共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
水分含量对近红外测定小麦蛋白质含量的影响 总被引:1,自引:0,他引:1
[目的]探讨水分含量对近红外测定小麦蛋白质含量结果的影响。[方法]以全籽粒小麦为研究对象,研究近红外品质分析过程中水分含量对小麦蛋白质含量预测结果的影响。在连续改变样品水分含量的条件下采集小麦的近红外吸收光谱,并用预测模型测定它们的蛋白质含量。[结果]水分对近红外光谱吸收及预测结果有很大影响。小麦水分含量的升高使其在整个近红外区域的光谱吸收都明显增大,直接影响蛋白质含量的测定结果,测定误差随样品含水量的降低而减小。当样品水分与建模样品水分含量相近时,样品水分差异引起的测定误差可以忽略不计。[结论]在用近红外测定小麦蛋白质含量时,应使待测样品保持合适的水分含量。 相似文献
3.
4.
《江苏农业科学》2016,(9)
采用频谱测量的谷物氮元素估算方法易受作物水分等因素的影响,对此提出了采用近红外光谱与最小二乘法(PLS)的小麦氮素与水分预测方案。采用光谱传感器获得的光谱反射率数据(光谱范围是400~950 nm),在植物生长阶段(BBCH 32)测试了是否可以估算春小麦中的氮与水分。2014—2015年,在甘肃地区进行小麦的田地试验,试验场共包含36个小区,在播种期间主小区使用氮施肥(N 70 kg/hm2或100 kg/hm2),子块则使用水灌溉。在BBCH32,对所有的小区使用便携式光谱仪测量其冠层反射率,然后,每个小区选择0.25 m2样方作为地表小麦作物量的采样,并分析总氮量。首先通过对数线性比对光谱数据进行预处理,然后使用Savitzky-Golay方法与均值化对其进行第一阶导数滤波,然后,通过偏最小二乘法(PPLS)结合光谱信息与正定数据对模型进行校准。结果表明,本方法优于基于指标的方法,其最优模型的氮、水分性能分别为RPD=2.26、RPD=1.49。 相似文献
5.
《浙江大学学报(农业与生命科学版)》2021,(5)
以博斯腾湖西岸湖滨绿洲为研究区,利用实测的土壤有机碳含量与高光谱数据,应用连续投影算法(successive projection algorithm, SPA)从全波段光谱数据中筛选特征变量,并分别采用全波段和特征波段构建偏最小二乘回归(partial least square regression, PLSR)与支持向量机(support vector machine, SVM)模型来估算土壤有机碳含量。结果表明:1)土壤有机碳质量分数变化范围为0.75~48.13 g/kg,平均值为13.31 g/kg,呈中等变异性,变异系数为63.19%。2)土壤有机碳含量与原始光谱反射率表现为负相关性[-0.62相关系数(r)-0.07];经SG平滑结合标准化正态变换后进行一阶微分(Savitzky-Golay-standard normal variate-first derivative, SG-SNV-1st Der)预处理后,通过极显著性检验(P0.01)的波段数达到414个,主要集中在487~575、725~998和1 464~1 514 nm处,其中在788、800与1 768 nm波长处的相关性最高,r均大于0.80。3)光谱经SG-SNV-1st Der预处理后,用SPA构建的PLSR模型验证集的决定系数(R~2)=0.79,均方根误差(root mean square error, RMSE)=3.58 g/kg,残余预测误差(residual prediction deviation, RPD)=1.99,四分位数间距性能比(ratio of performance to interquartile distance, RPIQ)=2.23;而运用SPA结合SVM构建的模型验证集R~2=0.81,RMSE=3.16 g/kg,RPD=2.25,RPIQ=2.53。说明运用SPA结合SVM构建的模型能较好地估算研究区土壤有机碳含量。 相似文献
7.
8.
《江苏农业科学》2015,(12)
以534份发芽率水平不同的小麦品种种子为样品,采用傅里叶变换近红外光谱仪采集光谱数据,利用偏最小二乘法(PLS)建立其发芽率的无损测定校正模型,并对模型进行留一法交叉验证、外部验证。结果表明,经一阶导数和多元散射校正(MSC)预处理后,对7 502.3~4 246.8 cm-1波段范围所建模型的预测性能最佳,校正集决定系数R2为0.914 4,校正均方根误差(RMSEE)为7.38,平均绝对误差为5.925%;验证集决定系数R2为0.904 4,验证均方根误差(RMSEP)为7.91,平均绝对误差为6.467%。近红外光谱与种子发芽率具有较高相关性,利用近红外光谱技术快速测定小麦种子发芽率具有可行性。 相似文献
9.
