共查询到20条相似文献,搜索用时 0 毫秒
1.
Twelve steers (332 kg) were used in three simultaneous 4 x 3 incomplete Latin squares to evaluate effects of beet molasses (BEET), cane molasses (CANE), or concentrated separator by-product (CSB) as base ingredients in cooked molasses blocks on intake and digestion of prairie hay and ruminal characteristics. All steers had ad libitum access to prairie hay (5.9% CP and 69.4% NDF; DM basis). The four experimental treatments included a control (no supplement) and three cooked molasses blocks, based on BEET, CANE, or CSB, fed daily at .125% of BW (.42 kg/d as-fed, .13 kg/d CP). Forage OM, NDF, and N intakes; digestible OM, NDF, and N intakes; and total tract OM and N digestibilities (percentage of intake) were greater (P < .05) for steers fed cooked molasses blocks than for control steers. Total tract OM digestibility was greater (P < or = .06) for steers fed BEET blocks (54.0%) than for those fed CSB (52.1%) or CANE blocks (52.2%). Digestion of NDF was greatest (P < .05) for steers fed BEET blocks (51.9%) and tended to be greater (P < .07) for steers fed CANE (49.3%) or CSB blocks (49.3%) than for control steers (46.9%). Ruminal ammonia concentrations were greater (P < .05) for steers fed cooked molasses blocks (.89 mM) than for control steers (.21 mM); this was primarily due to increases to 4.6 mM at 2 h postfeeding for steers fed blocks. Concentrations of total VFA in ruminal fluid were greater (P < .05) for steers fed BEET (92.7 mM) and CSB (88.1 mM) blocks than for control steers (80.3 mM), whereas concentrations for steers fed CANE blocks were intermediate (85.4 mM). Steers supplemented with cooked molasses blocks had greater molar percentages of butyrate than did control steers, particularly shortly after feeding. In summary, supplementation with cooked molasses blocks increased forage intake and digestion. The three base ingredients elicited similar responses, although steers fed BEET had slightly greater OM and NDF digestibilities than those fed CANE or CSB. 相似文献
2.
A 5 X 5 Latin square design involving five cannulated beef steers (342 and 358 kg avg initial and final body weights, respectively) fed prairie hay (76.7% neutral detergent fiber, 5.7% acid detergent lignin and .85% N) was conducted to evaluate effects on feed intake and nutrient digestion of variations in physical characteristics of ruminal digesta achieved by ruminal insertion of different amounts of prairie hay differing in particle size. Steers were fed hay ad libitum in two equal meals (0800 and 2000). At 1200, four of the steers received manual, ruminal insertions of ground hay. Fine hay (F) was ground through a screen with 2-mm openings (.39 mm mean particle size), whereas coarse hay (C) was ground through a screen with 2.54-cm openings (4.46 mm mean particle size). Amounts of hay inserted were .2 (low, L) or .4% (high, H of initial body weight of individual steers. Ruminal hay insertions comprised 18% of total dry matter (DM) intake for L and 34 and 37% for HF and HC, respectively. Fed hay consumption decreased (P less than .05) with hay insertion and was lower for H than L; total DM intake was not influenced by treatment (P greater than .10). Ruminal NH3-N concentrations and ruminal organic matter digestion was greater (P less than .05) with ruminal hay insertion than without and with H than with L (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
3.
Six cannulated beef cows (one Angus, two Hereford and three Angus x Hereford; 405 kg) were used in a 6 x 6 latin square experiment with a 2 x 3 factorial arrangement of treatments. Prairie hay (.77% N, 73% neutral detergent fiber [NDF] and 7% acid detergent lignin) was fed ad libitum from d 1 through 14 and at 90% of ad libitum intake from d 15 through 21 during digesta collection. Periods lasted 21 d. Soybean meal (SBM) was offered at 0 (control, C), .12 (low, L) or .24% of body weight (high, H; dry matter basis). Cows received daily doses of an antibiotic mixture (1 g neomycin and .125 g bacitracin) or saline in the duodenum. Prairie hay dry matter (DM) intake increased (P less than .05) linearly with SBM supplementation, being 25 and 40% greater for L and H than for C, respectively. Ruminal fluid concentrations of NH3-N and total volatile fatty acids increased (P less than .05) linearly as SBM was added to the diet. Ruminal fluid dilution rate increased linearly and particulate passage rate increased (P less than .05) quadratically with increasing SBM. True ruminal digestibilities of organic matter, NDF and N increased (P less than .10) quadratically with increasing SBM (organic matter; 50.3, 57.9 and 58.3%; NDF: 54.7, 60.4 and 59.8%; N: 17.5, 45.1 and 51.4% for C, L and H, respectively). Main effects of antibiotic administration were not significant. Increases in DM intake when SBM was given were large compared with the small elevations in ruminal digestion, implying that metabolic regulation was modifying intake of low-quality forage. 相似文献
4.
