首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基于声波信号递归图的鸡蛋裂纹检测   总被引:1,自引:0,他引:1       下载免费PDF全文
针对基于声波信号的鸡蛋裂纹检测过程中易受到噪音干扰的问题,采集运输线上敲击鸡蛋产生的声波信号,对信号进行递归图分析,采用递归定量分析提取递归图的量化特征参数,用于鸡蛋壳裂纹的分类检测。分别构建基于支持向量机(support vector machine,SVM)、反向传播神经网络模型的鸡蛋裂纹分类检测模型,对300枚鸡蛋进行检测。结果表明,SVM检测模型效果较好;在SVM模型中,完好蛋和裂纹蛋的识别率分别达93.98%和95.52%,效果理想。  相似文献   

2.
以无裂纹蛋和裂纹蛋为测试对象,采用机器视觉技术和支持向量机等技术手段,分析无裂纹蛋和裂纹蛋在图像上的差异,提取特征参数,实现蛋壳裂纹的自动识别;针对蛋壳表面的亮斑,对预处理后的图像运行消除亮斑算法并进行区域标记。在此基础上,从5个不同视角提取13个能够表征无裂纹蛋和裂纹蛋的特征参数,分别是图像标记区域参数(区域标记数和标记点数)、几何特征参数(长轴和短轴)、基于Freeman链码的形状参数(形状数)、纹理特征参数(均值、标准偏差、平滑度、三阶矩、一致性、熵)和频谱特性参数(最大幅值和最大相位)。采用Adaboosting算子对上述特征参数进行优化,突出影响因子较大的参数组合,作为SVM的输入向量,建立蛋壳裂纹的识别模型。结果表明:该方法对蛋壳表面的亮斑、微小裂纹及普通裂纹均具有识别能力,模型正确率达97.5%,符合蛋品企业对蛋壳裂纹检测的精度要求。  相似文献   

3.
禽蛋蛋壳品质无损检测方法研究进展   总被引:1,自引:0,他引:1  
禽蛋蛋壳品质对于新鲜蛋、种蛋及蛋制品均是重要参数,而实现蛋壳品质的智能化检测是禽蛋生产、经营和加工过程中的必要环节,不仅可保证禽蛋的品质、提高禽蛋的利用率,也是实现禽蛋商品初加工处理自动化和规模化的前提条件,具有实际价值和现实意义。综述了红外光谱技术、机器视觉技术和敲击振动分析技术在禽蛋蛋壳品质无损检测的研究进展,从实际应用角度分析各项技术所存在的问题和难点,并对蛋壳品质在线检测的应用前景进行了展望。  相似文献   

4.
基于高光谱图像的黄瓜种子活力无损检测   总被引:1,自引:0,他引:1  
为实现对黄瓜种子的快速、无损检测,以人工老化0 h、36 h、72 h的3个不同活力梯度的黄瓜种子为研究对象,利用波长400~1 000 nm的可见光光谱对黄瓜种子活力进行检测。对比了多元散射校正(MSC)、标准正态变换(SNV)、卷积平滑(S-G)3种预处理方法,结果显示SNV预处理的效果最优。从特征提取和特性选择2个角度进行降维分析。分别使用主成分分析法和连续投影算法,对比各个主成分数的正确分类率,选取最佳的主成分数。通过连续投影算法(SPA)选择9、12、13个特征波长,通过对比分类正确率,选出最佳波长数为12个。最后将提取出的最佳主成分和选择的最佳特征波长作为支持向量机的输入,分别选择线性核函数和径向基核函数,结合网格搜索方法,确定模型的惩罚因子c和径向基核函数中的参数gamma,建立判别分析模型。所有模型分类正确率均达到97.3%以上,其中SPA-SVM(基于RBF核函数)效果最佳,分类正确率达到98.6%。可见,利用高光谱图像技术结合SPA-SVM能有效地鉴别黄瓜种子的活力。  相似文献   

5.
基于高光谱图像的水稻种子活力检测技术研究   总被引:4,自引:0,他引:4  
随着种子活力逐渐受到人们的重视,快速且不破坏种子的活力检测方法逐渐成为研究的热点。试验以不同老化程度的水稻种子为材料,采用高光谱成像技术结合PCA-SVM方法,研究比较了不同活力水平的水稻种子的活力差异。采集两个水稻品种在400~1000 nm范围的高光谱图像数据,通过主成分分析法(PCA)获得主成分图像,确定特征波段;应用支持向量机(SVM)建立水稻种子活力鉴别模型。结果表明,预测的判别率可达100%,说明高光谱成像技术为快速准确无损测定种子活力提供了一条新的途径。  相似文献   

6.
鸡蛋裂纹是评价鸡蛋品质好坏的重要指标之一,为寻求更加直观可行的鸡蛋裂纹检测的新方法,利用声学特性,基于Labview虚拟仪器平台自行设计搭建了鸡蛋裂纹检测系统。以鸡蛋赤道部位4个点(1、2、3、4)作为敲击位置,采集获取鸡蛋的声音信号并进行分析,提取鸡蛋最大、最小2个特征频率(fmax,fmin),并计算其差值Δf(Δf=fmax-fmin),以1 000 Hz作为裂纹鸡蛋的识别阈值,分析并剔除裂纹鸡蛋,其准确率达到96.667%。结果表明,基于声学特性和Labview虚拟仪器平台,对裂纹鸡蛋进行裂纹检测不仅可行,且具有一定的准确率。  相似文献   

