首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
夏季是人们外出进行烧烤活动的主要季节,羊肉制品一直是烧烤架上最受欢迎的肉类制品。但在市场经济的不良引导下,羊肉制品开始受到来自人工饲料,化学添加剂的影响。这些加工过的羊肉制品相比于原生原味的羊肉制品在脂肪含量,蛋白质含量都存在很大的差距。因此,对羊肉检测部门推向一种新型有效的羊肉检测技术是十分必要的。本文通过介绍运用近红外高光谱成像技术在羊肉制品上的检测,并说明了高光谱成像技术在羊肉制品检测中产生的作用。并对今后如何拓展该技术在检测领域的应用提出了一些设想。  相似文献   

2.
[目的]利用高光谱成像技术估测大豆叶片叶绿素含量并实现其分布可视化,为直观监测大豆元素营养水平和生长发育状况提供技术支持.[方法]利用高光谱成像技术采集80片生长发育程度不同的大豆叶片高光谱图像,提取并计算叶片平均光谱后测定其对应的叶绿素含量,分析大豆叶片反射光谱特征差异,比较叶绿素与叶片反射光谱特征的关系,通过不同的...  相似文献   

3.
叶绿素是作物生长中的重要因素,可用于实时监测作物的生长状况。以常规高油酸油菜品种为材料,采用大田试验研究油菜叶片在不同栽培措施下幼苗期、蕾薹期叶片的光谱响应,通过计算反射光谱及其反射光谱的一阶导数与SPAD值的相关性,结合逐步回归挑选出油菜叶片敏感波段,并计算光谱指数。采用一元线性回归和神经网络建立叶绿素含量估算模型。结果表明,由光谱指数所构建的神经网络叶绿素估算模型,精度评价结果均显示比较高的水平,幼苗期反射率光谱指数构建的模型精度最高,决定系数R2为0807 0,均方根误差(RMSE)为1131 5,蕾薹期一阶导数光谱指数构建的模型精度最高,决定系数R2为 0873 2, 均方根误差(RMSE)为1322 3,在蕾薹期和幼苗期通过构建BP神经网络模型能够较好的对油菜叶绿素进行反演。为利用高光谱技术大范围监测油菜叶绿素含量提供了一定的理论依据。  相似文献   

4.
叶绿素是植被光合作用的重要物质,能够间接反映植被的健康状况和光合能力.高光谱技术的发展为大面积、快速检测植被叶绿素含量变化提供了可能.选取150组不同生长期的辣椒叶片作为研究对象,分别采集辣椒叶片的高光谱图像和叶绿素含量.利用随机森林特征选择算法进行数据筛选,结合线性回归、偏最小二乘回归、梯度提升回归树、随机森林回归等...  相似文献   

5.
叶绿素是植物生长发育必不可少的色素,可用来衡量植物生长状况,为实现番茄叶片叶绿素含量快速、无损检测,以番茄为试验材料,通过高光谱无损检测方法,对番茄叶片叶绿素含量进行监测。提取出82个叶片样本的平均光谱反射率数据(400~1 000 nm),对原始光谱数据分别进行7种预处理(平均平滑、高斯滤波、中值滤波、卷积平滑、归一化、基线校准(baseline)、标准正态化(standard normal variation, SNV),建立PLSR模型,建模结果显示:SNV预处理光谱的建模效果最优。用β权重系数、无信息变量消除变换法(uninformation variable elimination, UVE)、竞争自适应重加权法(compet-itive adaptive weighted sampling, CARS)及连续投影算法(successive project-ion algorithm, SPA)等提取特征波长,并建立了PLSR模型,建模结果表明:CARS法提取特征波长所建立的模型最优,CARS法提取了8个特征波长(732、796、946、953、957、968、983、994...  相似文献   

6.
[目的]为探讨鸡蛋污染过程中微生物总量无损预测的可行性,本文研究了一种基于近红外高光谱成像技术可视化鸡蛋中菌落总数的无损预测方法。[方法]将鸡蛋样本在接种大肠杆菌和铜绿假单胞菌的混合菌悬液后储存,采集并统计不同污染程度鸡蛋样本的原始高光谱信息和菌落总数信息;在完成最佳预处理方法筛选后,结合连续投影算法(SPA)分别建立了基于全波段和特征波段光谱信息下的偏最小二乘法(PLS)和支持向量机(SVM)菌落总数预测模型;优选出相对最佳预测模型后进一步实现对鸡蛋内部污染程度的可视化研究。[结果]二阶导数预处理效果相对最佳,其中交叉验证集相关系数R_(CV)为0.88,交叉验证集均方根误差为0.82 lg(CFU·g~(-1));鸡蛋中菌落总数的相对最佳预测模型为基于特征波段下SVM模型,其中建模集相关系数R_C为0.88,预测集相关系数R_P为0.84,建模集和预测集均方根误差分别为0.86和0.97 lg(CFU·g~(-1));根据鸡蛋内部污染程度及光谱特性的差异,建立了鸡蛋内部污染程度伪彩色图像。[结论]近红外高光谱成像技术结合化学计量学及图像处理方法,可实现对鸡蛋内部菌落总数的无损预测及污染程度的可视化,该技术可以为鸡蛋的安全性在线检测提供参考。  相似文献   