Twelve ruminally cannulated steers (average initial BW 357 kg) were allotted to four treatments (three steers per treatment) in a replicated 4 x 4 Latin square design with 21-d periods (12 d for adaptation and 9 d for collection) to compare the effects of protein supplements that differed in percentage of CP and feeding level on low-quality forage utilization. Treatments were 1) control (C), ad libitum access to 5.6% CP prairie hay, 2) C +600 g of DM.steer-1.d-1 of a 43% CP supplement based on cottonseed meal (PS), 3) C + 1,200 g of DM.steer-1.d-1 of a 22% CP supplement based on corn grain and cottonseed meal (GS), and 4) C + 600 g of DM.steer-1.d-1 of a 22% CP supplement based on corn grain and cottonseed meal (LS). Ruminal total VFA concentrations were increased 8% (P less than .07) by PS vs GS 1 h after supplementation. Among supplemented steers, ruminal acetate (mol/100 mol) was decreased 1.2 mol/100 (P less than .03) by GS vs PS and LS; however, supplementation did not affect (P greater than .10) acetate proportions compared with C. Neither propionate nor butyrate was affected (P greater than .10) by supplementation, but among supplemented steers, butyrate proportions were 8% greater (P less than .03) for GS than for PS and 5% less (P less than .10) for LS than for the average of GS and PS. Ruminal pH did not differ (P greater than .10) among treatments. Ruminal ammonia concentrations were increased 1.4 to 4.8 mg/100 mL (P less than .07) by supplementation and typically were less for LS than for PS and GS at most sampling times. Prairie hay DMI (average = 16.3 g/kg BW) was not affected (P greater than .10) by supplementation. Fluid dilution rate was 8% faster (P less than .01) when steers were supplemented than when they were not fed supplement, and fluid dilution rate was increased 4% (P less than .04) by GS compared with PS. Particulate digesta passage rate was not affected (P greater than .10) by treatment, but total tract retention time was decreased (P less than .01) 10% by supplementation. Extent and rate of prairie hay NDF digestion in situ were not greatly affected by supplementation, but in situ disappearance of supplement N was 6 to 10 percentage units less (P less than .06) for GS than for PS and 2 to 6 percentage units less for LS than for the average of PS and GS supplements.(ABSTRACT TRUNCATED AT 400 WORDS) 相似文献
5.
Reducing the frequency of supplementation to beef cattle would reduce labor and vehicle maintenance costs and could have the potential to increase profits if performance is not negatively affected. Six ruminally cannulated beef steers (362 ± 18 kg of BW) were used in a replicated 3 × 3 Latin square design to determine the effect of supplementation frequency (daily or on alternate days) on digestion and ruminal parameters when feeding medium-quality hay and supplementing with a mixture of soybean hulls and corn gluten feed. Dietary treatments consisted of ad libitum fescue hay (8.8% CP and 34.8% ADF) that was supplemented at 1% of BW daily (SD), supplemented at 2% of BW on alternate days (SA), or not supplemented (NS). The supplement (14.6% CP and 29.8% ADF) contained 47% soybean hull pellets, 47% corn gluten feed pellets, 2% feed grade limestone, and 4% molasses (as fed). Each period consisted of a 12-d adaptation phase followed by 6 d of total fecal, urine, and ort collection. All supplement offered was consumed within 2 h. Ruminal fluid was collected every 4 h for 2 d. Hay intake was reduced (P < 0.01) for SD and further reduced (P < 0.01) for SA. Hay intake was 1.54, 1.19, and 1.02% of BW (SEM ± 0.036) for NS, SD, and SA, respectively. There was a treatment (P < 0.01) × day interaction for mean ruminal pH. On the day of supplementation, ruminal pH for SA (6.13) was lower (P < 0.01) than those for both SD (6.29) and NS (6.52). However, on the day the SA treatment did not receive supplement, ruminal pH of SA (6.53) did not differ (P = 0.87) from ruminal pH of NS and was greater (P < 0.01) than that of SD. Ruminal pH of SD was lower (P < 0.01) than that of NS. Diet DM digestibility was increased (P < 0.01) by supplementation but did not differ (P = 0.58) because of frequency. Dry matter digestibility was 57.9, 64.1, and 64.6% (SEM ± 0.65) for NS, SD, and SA, respectively. The amount of N retained did not differ (P = 0.47) because of frequency (24.9 ± 5.61 and 22.0 ± 5.50 g/d for SD and SA, respectively) and was greater (P < 0.01) for the supplemented treatments than for NS (4.2 ± 3.30 g/d). When supplementing a blend of soybean hulls and corn gluten feed, producers can reduce the frequency of supplementation to every other day without reducing digestibility or N retention. 相似文献
6.
