首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Although yellow maize (Zea mays) fractions and products are a source of dietary carotenoids, only limited information is available on the bioavailability of these pigments from maize-based foods. To better understand the distribution and bioavailability of carotenoid pigments from yellow maize (Z. mays) products, commercial milled maize fractions were screened for carotenoid content as were model foods including extruded puff, bread, and wet cooked porridge. Carotenoid content of maize fractions ranged from a low of 1.77-6.50 mg/kg in yellow maize bran (YCB) to 12.04-17.94 mg/kg in yellow corn meal (YCM). Lutein and zeaxanthin were major carotenoid species in maize milled fractions, accounting for approximately 70% of total carotenoid content. Following screening, carotenoid bioaccessibility was assessed from model foods using a simulated three-stage in vitro digestion process designed to measure transfer of carotenoids from the food matrix to bile salt lipid micelles (micellarization). Micellarization efficiency of xanthophylls was similar from YCM extruded puff and bread (63 and 69%), but lower from YCM porridge (48%). Xanthophyll micellarization from whole yellow corn meal (WYCM) products was highest in bread (85%) and similar in extruded puff and porridge (46 and 47%). For extruded puffs and breads, beta-carotene micellarization was 10-23%, but higher in porridge (40-63%), indicating that wet cooking may positively influence bioaccessibility of apolar carotenes. The results suggest that maize-based food products are good dietary sources of bioaccessible carotenoids and that specific food preparation methods may influence the relative bioaccessibility of individual carotenoid species.  相似文献   

2.
The objective of this study was to develop a model for assessing the bioavailability of carotenoids from meals using an in vitro digestion procedure. A meal was prepared using baby food carrots, spinach, and a meat, plus tomato paste. The aqueous fraction was isolated from digesta to determine the quantity of carotenoids transferred from the food to micelles. The micellarization of lutein (25-40%) exceeded (p < 0.01) that of alpha- and beta-carotene (12-18%) and lycopene (<0.5%). Micellarization of carotenoids was not affected by elimination of the gastric phase of the digestive process. The absence of bile extract prevented the transfer of carotenoids from foods to micelles, whereas omission of pancreatin only reduced the micellarization of the carotenes. Differentiated cultures of Caco-2 human intestinal cells accumulated 28-46% of micellarized carotenoids from the medium after 6 h. These results support the usefulness of the in vitro digestion process as a rapid and cost-effective model for screening the bioavailability of carotenoids from meals.  相似文献   

3.
Epidemiological studies have consistently demonstrated that there is an association between carotenoid-rich food intakes with a low incidence in chronic diseases. Nevertheless, there is not an association between the intake of total dietary carotenoids and chronic health incidence in the European population, probably because of different carotenoid food sources and bioavailability. The objective of this study was to evaluate the small and large intestine bioaccessibilities of major dietary carotenoids from fruits and vegetables in a common diet. A bioaccessibility model that includes enzymatic digestion and in vitro colonic fermentation was employed. Lutein presented greater small intestine bioaccessibility (79%) than beta-carotene (27%) or lycopene (40%). With regard to large intestine bioaccessibility, similar amounts of lycopene and beta-carotene were released from the food matrix (57%), whereas small amounts of lutein (17%) were released. These results suggest that 91% of the beta-carotene, lutein, and lycopene contained in fruits and vegetables is available in the gut during the entire digestion process. Colonic fermentation is shown to be important for carotenoid availability in the gut.  相似文献   

4.
While isomeric profiles of carotenoids found in food often differ from those in body fluids and tissues, insights about the basis for these differences remain limited. We investigated the digestive stability, relative efficiency of micellarization, and cellular accumulation of trans and cis isomers of beta-carotene (BC) using an in vitro digestion procedure coupled with human intestinal (Caco-2) cells. A meal containing applesauce, corn oil, and either water-soluble beadlets (WSB) or Dunaliella salina (DS) as a BC source was subjected to simulated gastric and small intestinal digestion. BC isomers were stable during digestion, and the efficiency of micellarization of cis-BC isomers exceeded that of all-trans-BC isomers. The cellular profile of carotenoids generally reflected that in micelles generated during digestion, and intracellular isomerization was minimal. These data suggest that cis isomers of BC are preferentially micellarized during digestion and transferred across the brush-border surface of the enterocyte from mixed micelles with similar efficiency as all-trans-BC at the concentrations of the carotenoids utilized in this study.  相似文献   

