附量之间的符合程度较高,可准确描述添加生物质炭土壤对水溶性氟的吸附过程。添加生物质炭使土壤pH值升高与茶园土壤对水溶性氟最大吸附量、吸附强度和净吸附量的降低密切相关。  相似文献   

17.
用催化剂提高黄金炭的得率和吸附性能的研究   总被引:3,自引:0,他引:3  
以北京光华木材厂杏核炭化料为原料,用ZnCl2,K2CO3,Na2CO3,H3PO4四种催化剂浸渍后进行活化试验,结果表明:用H3PO4作催化剂效果最好,适宜添加量为绝干原料的3%。最佳活化条件是:活化温度900℃,活化时间90min,水蒸气用量110g/h。活性炭得率49.3%,比空白试验提高23%,碘值1107mg/g,超过黄金炭标准10.7%。  相似文献   

18.
玉米秸秆生物炭对Cd2+的吸附特性及影响因素   总被引:7,自引:0,他引:7  
以玉米秸秆生物炭为实验材料,研究了生物炭吸附重金属Cd2+的性能,分析了吸附温度、吸附时间、初始pH值以及生物炭粒径对吸附的影响,并对吸附前后生物炭样品进行傅里叶变换红外光谱分析(FITR)、X-射线衍射(XRD)和X-射线光电子能谱(XPS)表征以分析吸附机理。结果表明:玉米秸秆生物炭对Cd2+的吸附可用Langmuir等温方程较好地拟合,在不同温度下其饱和吸附量分别为18.49 mg·g-1(288.15 K)、23.51 mg·g-1(298.15 K)、23.59 mg·g-1(308.15 K)和24.43 mg·g-1(318.15 K),吸附动力学过程可以由准二级动力学方程很好地拟合,约40 min即达平衡,pH值为5时吸附量最大,生物炭粒径对吸附无明显影响。结构表征表明,生物炭对Cd2+的吸附机理主要为表面羟基(-C-OH)和羰基(-C=O)与Cd2+发生络合化学反应作用。  相似文献   

19.
以核桃壳为原材料,采用高温裂解法制备成核桃壳生物炭;通过扫描电镜、能谱分析仪、傅里叶变换红外光谱仪和X射线衍射仪对核桃壳生物炭的结构表征;通过吸附试验,探讨初始U(VI)浓度、pH、反应时间和温度对核桃壳生物炭吸附U(VI)的影响.结果表明,核桃壳生物炭表面光滑,所包含的元素主要是C、O、K和Ca;其表面含有大量的官能团,这将有利于其吸附.Langmuir吸附等温模型和伪二级动力学方程能更好地模拟核桃壳生物炭对U(VI)的吸附过程.  相似文献   

20.
木薯渣基生物质炭对土壤中阿特拉津 吸附特性的影响   总被引:1,自引:0,他引:1  
以木薯渣为前驱物,采用持续升温限氧法制备了不同温度(350、550、750益)的生物质炭(BC350、BC550 和BC750),并对其结构和成分进行了表征。基于guideline106 批量平衡法,研究了生物质炭对砖红壤中阿特拉津吸 附行为的影响。结果表明,阿特拉津的吸附动力学是一个先快后慢的过程,生物质炭施用可缩短阿特拉津达到吸 附平衡的时间,施入量越多,达到饱和的时间越短。施入量相同条件下,最早到达平衡的处理是BC750,BC550 次 之,BC350 最后达到饱和。伪二级动力学方程能较好地描述生物质炭对砖红壤中阿特拉津的吸附动力学特性(R2> 0.864)。阿特拉津在生物质炭土壤中的吸附等温线表现为非线性,分配作用和表面吸附作用联合是主要机制。在土 壤中添加3%和5%BC750 的处理用Temkin 方程拟合最佳,其余处理均符合Langmuir 方程和Freundlich 方程。logKF 值随着生物质的量增加而逐渐增大。对于不同温度制备的生物质炭,logKF 的大小顺序表现为BC750>BC550> BC350,说明土壤中阿特拉津的吸附能力与生物质炭的热解温度有关。此外,阿特拉津的吸附-解吸过程存在明显 的滞后现象,滞后系数HI 均大于1,且表现为BC750>BC550>BC350。因此,土壤中阿特拉津的风险评价和修复需 考虑滞后现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号