Effects of supplemental zinc and manganese on ruminal fermentation, forage intake, and digestion by cattle fed prairie hay and urea 总被引:3,自引:0,他引:3
One in vitro and one in vivo metabolism experiment were conducted to examine the effects of supplemental Zn on ruminal parameters, digestion, and DMI by heifers fed low-quality prairie hay supplemented with urea. In Exp. 1, prairie hay was incubated in vitro for 24 h with five different concentrations of supplemental Zn (0, 5, 10, 15, and 20 ppm) and two concentrations of supplemental Mn (0 and 100 ppm), both provided as chloride salts. Added Mn increased (P < 0.02) IVDMD, but added Zn linearly decreased (P < 0.03) IVDMD. Added Zn tended to increase the amount of residual urea linearly (P < 0.06) at 120 min and quadratically (P < 0.02) at 180 min of incubation, although added Mn counteracted these effects of added Zn. Six 363-kg heifers in two simultaneous 3 x 3 Latin squares were fed prairie hay and dosed once daily via ruminal cannulas with urea (45 or 90 g/d) and with Zn chloride to provide the equivalent of an additional 30 (the dietary requirement), 250, or 470 ppm of dietary Zn. After a 7-d adaptation period, ruminal contents were sampled 2, 4, 6, 12, 18, 21, and 24 h after the supplement was dosed. Supplemental Zn did not alter prairie hay DMI (mean = 4.9 kg/d) or digestibility, although 470 ppm added Zn tended to decrease (P < 0.06) intake of digestible DM, primarily due to a trend for reduced digestibility with 470 ppm supplemental Zn. Zinc x time interactions were detected for both pH (P = 0.06) and NH3 (P = 0.06). At 2 h after dosing, ruminal pH and ruminal ammonia were linearly decreased (P < 0.05; P < 0.01) by added Zn. At 5 h after feeding, ruminal pH was linearly increased (P < 0.05) by added Zn, suggesting that added Zn delayed ammonia release from urea. The molar proportion of propionate in ruminal fluid was linearly and quadratically increased (P < 0.02; P < 0.01) whereas the acetate:propionate ratio was linearly and quadratically decreased (P = 0.02; P < 0.05) by added Zn. Through retarding ammonia release from urea and increasing the proportion of propionate in ruminal VFA, Zn supplementation at a concentration of 250 ppm may decrease the likelihood of urea toxicity and increase energetic efficiency of ruminal fermentation. 相似文献
7.
M B Judkins L J Krysl R K Barton D W Holcombe S A Gunter J T Broesder 《Journal of animal science》1991,69(9):3789-3797
Four ruminally cannulated Holstein steers (average BW 303 kg) were used in a 4 x 4 Latin square design digestion trial to study the influence of daily cottonseed meal (CSM; 1.6 g of CP/kg of BW) supplementation time on forage intake and ruminal fluid kinetics and fermentation. Steers were housed individually in tie stalls and were fed chopped fescue hay on an ad libitum basis at 0600 and 1400. Treatments were 1) control, grass hay only (CON) and grass hay and CSM fed once daily at 2) 0600 (EAM) 3) 1000 (MAM), or 4) 1400 (PM). Ruminal NH3 N concentrations reflected a time of supplementation x sampling time interaction (P less than .05); CON steers had the lowest (P less than .05) ruminal NH3 N concentrations at all times other than at 0600, 1000, 1200, and 2400, when they did not differ (P greater than .05) from at least one of the supplemented groups. Forage intake, ratio of bacterial purine:N, rate of DM and NDF disappearance, and ruminal fluid kinetics were not influenced (P greater than .05) by supplementation time. Total ruminal VFA differed (P less than .05) between CON and supplemented steers, as well as among supplemented steers (linear and quadratic effects P less than .05). Acetate, propionate, and valerate proportions were influenced (P less than .05) by a sampling time X supplementation time interaction. Under the conditions of this study, greater peak ammonia concentrations with morning supplementation than with afternoon supplementation did not stimulate ruminal fermentation or rate of NDF disappearance. 相似文献
8.