5.
Epidemiological studies have shown that consumption of carotenoid-rich fruits and vegetables is associated with a reduced risk of developing chronic diseases. beta-Carotene, alpha-carotene, and beta-cryptoxanthin are precursors of vitamin A, a nutrient essential for human health. However, little is known about the bioavailability of carotenoids from whole foods. This study characterized the intestinal uptake performance of carotenoids using monolayers of differentiated Caco-2 human intestinal cells and mimicked human digestion to assess carotenoid absorption from carrots and corn. Results showed that Caco-2 cellular uptake of beta-carotene and zeaxanthin was higher than that of lutein. Uptake performances of pure carotenoids and carotenoids from whole foods by Caco-2 cells were both curvilinear, reaching saturated levels after 4 h of incubation. The time kinetics and dose response of carotenoid uptake presented a similar pattern in Caco-2 cells after plating for 2 and 14 days. Furthermore, the applicability of this new model was verified with whole grain corn, showing that cooked corn grain significantly enhanced carotenoid bioavailability. These results support the feasibility of the in vitro digestion cell model for assessing carotenoid absorption from whole foods as a suitable and cost-effective physiological alternative to current methodologies.  相似文献   

6.
A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P < 0.05) by addition of TG (2.5% v/w) to the meal and was dependent on fatty acyl chain length in structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These data suggest that the amount of TG in a typical meal does not limit the bioaccessibility of carotenoids.  相似文献   

7.
The influence of thermal treatment and light exposure on degradation and isomerization of the predominant carotenoids (lutein and beta-carotene) occurring in green leafy vegetables was assessed. The effect of lipid addition on carotenoid stability was also evaluated. For the first time, the stabilities of pure carotenoids and chloroplast-bound carotenoids were compared. Besides degradation, heating caused carotenoid isomerization in all samples. Whereas pure carotenoids favor 13-cis isomers, in native chloroplasts and heated chloroplasts 9-cis isomers were predominant. Illumination of freshly prepared chloroplast isolates caused an initial increase in the level of lutein (9.6%) and beta-carotene (29.8%), while pure carotenoids exhibited time-dependent degradation. The addition of lipids to chloroplast preparations had the reverse effects on the retention of both carotenoids after heating; isomerization was not significantly affected. It was demonstrated that carotenoid stability has to be evaluated for every individual pigment in its genuine environment. Stability data based on model systems (e.g., pure carotenoids) may not be transferred to complex food matrices without intensive investigation.  相似文献   

8.
Isomerization of carotenoids, which is often encountered in food processing under the influence of temperature and light, may play a role in the observed protective effects of this group of secondary plant products. Investigation of in vitro antioxidant activity of prominent carotenoid geometrical isomers was undertaken in light of recent reports illustrating a large percentage of carotenoid (Z)-isomers in biological fluids and tissues. Alpha-carotene, beta-carotene, lycopene, and zeaxanthin were isolated from foods or supplements and subsequently photoisomerized with iodine as a catalyst. Major Z-isomers of each carotenoid were fractionated by semipreparative C(30) HPLC. In vitro antioxidant activity of all isomers collected was measured photometrically using the Trolox equivalent antioxidant capacity (TEAC) assay. TEAC values of 17 geometrical isomers investigated ranged from 0.5 to 3.1 mmol/L. Three unidentified (Z)-isomers of lycopene showed the highest antioxidant activity, being significantly higher than the result for (all-E)-lycopene, which had approximately two times the activity of (all-E)-beta-carotene. On the other hand, (9Z)-zeaxanthin had a more than 80% lower TEAC value compared to that of (all-E)-lycopene. These results allow for the in vivo relevance of (Z)-isomers of carotenoids to be considered.  相似文献   