7.
为了提高鸡蛋裂纹检测的准确性,建立了声学敲击检测鸡蛋裂纹的装置,采集和分析鸡蛋被敲击后的声音信号。提取了4个特征频率、偏斜度平均值和峰度平均值共6个特征参数,并作为神经网络的输入量,创建了基于MATLAB的结构为6-15-2的3层BP神经网络模型判别鸡蛋裂纹。检测结果显示:对蛋壳受各种程度破坏后的鸡蛋判别精度可达92%以上,对蛋壳完整的鸡蛋判别精度达到96%,对鸡蛋总体的判别精度可达94%。  相似文献   

8.
吕晨曦  杨冬风 《乡村科技》2022,(14):155-158
随着图像处理技术和机器视觉技术的应用越来越广泛,利用计算机视觉技术来识别玉米种子已经成为可能。基于此,利用主成分分析法(PCA)与支持向量机(SVM)对3种玉米种子进行分类识别,以提高玉米种子的纯度。采用高斯滤波、图像裁剪、图像分割及区域二值化对采集的3个种类(甜糯黄玉米、甜妃、昌甜)的玉米种子图像进行预处理,采用数据增强方法提高样本容量和普适性。对经过处理后的图像从颜色、几何、纹理3个方面进行特征提取,总共提取15种特征。采用主成分分析(PCA)、线性判别分析(LDA)、等距特征映射(ISOMAP)、T分布随机近邻嵌入(T-SNE)、多维尺度变换(MDS)等方法对特征数据进行降维处理,并将处理后的数据放入Bayes分类器与支持向量机(SVM)中进行玉米种子的分类识别。将两种分类器分别与五种降维算法相结合,对比其对玉米种类识别的准确度。结果表明,经过主成分分析降维后的数据结合支持向量机对玉米种子的品种识别具有较高精度,可以提高分类识别的准确率。  相似文献   

9.
提出一种融合梯度幅值和置信度的鸡蛋裂纹检测新方法.采集褐壳鸡蛋的裂纹图像,运用提及边缘检测算法获取感兴趣区域图像,采用最大边界算法挑选边界轮廓,融合二者获取裂纹区域图像.对3种典型鸡蛋裂纹图像进行边缘检测新方法与传统边缘检测算子(Log算子、Sobel算子及Canny算子)对比试验,结果表明:融合梯度幅值和置信度的鸡蛋裂纹检测新方法能够克服固定阈值适应性较差的缺陷,提高检测准确率,在消除噪声、增强弱边缘信息方面优于传统边缘检测算子.  相似文献   

10.
为了对采煤机故障进行准确诊断研究,本文提出了一种基于优化支持向量机的采煤机故障诊断新方法,首先采用主成分分析法(PCA)对采煤机故障特征参数进行特征提取,其次应用特征数据进行基于支持向量机(SVM)的采煤机故障诊断模型训练,再次采用交叉验证方法对SVM模型参数进行优化,建立最优SVM采煤机故障诊断模型,最后通过对比实验,验证了基于优化SVM采煤机故障诊断模型的可行性和优越性。  相似文献   

11.
针对复合地基承载力设计存在的问题,提出了基于支持向量机的预测方法,通过对影响复合地基承载力因素的分析,建立了复合地基承载力预测的支持向量机模型。研究结果表明,基于支持向量机的复合地基承载力预测方法具有较高的准确率,应用前景广阔。  相似文献   

12.
改进了基于参数化间隔的双子支持向量机算法的预处理过程,在数据预处理阶段使用了主成分分析法对数据进行降维,提出了基于主成分分析的参数化间隔双子支持向量机,从而加快了整个算法的训练速度.公共数据库上的实验结果显示了该算法的优秀分类能力,对高维数据集的降维效果也比较成功.最后,将这种算法应用到手写体数字识别技术上,实验结果显示出该算法较好的分类性能.  相似文献   

13.
针对烤烟烟叶等级分类存在特征数据繁多,分类效率及准确率低的问题,提出了基于PCA降维与BO-SVM的烤烟烟叶等级分类方法。首先,利用主成分分析(PCA)方法对数据进行降维处理,剔除冗余信息;其次,构建基于支持向量机(SVM)的烤烟烟叶等级分类模型并利用贝叶斯优化算法(BO)优化SVM模型的超参数;最后,完成实际采集数据的应用验证和对比分析。实验结果表明:相较于单一SVM模型,所提方法准确率至少提高9.5%,验证了所提方法解决烤烟烟叶等级分类问题的有效性。  相似文献   