小麦子粒蛋白质含量,由于地理位置、生态条件、耕作制度、种植品种的不同而有较大差异.地区间含量较高的是吕梁地区。达13.57%,雁北地区最低,为12.48%;不同生态区间含量较高的是中部冬麦区,平均达13.37%,北部春麦区含量稍低,为12.9%;不同品种冲,强冬性较弱冬性、春小麦品种高,强各性品种(系)忻-2060最高,为16.27%,京双16号较低,为12.69%;弱冬性品种曲9-1较高。为14.85%,平阳1号较低,仅10.76%;春性品种晋春7号含量较高,为14.47%,低的是晋春6号,只有11.91%。另外,小麦子粒蛋白质含量与小麦面粉的干、湿面筋和小麦生育期也有一定的相关性。 相似文献
10.
【目的】研究运用近红外光谱技术结合化学计量学实现快速检测新疆南疆果树残枝中纤维素、半纤维素和木质素含量。【方法】以150个从新疆南疆各地采集的果树残枝样本为材料,利用近红外光谱技术结合偏最小二乘法(PLS),采用不同的预处理和特征波段筛选方法优化各纤维组分含量的预测模型。【结果】SG卷积平滑法预处理结合竞争性自适应权重取样法(CARS)优选特征波段建立的3种纤维组分近红外检测模型效果最优,相关系数r分别为0.950 3、0.948 7和0.937 1,决定系数R2分别为0.900 8、0.896 5和0.875 1,校正标准偏差RMSEC分别为0.007 0、0.005 4和0.005 1,预测标准偏差RMSEP分别为0.011 8、0.008 9和0.008 8。【结论】采用近红外光谱技术能够实现新疆南疆果树残枝纤维素、半纤维素和木质素三组分的快速定量检测。 相似文献
11.
12.
小麦籽粒蛋白质含量高光谱遥感预测模型比较 总被引:1,自引:0,他引:1
【目的】利用高光谱遥感技术实现冬小麦籽粒蛋白质含量的精准预测,比较筛选小麦籽粒蛋白质含量预测模型,实现优质小麦栽培生产。【方法】设置不同品质类型小麦品种和施氮量处理,测定开花期叶片叶绿素含量(SPAD)、叶片干物质质量(LDW)、地上生物量(AGB)、叶片氮含量(LNC)、叶片氮积累量(LNA)、叶面积指数(LAI)、植株氮含量(PNC)、植株氮积累量(PNA)和氮营养指数(NNI)9个农学参数及小麦冠层光谱,通过一阶导数和偏最小二乘法,构建基于不同农学参数的小麦籽粒蛋白质含量高光谱预测模型。【结果】一阶导数处理可以提高光谱数据与农学参数的相关性。运用偏最小二乘法构建的高光谱农学参数估测模型中以SPAD的模型建模精度与验证精度相对较优,建模集决定系数R2与预测集标准均方根误差nRMSE分别为0.99和4.10%;NNI反演模型验证结果较好,相对预测偏差RPD为2.04;利用线性回归构建的农学参数-籽粒蛋白质预测模型中以LNC的建模精度与验证精度最佳,其建模集R2、预测集均方根误差RMSE和RPD分别为0.64、0.79和2.11。最终构建的“... 相似文献
13.
为探索应用近红外光谱技术检测玉米单籽粒蛋白质含量,本研究采用JDSU近红外光谱检测仪采集了205份不同基因型玉米材料的单籽粒光谱值,用常规化学法测定玉米单籽粒蛋白质含量化学值,以117个样本为建模集,拟合了玉米单籽粒近红外光谱仪扫描得到的光谱图与玉米单籽粒蛋白质含量化学值之间的相互关系,用88个样本作预测集,比较了偏最小二乘回归法(PLSR)和支持向量机回归法(SVR)2种预测模型的效果。结果表明,玉米单籽粒种子的蛋白质含量在样本中变异范围为3.48%~18.15%,平均值为10.17%。偏最小二乘回归法(PLSR)和支持向量机回归法(SVR)所建的模型预测效果基本相同,其决定系数(R2)分别为0.99和0.99,校正标准差(SEC)分别为0.32和0.32,预测标准差(SEP)分别为0.46和0.46,相对预测标准差(RSEP)分别为4.61和4.60,RPD分别为6.106和6.111。上述参数表明PLSR和SVR所建立的模型预测效果都比较好,预测值基本接近参比值,便携式JDSU近红外光谱检测仪可以应用于定量分析玉米单籽粒蛋白质含量。 相似文献
14.