9.
The absorption of some carotenoids has been reported to be decreased by coingestion of relatively high concentrations of other carotenoids. It is unclear if such interactions occur among carotenoids during the digestion of plant foods. Current varieties of maize contain limited amounts of the pro-vitamin A (pro-VA) carotenoids beta-carotene (BC) and beta-cryptoxanthin (BCX) and relatively higher levels of their oxygenated metabolites lutein (LUT) and zeaxanthin (ZEA). Here, we examined if LUT and ZEA attenuate the bioaccessibility of pro-VA carotenoids at amounts and ratios present in maize. BC incorporation into bile salt mixed micelles during chemical preparation and during simulated small intestinal digestion of carotenoid-enriched oil was slightly increased when the concentration of LUT was sixfold or more greater than BC. Likewise, the efficiency of BC micellarization was slightly increased during simulated small intestinal digestion of white maize porridge supplemented with oil containing ninefold molar excess of LUT to BC. Mean efficiencies of micellarization of BC, BCX, LUT, and ZEA were 16.7, 27.7, 30.3, and 27.9%, respectively, and independent of the ratio of LUT plus ZEA to pro-VA carotenoids during simulated digestion of maize porridge prepared from flours containing 0.4-11.3 microg/g endogenous pro-VA carotenoids. LUT attenuated uptake of BC by differentiated cultures of Caco-2 human cells from medium-containing micelles in a dose-dependent manner with inhibition reaching 35% when the molar ratio of LUT to BC was 13. Taken together, these results suggest that the bioaccessibility of pro-VA carotenoids in maize is likely to be minimally affected by the relative levels of xanthophylls lacking pro-VA activity present in cultivars of maize.  相似文献   

10.
OBJECTIVES: Intake and status of carotenoids have been associated with chronic disease. The objectives of this study were to examine the association between carotenoid intakes as measured by two regional food-frequency questionnaires (FFQs) and their corresponding measures in serum, and to report on dietary food sources of carotenoids in Jackson Heart Study (JHS) participants. DESIGN: Cross-sectional analysis of data for 402 African American men and women participating in the Diet and Physical Activity Sub-Study (DPASS) of the JHS. RESULTS: Mean serum carotenoid concentrations and intakes in this population were comparable to those reported for the general US population. After adjustment for covariates, correlations between serum and dietary measures of each carotenoid, for the average of the recalls (deattenuated), the short FFQ and the long FFQ, respectively, were: 035 and 0-carotene; 026 and 0-carotene; 017 and 0-carotene; 034 and 0-cryptoxanthin; 015 and 037, 014 for lycopene. Major dietary sources of -carotene and lutein plus zeaxanthin, mustard, turnip and collard greens; of beta-cryptoxanthin, orange juice; and of lycopene, tomato juice. CONCLUSIONS: On average, carotenoid intakes and serum concentrations are not lower in this southern African American population than the general US population. The two regional FFQs developed for a southern US population and used as dietary assessment tools in the JHS appear to provide reasonably valid information for most of these carotenoids.  相似文献   

11.
Sorghum is a critical source of food in the semiarid regions of sub-Saharan Africa and India and a potential source of dietary phytochemicals including carotenoids. The objective of this study was to determine the carotenoid profiles of sorghum cultivars, selected on the basis of their yellow-endosperm kernels, at various developmental stages. Following extraction from sorghum flours, carotenoids were separated by high-performance liquid chromatography (HPLC) with diode array detection. Total carotenoid content in fully matured yellow-endosperm sorghum kernels (0.112-0.315 mg/kg) was significantly lower (p < 0.05) than that in yellow maize (1.152 mg/kg) at physiological maturity. Variation in total carotenoids and within individual carotenoid species was observed in fully mature sorghum cultivars. For developing kernels, large increases in carotenoid content occurred between 10 and 30 days after half bloom (DAHB), resulting in a peak accumulation between 6.06 and 28.53 microg of total carotenoids per thousand kernels (TK). A significant (p < 0.05) decline was noted from 30 to 50 DAHB, resulting in a final carotenoid content of 2.62-15.02 microg/TK total carotenoids. (all-E)-Zeaxanthin was the most abundant carotenoid, ranging from 2.22 to 13.29 microg/TK at 30 DAHB. (all-E)-Beta-carotene was present in modest amounts (0.15-3.83 microg/TK). These data suggest the presence of genetic variation among sorghum cultivars for carotenoid accumulation in developing and mature kernels.  相似文献   