7.
利用近红外高光谱成像技术对番茄叶片叶绿素含量的无损检测进行初步探讨。通过高光谱成像系统(900~1 700 nm)采集了192个番茄叶片图像,基于偏最小二乘回归模型(PLSR)对光谱进行样本集划分,对原始光谱与Kubelka-Munk函数曲线及多种光谱预处理的偏最小二乘回归模型进行对比分析,优选出多元散射校正(MSC)为预处理方法。采用5种方法提取特征波长,并根据特征波长建立偏最小二乘回归、多元线性回归(MLR)、主成分回归(PCR)3种模型的叶片叶绿素含量预测模型。结果表明,建立无信息变量消除法(UVE)挑选特征波长的偏最小二乘回归模型最优,其预测集的相关系数(RP)为0.8495,均方根误差(RMSEP)为4.3375。因此,利用近红外高光谱成像技术提取特征波长进行叶绿素含量检测是可行的,同时也为今后番茄品质在线检测提供了理论依据。  相似文献   

8.
高油酸油菜籽品种是当前油菜育种方向之一,为开发高效、无损测定油酸含量的方法,提高油菜高油酸种质资源筛选效率,选用3个油菜品种为材料,分别采集其种子光谱成像信息及油酸含量数据,首先对光谱信息进行11种预处理,确定多元散射校正(MSC)最佳预处理方法,然后基于主成分分析(PCA)、连续投影(SPA)、竞争性自适应重加权采样(CARS)方法对数据进行降维,最后分别建立支持向量机(SVM)、最小二乘支持向量机(LS-SVM)和极限学习机(ELM)3种定量分析模型,对油菜油酸含量进行无损检测。通过改变训练样本的数量来测试模型,为验证模型的稳定性,用相关系数(R)、均方根误差(RMSE)进行效果评价。结果表明,在所有模型中,多元散射校正+竞争性自适应重加权采样+极限学习机(MSC+CARS+ELM)模型预测效果最好,校正集相关系数(Rc)、均方根误差(RMSEc)分别为0.894、1.993 4%,预测集相关系数(Rp)为0.868,均方根误差(RMSEp)为1.069 8%,可更加准确地预测油酸含量,创建一种快速、无损检测油菜种子油酸含量的方法,为利用高光谱技术进行油菜营养品质无损检测提供理论依...  相似文献   

9.
为了快速、准确、无损地对糯玉米种子分类,采用可见-近红外(400~1000 nm)高光谱成像仪对5种糯玉米种子进行数据采集,使用一阶中心差分联合SG平滑对糯玉米种子的原始光谱数据进行预处理去噪,通过自优化竞争性自适应重加权采样算法筛选出56个重要的特征波段,同时采用灰度共生矩阵和Sobel算子提取糯玉米种子的相关性、能量、同致性、相关熵、灰度熵和梯度熵等6种纹理特征,将光谱特征与纹理特征融合后构建支持向量机分类模型,分别用350个训练样本、150个测试样本和50个预测样本对模型进行训练、测试和预测分类,相应得到了准确率为98.50%、95.92%和94.00%的最佳结果,表明利用高光谱成像技术对糯玉米种子分类是可行的。  相似文献   

10.
基于成像高光谱的苹果叶片叶绿素含量估测模型研究   总被引:1,自引:0,他引:1  
以苹果树正常叶片、受红蜘蛛胁迫叶片的高光谱反射率和SPAD值为数据源,在分析SPAD值与原始光谱反射率及其一阶导数、高光谱值相关性的基础上,筛选敏感波段,建立了基于高光谱反射率的叶绿素含量估测模型。结果表明:正常苹果叶片叶绿素含量的敏感波段为513~539、564~585、694、699、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=152.450-1884.851R377;受红蜘蛛胁迫的苹果叶片叶绿素含量的敏感波段为961、972、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=49.371-46428.473 R’972。  相似文献   

11.
基于成像高光谱的小麦叶片叶绿素含量估测模型研究   总被引:2,自引:0,他引:2  
为了探索小麦叶片的光谱特征和敏感波段,建立小麦叶绿素含量与光谱特征参量间的定量关系模型,以促进高光谱技术在小麦精准施肥以及快速、无损长势监测中的应用。采用相关分析法分析了叶绿素含量与光谱反射率及其一阶导数的关系,建立了叶绿素含量监测模型。经筛选验证确定小麦叶绿素含量的最佳估测模型为SPAD=36.75+188.168R387和SPAD=2 094.242R'7153+112 646.744R'7152-1.561E7R'715+42.991。这2个模型均可较好地估测小麦叶片的SPAD值,相比较而言,基于波段R387建立的SPAD估测模型精确度更高。  相似文献   