Concentrated separator by-product (CSB) is produced when beet molasses goes through an industrial desugaring process. To investigate the nutritional value of CSB as a supplement for grass hay diets (12.5% CP; DM basis), 4 ruminally and duodenally cannulated beef steers (332 +/- 2.3 kg) were used in a 4 x 4 Latin square with a 2 x 2 factorial arrangement of treatments. Factors were intake level: ad libitum (AL) vs. restricted (RE; 1.25% of BW, DM basis) and dietary CSB addition (0 vs. 10%; DM basis). Experimental periods were 21 d in length, with the last 7 d used for collections. By design, intakes of both DM and OM (g/kg of BW) were greater (P < 0.01; 18.8 vs. 13.1 +/- 0.69 and 16.8 vs. 11.7 +/- 0.62, respectively) for animals consuming AL compared with RE diets. Main effect means for intake were not affected by CSB (P = 0.59). However, within AL-fed steers, CSB tended (P = 0.12) to improve DMI (6,018 vs. 6,585 +/- 185 g for 0 and 10% CSB, respectively). Feeding CSB resulted in similar total tract DM and OM digestion compared with controls (P = 0.50 and 0.87, respectively). There were no effects of CSB on apparent total tract NDF (P = 0.27) or ADF (P = 0.35) digestion; however, apparent N absorption increased (P = 0.10) with CSB addition. Total tract NDF, ADF, or N digestion coefficients were not different between AL- and RE-fed steers. Nitrogen intake (P = 0.02), total duodenal N flow (P = 0.02), and feed N escaping to the small intestine (P = 0.02) were increased with CSB addition. Microbial efficiency was unaffected by treatment (P = 0.17). Supplementation with CSB increased the rate of DM disappearance (P = 0.001; 4.9 vs. 6.9 +/- 0.33 %/h). Restricted intake increased the rate of in situ DM disappearance (P = 0.03; 6.4 vs. 5.3 +/- 0.33 %/h) compared with AL-fed steers. Ruminal DM fill was greater (P = 0.01) in AL compared with RE. Total VFA concentrations were greater (P = 0.04) for CSB compared with controls; however, ammonia concentrations were reduced (P = 0.03) with CSB addition. At different levels of dietary intake, supplementing medium-quality forage with 10% CSB increased N intake, small intestinal protein supply, and total ruminal VFA. 相似文献
9.
Mathis CP Cochran RC Stokka GL Heldt JS Woods BC Olson KC 《Journal of animal science》1999,77(12):3156-3162
Two experiments were conducted to evaluate the impacts of increasing levels of supplemental soybean meal (SBM) on intake, digestion, and performance of beef cattle consuming low-quality prairie forage. In Exp. 1, ruminally fistulated beef steers (n = 20; 369 kg) were assigned to one of five treatments: control (forage only) and .08, .16, .33, and .50% BW/d of supplemental SBM (DM basis). Prairie hay (5.3% CP; 49% DIP) was offered for ad libitum consumption. Forage OM intake (FOMI) and total OM intake (TOMI) were increased (cubic, P = .01) by level of supplemental SBM, but FOMI reached a plateau when the daily level of SBM supplementation reached .16% BW. The concomitant rises in TOMI and OM digestibility (quadratic, P = .02) resulted in an increase (cubic, P = .03) in total digestible OM intake (TDOMI). In Exp. 2, spring-calving Hereford x Angus cows (n = 120; BW = 518 kg; body condition [BC] = 5.3) grazing low-quality, tall-grass-prairie forage were assigned to one of three pastures and one of eight treatments. The supplemental SBM (DM basis) was fed at .08, .12, .16, .20, .24, .32, .40, and .48% BW/d from December 2, 1996, until February 10, 1997 (beginning of the calving season). Performance seemed to reach a plateau when cows received SBM at approximately .30% BW/d. Below this level, cows lost approximately .5 unit of BC for every .1% BW decrease in the amount of supplemental SBM fed. Providing supplemental SBM is an effective means of improving forage intake, digestion, and performance of beef cattle consuming low-quality forages. 相似文献
10.
Clark JH Olson KC Schmidt TB Linville ML Alkire DO Meyer DL Rentfrow GK Carr CC Berg EP 《Journal of animal science》2007,85(12):3383-3390
Two experiments were conducted to determine the effects of DMI restriction on diet digestion, ruminal fermentation, ME intake, and P retention by beef steers. In Exp. 1, twelve Angus x steers (average initial BW = 450 +/- 18 kg) were assigned randomly to 1 of 3 diets that were formulated to promote a 1.6-kg ADG at intake levels corresponding approximately to 100% (ad libitum, AL), 90% (IR90), or 80% (IR80) of ad libitum DMI. In Exp. 2, twelve crossbred steers (average initial BW = 445 +/- 56 kg) fitted with ruminal cannulae were randomly assigned to 1 of 2 diets that were formulated to promote a 1.6-kg ADG at AL or IR80. All diets delivered similar total NE, MP, Ca, and P per day. During both experiments, fecal DM output by IR80 was less (P = 0.03) than that of AL; IR90 was similar (P = 0.51) to AL during Exp. 1. Digestion of DM by IR80 cattle was greater (P = 0.03) than that of AL during both experiments; IR90 was similar (P = 0.31) to AL during Exp. 1. Metabolizable energy intake was similar (P >/= 0.20) among treatments during both experiments, whereas P retention was similar (P >/= 0.46) among treatments during Exp. 1. Total VFA and the molar proportion of acetate of AL were greater (P = 0.03) than that of IR80 during Exp. 2; however, IR80 had a greater (P = 0.03) molar proportion of propionate. Under the conditions of these studies, restricting DMI while holding NE, ruminally degradable protein, and MP intakes constant decreased fecal DM output and changed ruminal fermentation patterns in finishing steers. Improvements in performance associated with programmed-feeding regimens of the type studied here do not appear to be related to changes in diet digestion or ME intake. 相似文献
11.