14.
为实现牛奶掺杂尿素的快速客观检测,以浓度为外扰,分别建立纯牛奶和掺杂尿素牛奶的二维相关光谱图库,并采用不变矩统计特征表征所获得纯牛奶及掺杂尿素牛奶的二维相关光谱图;针对提取的二维相关光谱不变矩特征,通过计算其Fisher系数评价类间分离程度,结合主成分分析法进行特征优选,选择4个主成分表征所获得样品的二维相关光谱图特征;将优选的4个特征参数作为输入量,采用支持向量机算法建立掺杂尿素牛奶与纯牛奶间的判别模型,该模型对校正集样品和预测集样品的判别准确率分别为94.4%、84.6%。结果表明,基于二维相关谱不变距特征判别掺杂尿素牛奶是可行的。  相似文献   

15.
以托克托县境内120个土壤有机质含量以及对应光谱数据为数据源,探究了不同土壤类型与土地利用类型下土壤有机质高光谱反演研究的可行性,采用连续小波变换对原始光谱(R)、光谱倒数(1/R)、光谱对数(LnR)、光谱一阶微分(R′)进行分解生成小波系数并与土壤有机质进行相关系分析,提取特征波段建立BP神经网络与支持向量机模型(SVM)。结果表明:①R、1/R、LnR、R′与土壤有机质相关系数经过连续小波变换后,较之前增加了0.204、0.090、0.199、0.252,表明连续小波变换可深度挖掘光谱潜在信息,提升与有机质含量之间的相关系数。②未经过连续小波处理前,SVM无法实现对当地土壤有机质含量的预测,经过处理后,模型SVM-CWT-R与SVM-CWT-R′的精度决定系数分别达到了050、0.56,均方根误差为0.17、0.15,相对分析误差为1.62、1.53,实现了对土壤有机质的有效估算。③经过连续小波变换后BP神经网络预测模型结果得到提升,其中BP-CWT-LnR预测模型效果最佳,精度决定系数达到0.76,较之前BP-LnR提升了0.2;均方根误差达到015,降低0.04;相对分析误差为2.12,增加了0.87。因此利用BP-CWT-LnR高光谱反演模型进行区域土壤有机质遥感监测,可为当今精准农业提供理论参考与技术支持。  相似文献   

16.
温室湿度环境的主成分分析人工神经网络建模研究   总被引:1,自引:0,他引:1  
实测温室内影响空气湿度的环境因子组成数据样本,对数据样本进行主成分分析,提取出影响温室湿度的4个主要成分.讨论提取的主成分与原始过程数据样本间的关系。以采用主成分分析后的数据样本作为神经网络模型的输入变量,模型模拟值和实测值之间的相关系数R^2为0.8842。以±0.1作为模拟相对误差,命中率达到85%。用训练后的网络模型对20组未参加建模的样本数据进行模拟,均方根误差为1.6745,优于回归方程法的4.4349。基于神经网络模型,运用敏感性分析法对影响湿度的各医素进行重要性分析和排序,得出各影响因素的重要程度依次为室内温度、室外湿度、室外温度、保温帘展开度、室外风速、室外太阳辐射照度、天窗开窗角度和侧窗开窗角度.  相似文献   

17.
水稻生长后期穗部遭受病虫危害会严重影响水稻产量,对不同健康状态的稻穗进行精准识别是采取病虫害防控措施和危害评估的依据。研究测定了健康稻穗、轻度、中度和重度危害稻穗及白穗的室内高光谱反射率,并着重分析了不同健康状态稻穗的原始光谱、对数光谱、一阶和二阶微分光谱特征。利用主成分分析方法获取了前述多种变换光谱的主分量,并以其为输入向量,利用学习矢量量化神经网络对多种健康状态稻穗进行分类。结果显示:原始光谱、对数光谱、一阶和二阶微分光谱的总体分类精度分别为75.3%, 74.7%, 91.6%和100%,Kappa系数分别为0.689, 0.682, 0.895和1.000。研究表明,运用高光谱遥感技术对稻穗健康状态进行识别是切实可行的。  相似文献   

18.
对灰色、神经网络和支持向量机的三个预测模型进行研究,以某某类科技图书1993-2000年的年发行量为例,对科技图书市场进行预测,经过比较,支持向量机的预测方法精度较高。本方法可推广应用于其他类图书市场的预测。  相似文献   

19.
以面向对象软件的度量准则作为预测因子,以维护期间所修改的代码函数作为可维护性,运用支持向量机回归原理,构造了面向对象软件可维护性预测模型.为了评价模型的性能,同时构造人工神经网络模型.在R软件环境下仿真,通过误差的可视分析和RMSE分析知,SVM模型预测面向对象软件可维护性具有较好的性能,效果明显优于ANN模型.  相似文献   

20.
为了减少大规模数据的支持向量机的样本训练时间,提出了人工免疫(aiNet)和支持向量机(SVM)相结合的算法(ai—SVM)。aiNet能在进行样本压缩的同时抽取原始数据的相关信息并保持原始数据的样本分布。压缩后的样本组成了抗体网络,并在此抗体网络上构建了支持向量机模型。最后结合实际数据样本对ai—SVM算法进行了验证。结果表明,ai-SVM算法可大大减小训练样本集和训练代价,且不降低精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号