12.
以苹果树正常叶片、受红蜘蛛胁迫叶片的高光谱反射率和SPAD值为数据源,在分析SPAD值与原始光谱反射率及其一阶导数、高光谱值相关性的基础上,筛选敏感波段,建立了基于高光谱反射率的叶绿素含量估测模型。结果表明:正常苹果叶片叶绿素含量的敏感波段为513539、564539、564585、694、699、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=152.450-1884.851R377;受红蜘蛛胁迫的苹果叶片叶绿素含量的敏感波段为961、972、720 nm,叶绿素含量的最佳估测模型为线性函数模型SPAD=49.371-46428.473 R’972。  相似文献   

13.
大米品质与品种密切相关,因此品种鉴别对实施“优质粮食工程”具有重要意义。采集外观相似的6个品种共600粒大米的高光谱反射率数据,经过多元散射校正(MSC)、二阶导数(2ND)和标准正态变换(SNV)对光谱数据进行预处理。利用连续投影算法(SPA)和主成分分析(PCA)对光谱数据降维。以灰度共生矩阵(GLCM)提取特征波长对应灰度图像的纹理特征。应用全波段、特征波段、纹理特征以及光谱-纹理特征融合数据分别建立基于支持向量机算法(SVM)的品种鉴别模型。结果表明,光谱-纹理融合特征的分类准确率最高,达到94.12%。利用乌鸦搜索算法(CSA)对模型参数进行优化后,准确率达96.57%。因此,光谱-纹理特征组合下的支持向量机结合乌鸦搜索算法能充分利用高光谱图像的光谱和纹理信息,实现对大米品种的快速无损鉴别。  相似文献   

14.
【目的】利用高光谱成像技术对水稻纹枯病进行早期的快速无损识别,结合判别分析方法建立相应的鉴别模型。【方法】以健康和感染纹枯病的水稻幼苗为研究对象,采集叶片和冠层各180个样本的380~1 030 nm波段的360条高光谱图像,剔除明显噪声部分后,以440~943 nm波段作为水稻样本的光谱范围,分别用不同的方法预处理获得水稻叶片的光谱曲线。采用偏最小二乘–判别分析(PLS-DA)对不同预处理的光谱建模。采用MNF算法对冠层的原始光谱数据进行特征信息提取,并基于特征信息建立线性判别分析(LDA)模型和误差反向传播神经网络(BPNN)判别模型。【结果】标准正态变量变换(SNV)预处理后建立的PLS-DA模型的预测集判别正确率最高,为92.1%。基于特征信息的LAD和BPNN模型的判别结果优于基于全波段的PLS-DA判别模型。基于最小噪声分离变换特征信息提取的BPNN模型取得了最优效果,建模集和预测集正确率分别达99.1%和98.4%。【结论】采用高光谱成像技术对水稻纹枯病生理特征进行无损鉴别是可行的,本研究为水稻纹枯病的识别提供了一种新方法。  相似文献   

15.
为实现羊肉新鲜度的快速、无损检测,应用高光谱成像技术对不同存储天数的羊肉建立挥发性盐基氮TVB-N(Total volatile basic nitrogen,TVB-N)含量预测模型。通过高光谱成像系统获取羊肉样本935~2 539nm的高光谱图像,选取样本左上、左下、右上、右下和中间5个位置20×20像素的方形作为感兴趣区域(Region of interesting,ROI),提取ROI并计算区域内样本平均光谱。利用二进制粒子群优化算法(Binary particle swarm optimization,BPSO)和相关系数分析法(Correlation coefficient,CC)提取羊肉TVB-N高光谱特征变量,结合偏最小二乘回归(Partial least squares regression,PLSR)和随机森林回归(Random forest regression,RFR)建模算法,分别建立表征羊肉TVB-N含量的BPSO-PLSR、BPSO-RFR、CC-PLSR、CC-RFR预测模型。依据袋外均方根误差RMSEOOB最小原则,对最佳回归子树和分裂特征2个主要参数进行寻优以提高RFR建模算法的预测精度。比较4个模型的预测效果发现,BPSO-RFR模型的预测精度最高,其校正集决定系数R_c~2和均方根误差RMSEC分别为0.87和2.99,预测集决定系数R_p~2和均方根误差RMSEP分别为0.86和3.36。综上,高光谱成像技术和机器学习算法的有机结合为快速有效检测肉品新鲜度提供了理论依据。  相似文献   