Gilbery TC Lardy GP Soto-Navarro SA Bauer ML Caton JS 《Journal of animal science》2006,84(6):1468-1480
Two metabolism (4 x 4 Latin square design) experiments were conducted to evaluate the effects of corn condensed distillers solubles (CCDS) supplementation on intake, ruminal fermentation, site of digestion, and the in situ disappearance rate of forage in beef steers fed low-quality switchgrass hay (Panicum virgatum L.). Experimental periods for both trials consisted of a 9-d diet adaptation and 5 d of collection. In Exp. 1, 4 ruminally and duodenally cannulated steers (561 +/- 53 kg of initial BW) were fed low-quality switchgrass hay (5.1% CP, 40.3% ADF, 7.5% ash; DM basis) and supplemented with CCDS (15.4% CP, 4.2% fat; DM basis). Treatments included 1) no CCDS; 2) 5% CCDS; 3) 10% CCDS; and 4) 15% CCDS (DM basis), which was offered separately from the hay. In Exp. 2, 4 ruminally and duodenally cannulated steers (266.7 +/- 9.5 kg of initial BW) were assigned to treatments similar to Exp. 1, except forage (Panicum virgatum L.; 3.3% CP, 42.5% ADF, 5.9% ash; DM basis) and CCDS (21.6% CP, 17.4% fat; DM basis) were fed as a mixed ration, using a forage mixer to blend the CCDS with the hay. In Exp. 1, ruminal, postruminal, and total tract OM digestibilities were not affected (P = 0.21 to 0.59) by treatment. Crude protein intake and total tract CP digestibility increased linearly with increasing CCDS (P = 0.001 and 0.009, respectively). Microbial CP synthesis tended (P = 0.11) to increase linearly with increasing CCDS, whereas microbial efficiency was not different (P = 0.38). Supplementation of CCDS to low-quality hay-based diets tended to increase total DM and OM intakes (P = 0.11 and 0.13, respectively) without affecting hay DMI (P = 0.70). In Exp. 2, ruminal OM digestion increased linearly (P = 0.003) with increasing CCDS, whereas postruminal and total tract OM digestibilities were not affected (P > or = 0.37) by treatment. Crude protein intake, total tract CP digestibility, and microbial CP synthesis increased (P < or = 0.06) with increasing level of CCDS supplementation, whereas microbial efficiency did not change (P = 0.43). Ruminal digestion of ADF and NDF increased (P = 0.02 and 0.008, respectively) with CCDS supplementation. Based on this data, CCDS used in Exp. 2 was 86.7% rumen degradable protein. The results indicate that CCDS supplementation improves nutrient availability and use of low-quality forages. 相似文献
12.
K C Olson R C Cochran T J Jones E S Vanzant E C Titgemeyer D E Johnson 《Journal of animal science》1999,77(4):1016-1025
Hereford x Angus steers were used in a 13-treatment, four-period, incomplete Latin square design to examine the effects of starch and degradable intake protein (DIP) supplements on forage utilization and ruminal function. Steers were given ad libitum access to low-quality hay (4.9% CP) and were not supplemented (NS) or received different amounts of starch (cornstarch grits; 0, .15, and .3% of initial BW) and DIP (Na-caseinate; .03, .06, .09, and .12% of initial BW) administered via ruminal fistulae in a 3 x 4 factorial arrangement of treatments. Supplemented steers consumed more (P < .01) forage OM, total OM, NDF, and digestible OM (DOM) than NS steers. Forage OM, total OM, NDF, and DOM intakes increased linearly (P < .01) as the amount of supplemental DIP increased. The addition of starch to supplements linearly decreased ( P < .01) the intake of forage OM, NDF, and DOM. The digestion of DM, OM, and NDF increased linearly (P < .01) with supplemental DIP and decreased linearly (P < or = .06) with supplemental starch. Particulate and liquid passages generally increased with DIP; however, starch level influenced the nature of the response (P = .03 and .06, respectively). Similarly, ruminal acid detergent-insoluble ash content generally decreased as starch increased, but the effect was dependent on DIP level (P < .01). Supplementation increased (P < .01) ruminal NH3 and total VFA and decreased (P < .01) ruminal pH relative to NS. All treatments supported average pH values in a range (6.3 to 6.7) unlikely to inhibit fibrolytic bacteria. Ruminal NH3 concentration increased quadratically (P = .03) with DIP and decreased linearly (P = .02) with starch. As DIP increased, total VFA concentration increased linearly (P = .02). Providing supplemental DIP to steers fed low-quality forage increased OM intake and digestion, whereas addition of starch to supplements decreased forage intake and digestion. 相似文献
13.