基于可见-近红外光谱预处理建模的土壤速效氮含量预测 总被引:1,自引:0,他引:1
以皖南地区采集的188份黄红壤样本为研究对象,利用地物非成像光谱仪获取原始光谱数据。首先,分析样本在350~1 657 nm波段经过预处理变换的平均光谱反射率曲线特征,再基于原始光谱,以及经29种预处理变换后的光谱,分别结合偏最小二乘回归(PLSR)和径向基核函数(RBF)-PLSR算法,建立60个针对土壤速效氮含量的预测模型,并进行模型优化;然后,以模型的决定系数(R2)和相对分析误差(RPD)来评价模型性能。结果显示,基于Savitaky-Golay卷积平滑和对数变换预处理的光谱,用PLSR建立的模型最适用于土壤速效氮含量的校正预测,其在建模集中R2=0.94、RPD=3.88,预测集中R2=0.91、RPD=3.38。该模型达到A类预测精度,可实现对土壤速效氮含量的定量估测。 相似文献
15.
运用近红外光谱技术结合偏最小二乘法(PLS),对所采集光谱进行一阶导数和二阶导数处理,并对未处理原始光谱、一阶导数处理光谱和二阶导数处理光谱分别在7个不同波段范围内建立红松含水率预测模型.结果表明红松样本近红外光谱经一阶导数处理,波段在1 000~2 100nm范围内所建模型最优,其校正集相关性系数为0.992 5,校... 相似文献
16.
为了探索快速检测土壤有机质含量的方法,试验采用不同分解水平的Coiflet函数的小波(wavelet)分析方法,对山西关帝山土壤样品的近红外光谱信号进行了消噪处理,来快速获取土壤中有机质含量。结果表明:对有机质敏感波段的为450~600 nm,810~935 nm,1 030~1 315 nm,1 380~1 400 nm;有机质NIRS法与实验室标准法测定值之间的相关系数R2为0.9818;说明通过小波变换滤波,选择敏感波段,用偏最小二乘回归方法预测土壤有机质含量是可行的。 相似文献
17.
18.
为提高卷烟配方模块的分类识别准确率,并为卷烟配方模块的科学评估提供技术支撑,提出了一种基于近红外光谱特征筛选的卷烟配方模块香型预测方法。选取2017—2019年238个卷烟配方模块样品的近红外光谱数据,结合特征工程中的递归特征消除法和BP神经网络、随机森林、XGBoost 3种机器学习技术,构建了基于特征变量的香型预测模型。与全光谱数据训练的分类效果对比,经过递归特征消除法筛选后的光谱特征变量能够有效提升卷烟配方模块香型的识别准确率,其中,XGBoost算法分类效果最佳,模型对测试集的识别准确率达到了90.41%。结果表明,基于近红外光谱特征筛选的香型预测方法对卷烟配方模块的快速定位、科学评价及卷烟配方设计等有一定的辅助决策作用。 相似文献
19.
近红外反射光谱测定玉米完整籽粒蛋白质和淀粉含量的研究 总被引:31,自引:3,他引:31
以128份常用普通玉米自交系及杂交种的混合籽粒样品为材料,采用偏最小二乘(PLS)回归法,对近红外反射光谱(NIRS)测定玉米完整籽粒蛋白质、淀粉含量的可行性和方法进行了研究。结果表明,采用一阶导数+多元散射校正预处理、谱区为10000~4000cm-1和一阶导数+直线扣减预处理、谱区为9000~4000cm-1,分别建立的蛋白质、淀粉含量的校正模型,其校正和预测效果最佳。其校正决定系数(R2cal)均大于0.97,交叉验证和外部验证决定系数(R2cv、R2val)为0.92~0.95,各项误差(RMSEE 相似文献
20.
基于连续投影算法与BP神经网络的玉米叶片SPAD值高光谱估算 总被引:3,自引:0,他引:3
叶片叶绿素含量是评价作物生长状况的重要指标。为实现玉米叶片叶绿素含量的准确、高效高光谱估测,以玉米大田试验为基础,于7月1日(大喇叭口期)、7月19日(灌浆初期)和8月18日(腊熟期)利用ASD高光谱仪和便携式叶绿素仪(SPAD-502)分别测定了玉米叶片高光谱数据和叶绿素含量相对值SPAD;利用连续投影算法提取出玉米叶片光谱的特征波长,再用BP神经网络构建SPAD值的估算模型,并对模型进行验证。结果表明,3个日期的分段监测模型及统一监测模型的R2分别为0.885,0.900,0.675,0.827;RMSE分别为2.156,2.103,3.236,2.651;7月1日模型、7月19日模型和统一监测模型均具有较高的精度,同时检验模型RPD均大于2,具有很好的预测能力;而8月18日的监测模型表现较差(RPD=1.641),但也达到可用水平。表明利用连续投影算法结合BP神经网络可以进行玉米叶片SPAD值的高光谱估算。 相似文献