16.
为了探讨水果种子不同活力等级的判别方法,以西瓜种子为研究对象,建立基于偏最小二乘判别(PLS-DA)、极限学习机(ELM)的高光谱图谱信息种子活力判别模型。首先,提取光谱信息,建立西瓜种子活力等级的光谱定性分析模型,结果表明,特征变量筛选方法 UVE(无信息变量消除)结合建模方法PLS-DA得到的效果较好,分类正确率为100.00%,相关系数为0.86。其次,选取图像PC1权重系数,提取波长点为685、790、826、836、855 nm的特征图像,计算平均灰度值,建立基于图像特征的种子活力等级定性分析模型。结果表明,PLS-DA的误判率为6.67%,相关系数为0.85,优于ELM检测模型的误判率(10.00%)和相关系数(0.83)。高光谱成像技术的光谱和图像信息都能较好区分种子的活力等级,但基于光谱信息建立的判别模型优于基于图像特征建立的判别模型。  相似文献   

17.
基于高光谱成像技术的生菜叶片水分检测研究   总被引:1,自引:0,他引:1  
张晓东  毛罕平  周莹  左志宇  高洪燕 《安徽农业科学》2011,39(33):20329-20331,20714
[目的]探索利用高光谱图像技术检测作物含水率的方法。[方法]以意大利全年耐抽苔生菜为试材,利用高光谱成像系统采集生菜叶片的高光谱图像,用ENVI V.4和Matlab V.7.0软件对高光谱图像进行处理。[结果]采用自适应波段选择法从所采集的生菜叶片高光谱图像数据中优选出特征波长1 420 nm;对每个样本特征波长下的图像进行分割,反转以及形态运算等操作得到目标图像;从每个目标图像中提取灰度均值、灰度标准差作为灰度特征,能量、熵、惯性矩、相关性的均值和标准差作为纹理特征;采用GA-PLS法选出最优特征子集,并建立基于最优特征的偏最小二乘回归模型,以检测生菜叶片的含水率。[结论]模型的预测值与实测值的相关系数R为0.902,精度明显高于基于灰度特征或纹理特征的预测模型。  相似文献   

18.
为提高棉花叶片各生育时期氮素估测模型的准确性和普适性,以2019年不同施氮水平(0,75,150,300kg·hm-2)的棉花叶片为研究对象,利用高光谱成像仪获取棉花叶片苗期、蕾期、初花期、盛花期和结铃期光谱反射特征,对原始光谱进行卷积平滑(SG)处理,并在此基础上进行多元散射校正(SG-MSC)、标准正交变换和去趋势算法联合应用(SG-SNV-Detrending)、区域归一化(Area-normalize)、倒数二阶微分(1/SG)"和对数二阶微分[lg(SG)]"5种预处理,基于连续投影算法(successive projections algorithm,SPA)选取原始光谱和不同预处理的氮素特征波段,构建偏最小二乘回归(partial least squares regression,PLSR)和主成分回归(principal components regression,PCR)氮素估测模型,并对模型进行年际间的精度检验。结果表明:基于SPA筛选的氮素含量特征波段减少共线性和冗余信息,原始光谱反射特征经不同预处理,相关性均得到提高,5种预处理以(1/SG...  相似文献   

19.
基于高光谱成像技术的红酸枝木材种类识别   总被引:1,自引:1,他引:1       下载免费PDF全文
为了实现市场上常见红酸枝类Dalbergia spp.木材的快速无损识别,利用高光谱成像技术对不同红酸枝木材进行种类识别研究。以交趾黄檀 Dalbergia cochinchinensis,巴里黄檀 Dalbergia bariensis,奥氏黄檀Dalbergia oliveri和微凹黄檀 Dalbergia retusa为研究对象,采集高光谱图像并提取感兴趣区域内的反射光谱,采用Savitsky-Golay(SG)平滑算法、标准正态变量变换(SNV)和多元散射校正(MSC)对955~1 642 nm 波段光谱进行预处理,并通过主成分分析法(PCA),回归系数法(RC)以及连续投影法(SPA)选择特征波长,分别建立了偏最小二乘判别分析(PLS-DA)和极限学习机(ELM)判别分析模型。研究结果表明:经SG和MSC光谱预处理,采用SPA选择的特征波长建立的ELM模型性能最优,建模集和预测集的识别率均为100.0%。这为红酸枝木材种类的快速无损识别提供了新的方法。图5表4参17  相似文献   

20.
[目的]本文旨在建立基于高光谱成像技术检测猕猴桃冷害的方法,实现猕猴桃冷害的无损甄别.[方法]以'红阳'猕猴桃为材料,通过分析其400~1000 nm和1000~2000 nm波段下的光谱,比较不同预处理下的偏最小二乘判别分析(PLS-DA)和支持向量机(SVM)模型,选出正确率较高的模型,对该方法构建全波段和特征波段...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号