J S Heldt R C Cochran C P Mathis B C Woods K C Olson E C Titgemeyer T G Nagaraja E S Vanzant D E Johnson 《Journal of animal science》1999,77(10):2846-2854
Ruminally fistulated steers (n = 13; 263 kg) were used in an incomplete Latin square with 13 treatments and four periods to evaluate the effects of level and source of supplemental carbohydrate (CHO) and level of degradable intake protein (DIP) on the utilization of low-quality, tallgrass-prairie hay. Steers were given ad libitum access to forage (5.7% CP, 2.6% DIP, and 74.9% NDF). The supplementation treatments were fashioned as a 2x3x2 factorial arrangement plus a negative control (NC; no supplement). The factors included two DIP levels (.031 and .122% BW) and three CHO sources (starch, glucose, and fiber) fed at two levels (.15 and .30% BW) within each level of DIP supplementation. The effect of supplementation on forage OM intake (FOMI) was dependent (P<.01) on level and source of CHO and level of DIP fed. When DIP was low, forage, total, and digestible OM intakes were generally greater for the starch treatment than for the nonstarch treatments. However, when the DIP level was high, intakes were greater for the nonstarch (i.e., fiber and glucose) treatments. Generally, FOMI decreased (P<.01) when more supplemental CHO was provided. Supplementation typically increased fiber digestion, but the response was dependent (P<.01) on level and source of CHO and level of DIP. Generally, supplements with low levels of CHO improved NDF digestion (NDFD). However, supplements with the high level of CHO decreased NDFD, except for fiber at the high level of DIP. Organic matter digestion was increased by supplementation, but the impact of increasing CHO was dependent (P<.01) on source of CHO and level of DIP. Supplementation treatments had significant impact on ruminal pH, NH3 N, and the total concentration of organic acids as well as their relative proportions. In conclusion, supplemental DIP enhanced the use of low-quality forage; however, the impact of supplemental CHO on low-quality forage use was dependent on source and level of CHO offered, as well as the level of DIP provided. 相似文献
14.
Two latin squares were conducted to determine the effects on feed intake and nutrient digestion of adding a ruminal buffer or DL-methionine to supplemental ground corn for Holstein steers (avg BW of 286 and 222 kg in Exp. 1 and 2, respectively) with ad libitum access to bermudagrass hay. In Exp. 1, steers were not supplemented (control) or were given .5 (LC) or 1.0% BW/d (HC) of ground corn without or with .021% BW of sodium bicarbonate (B). Total DMI was 2.39, 2.71, 2.79, 2.81 and 2.98% BW (effects of supplementation [P less than .05], level of corn [P less than .05] and buffer [P less than .06]), and OM digested was 3.56, 4.65, 4.65, 4.96 and 5.34 kg/d for control, LC, LCB, HC and HCB, respectively (effects of supplementation and corn level, P less than .05). In Exp. 2, corn levels were .24 and .74% BW/d and .0022% BW of DL-methionine (M) replaced B. Total DMI was 2.85, 3.00, 2.99, 3.22 and 3.34% BW (effects of supplementation and corn level, P less than .05), and digestible OM intake was 3.78, 4.24, 4.30, 4.84 and 5.12 kg/d for control, LC, LCM, HC and HCM, respectively (effects of supplementation and corn level, P less than .05). Overall, changes in feed intake and digestion with additions of a ruminal buffer and DL-methionine to corn supplements were not marked; however, buffer addition increased DMI intake to the greatest degree with 1.0% BW/d of corn. 相似文献
15.
Two experiments were conducted to determine the effects of supplement type on the rate of gain by heifers grazing bermudagrass and on the intake, apparent total-tract OM digestibility, ruminal fermentation, digesta kinetics, in situ DM digestibility, and forage protein degradation by steers fed prairie hay. In Exp. 1, 45 heifers (284+/-24 kg) grazed a bermudagrass pasture for 91 d in the late summer to determine the effects of no supplement (CON), or one of four individually fed monensin-containing (150 mg/[heifer x d]) supplements (MINCS; 0.1 kg of mineral mix with 0.2 kg [DM] of cottonseed hulls as a carrier/[heifer x d]), a pelleted protein supplement (PROT; 1 kg of DM, 242 g of degradable intake protein [DIP]/[heifer x d]), or high-fiber (HF) and high-grain (HG) (2 kg of DM, 243 and 257 g of DIP, respectively/[heifer x d]) pelleted energy supplements. In Exp. 2, four ruminally cannulated steers (311+/-22 kg) with ad libitum access to low-quality (4% DIP, 73% NDF, 40% ADF) prairie hay were individually fed monensin-containing (200 mg/[steer x d]) treatments consisting of 1) mineral mix + corn (MINCR; 0.1 kg of mineral and 0.4 kg of cracked corn [DM] as a carrier, 19 g of DIP/[steer x d]), 2) PROT (1.4 kg of DM, 335 g of DIP/[steer x d]), 3) HF, or 4) HG (2.9 kg of DM, 340 and 360 g of DIP, respectively/[steer x d]) in a 4 x 4 Latin square with 14-d adaptation and 6-d sampling periods. In Exp. 1, the HF-, HG-, and PROT-supplemented heifers had greater (P < 0.01) rates of gain than CON heifers, and the HF- and HG-supplemented heifers tended (P < 0.11) to gain more weight than those fed PROT. In Exp. 2, steers fed PROT consumed more (P < 0.05) hay OM than HF and HG, or MINCR. Total OM intake was greater (P < 0.01) by supplemented steers than MINCR-fed cattle. Hay OM digestibility was not affected (P = 0.19) by treatment, but total diet OM digestibility was greater (P < 0.01) for HF- and HG- than for MINCR- or PROT-fed steers. The rate of in situ DM digestibility was greater (P < 0.01) for HF, HG, and PROT than for MINCR. Results from these studies indicate that feeding milo- vs fiber-based energy supplements formulated to provide adequate DIP did not result in different forage intake, OM digestibility, or in situ DM digestibility, whereas both increased ADG in heifers consuming low-quality forages compared with unsupplemented or mineral- or protein-supplemented cattle. An adequate DIP:TDN balance decreased the negative associative effects often observed when large quantities of high-starch supplements are fed with low-quality hay. 相似文献
16.
Effects of level and frequency of supplementation with alfalfa (A) on feed intake and digestion by steers fed bermudagrass (B) or orchardgrass (O) were determined in two Latin square experiments. In Exp. 1, six Holstein steers (224 kg) were fed B (2.25% N; 71.4% NDF) or O (2.52% N; 64.3% NDF) with 0, 15 or 30% (DM) A (2.70% N; 44.0% NDF). Total DMI was 2.43, 2.72 and 2.85% BW for B and 2.98, 3.00 and 2.87% BW for O with 0, 15 and 30% A, respectively. Total DMI was affected by forage (P less than .05), A level (linear; P less than .06) and a forage x A level (linear) interaction (P less than .05). Digestible OM intake increased .42 (15%) and .67 kg (24%) with feeding of 15 and 30% A, respectively, for B, but for O, only dietary inclusion of 30% A elevated digestible OM intake (.14 kg and 4% increases). In Exp. 2, five Holstein steers (165 kg) were fed B (1.81% N; 78.6% NDF) alone or with A (2.76% N; 52.8% NDF). Morning meals consisted of ad libitum B (OA), .3% BW of A daily (.3A), .6% BW of A every 2nd d (.6A), .9% BW of A every 3rd d (.9A) or 1.2% BW of A every 4th d (1.2A). All steers received B in the afternoon ad libitum, and B was given in the morning when A was not fed. Total DMI was 2.31, 2.12, 2.12, 2.26 and 2.29% BW for OA, .3A, .6A, .9A and 1.2A, respectively (SE .049). Grass characteristics affected response in feed intake to legume supplementation. Frequency of dietary legume addition may alter feed intake. 相似文献
17.
L J Krysl M E Branine A U Cheema M A Funk M L Galyean 《Journal of animal science》1989,67(11):3040-3051
Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland. 相似文献
18.
Sixteen mature, lactating (453 kg) and 16 nonlactating (487 kg) Hereford and Angus x Hereford cows were used to determine effects of different dietary supplements and lactational status on forage intake, digestibility, and particulate passage rate. Supplement treatments and amounts fed (kg/d) were as follows: control, 0; and equal daily amounts of CP from soybean meal (SBM), 1.36; wheat middlings (WM), 3.41; or a blend of corn and soybean meal (corn-SBM; 22% corn and 76% SBM), 3.41. Cows were fed supplements at 0800 and had ad libitum access to prairie hay (4.9% CP) in stalls from 0800 to 1100 and from 1300 to 1600 for three 17-d periods. Lactational status and supplement type did not interact (P greater than .50) for hay DMI, DM digestibility, or particulate passage rate. Cows fed SBM ate more hay DM (P less than .01) and had greater hay DM digestibility (P less than .01) than did cows in other treatment groups. Average hay DMI (kg/100 kg of BW) was 1.95, 2.16, 1.94, and 1.89, and hay DM digestibility was 52, 61, 55, and 53% for control, SBM, WM, and corn-SBM supplements, respectively. Total diet DM digestibility was increased by supplementation (P less than .01), but no differences (P greater than .18) were observed among supplements. Lactating cows ate more (P = .13) hay DM (2.11 vs 1.87 kg/100 kg of BW) and had greater (P less than .05) fecal output (4.6 vs 4.3 kg/d) than did nonlactating cows. Dry matter digestibility and particulate passage rate were not affected (P greater than .35) by lactational status.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
19.
Six heifers (two Hereford X Jersey, four Hereford X Longhorn; average BW 278 kg) cannulated at the rumen and duodenum and fed a grass hay (fescue/orchardgrass) diet were used in a replicated 3 X 3 Latin square. Treatments were either no infusion (C), 150 ml of duodenally infused soybean oil (DI), or 150 ml of ruminally infused soybean oil (RI)/heifer twice daily for a total daily infusion of 300 ml of soybean oil. Periods of the Latin square included 18 d for adaptation and 5 d for collection. Forage OM, ADF, NDF, and N intakes were not affected (P greater than .10) by soybean oil infusion. Ruminal (P = .11) and total tract (P less than .10) OM digestibilities were decreased by RI compared with C or DI, but ADF and NDF digestibilities were not affected by treatment. Duodenal N (P less than .05) and microbial N flows were increased (P less than .10) for C and RI compared with DI. Microbial efficiency (g of N/kg of OM truly fermented) was improved (P less than .10) by RI compared with DI but did not differ (P greater than .10) from C. Ruminal pH was lower (P less than .05) with RI than with either C or DI. Ruminal NH3 N, total VFA, and acetate were not affected (P greater than .10) by treatment. Propionate (mol/100 mol) was greater (P less than .05) with RI than with DI and C, but the proportion of butyrate did not differ among treatments. These data indicate minimal direct benefits for improving forage usage as a result of soybean oil infusion with a 100% grass diet; however, animals should realize benefits from additional dietary energy provided by infused lipid. 相似文献
20.
Luiz Fernando Dias Batista Madeline E Rivera Aaron B Norris James P Muir Mozart A Fonseca Luis O Tedeschi 《Journal of animal science》2021,99(5)
The addition of natural plant secondary compounds to ruminant feed has been extensively studied because of their ability to modify digestive and metabolic functions, resulting in a potential reduction in greenhouse gas emissions, among other benefits. Condensed tannin (CT) supplementation may alter ruminal fermentation and mitigate methane (CH4) emissions. This study’s objective was to determine the effect of quebracho CT extract [QT; Schinopsis quebracho-colorado (Schltdl.) F.A. Barkley & T. Meyer] within a roughage-based diet on ruminal digestibility and kinetic parameters by using the in situ and in vitro gas production techniques, in addition to blood urea nitrogen (BUN) and ruminal (volatile fatty acid [VFA], NH3-N, and protozoa count) parameters. Twenty rumen-cannulated steers were randomly assigned to four dietary treatments: QT at 0%, 1%, 2%, and 3% of dry matter (DM; QT0: 0% CT, QT1: 0.70% CT, QT2: 1.41% CT, and QT3: 2.13% CT). The in situ DM digestibility increased linearly (P = 0.048) as QT inclusion increased, whereas in situ neutral detergent fiber digestibility (NDFD) was not altered among treatments (P = 0.980). Neither total VFA concentration nor acetate-to-propionate ratio differed among dietary treatments (P = 0.470 and P = 0.873, respectively). However, QT3 had lower isovalerate and isobutyrate concentrations compared with QT0 (P ≤ 0.025). Ruminal NH3 and BUN tended to decline (P ≤ 0.075) in a linear fashion as QT inclusion increased, suggesting decreased deamination of feed protein. Ruminal protozoa count was reduced in quadratic fashion (P = 0.005) as QT inclusion increased, where QT1 and QT2 were lower compared with QT0 and QT3. Urinary N excretion tended to reduce in a linear fashion (P = 0.080) as QT increased. There was a treatment (TRT) × Day interaction for in vitro total gas production and fractional rate of gas production (P = 0.013 and P = 0.007, respectively), and in vitro NDFD tended to be greater for QT treatments compared with no QT inclusion (P = 0.077). There was a TRT × Day interaction (P = 0.001) on CH4 production, with QT3 having less CH4 production relative to QT0 on day 0 and QT2 on days 7 and 28. Feeding QT up to 3% of the dietary DM in a roughage-based diet did not sacrifice the overall DM digestibility and ruminal parameters over time. Still, it is unclear why QT2 did not follow the same pattern as in vitro gas parameters. Detailed evaluations of amino acid degradation might be required to fully define CT influences on ruminal fermentation parameters and CH4 production. 相似文献