12.
Carotenoids are found in food plants in free form or as fatty acid esters. Most studies have been carried out after saponification procedures, so the resulting data do not represent the native carotenoid composition of plant tissues. Therefore, nonsaponified extracts of 64 fruits and vegetables have been screened to determine the amount of carotenoid esters in food plants. Because one of the major problems in the quantitation of carotenoids is the availability of pure standard material, the total carotenoid ester content was calculated as lutein dimyristate equivalents. Lutein dimyristate was independently synthesized from lutein and myristoyl chloride. The highest ester concentrations were found in red chili (17.1 mg/100 g) and orange pepper (9.2 mg/100 g); most of the investigated fruits and vegetables showed concentrations up to 1.5 mg/100 g. Special attention was dedicated to beta-cryptoxanthin esters. To enable an accurate detection of the beta-cryptoxanthin ester content, beta-cryptoxanthin was purified from papaya and used for synthesis of beta-cryptoxanthin laurate, myristate, and palmitate, representing the major beta-cryptoxanthin esters in food plants. The study proved tropical and subtropical fruits to be an additional source of beta-cryptoxanthin esters in the human diet. The contents ranged from 8 microg/100 g beta-cryptoxanthin laurate in Tunisian orange to 892 microg/100 g beta-cryptoxanthin laurate in papaya.  相似文献   

13.
The digestive stability, efficiency of micellarization, and cellular accumulation of the chlorophyll pigments of different preparations of pea were investigated, using an in vitro digestion procedure coupled with human intestinal Caco-2 cells. Fresh pea (FP), cooked fresh pea (CFP), frozen pea (FZP), cooked frozen pea (CFZP), and canned pea (CP) were subjected to simulated digestion. Although after digestion the pigment profile was modified for all samples, except CP, allomerization reactions and greater destruction of chlorophylls were observed in only FP, which should be due to enzymes in FP that were denaturalized in the rest of the test foods. A pigment extract of CFZP was also subjected to in vitro digestion, showing a positive effect of the food matrix on the pigment digestive stability. The transfer of the chlorophyll pigments from the digesta to the micellar fraction was significantly more efficient in CFZP (57%, p < 0.0001), not significantly ( p > 0.05) different between CFP, FZP, and CP (28-35%), and lowest in FP (20%). Pheophorbide a stood out as the most-micellarized chlorophyll derivative in all of the samples, reaching levels of up to 98%. Incubation of Caco-2 cells with micellar fractions at the same concentration prepared from each test food showed that pigment absorption was considerably lower ( p < 0.006) in cells incubated with FP, whereas there were no differences among the rest of the preparations. Therefore, factors associated with the food matrix could inhibit or mediate the chlorophyll pigment absorption. These results demonstrated that the industrial preservation processes of peafreezing and canningas well as the cooking have a positive effect on the bioaccessibility and bioavailability of the chlorophyll pigments with respect to the FP sample, emphasizing CFZP with greater bioaccesibilty degree.  相似文献   

14.
BACKGROUND: Kiribati, a remote atoll island country of the Pacific, has serious problems of vitamin A deficiency (VAD). Thus, it is important to identify locally grown acceptable foods that might be promoted to alleviate this problem. Pandanus fruit (Pandanus tectorius) is a well-liked indigenous Kiribati food with many cultivars that have orange/yellow flesh, indicative of carotenoid content. Few have been previously analysed. AIM: This study was conducted to identify cultivars of pandanus and other foods that could be promoted to alleviate VAD in Kiribati. METHOD: Ethnography was used to select foods and assess acceptability factors. Pandanus and other foods were analysed for beta- and alpha-carotene, beta-cryptoxanthin, lutein, zeaxanthin, lycopene and total carotenoids using high-performance liquid chromatography. RESULTS: Of the nine pandanus cultivars investigated there was a great range of provitamin A carotenoid levels (from 62 to 19,086 microg beta-carotene/100 g), generally with higher levels in those more deeply coloured. Seven pandanus cultivars, one giant swamp taro (Cyrtosperma chamissonis) cultivar and native fig (Ficus tinctoria) had significant provitamin A carotenoid content, meeting all or half of estimated daily vitamin A requirements within normal consumption patterns. Analyses in different laboratories confirmed high carotenoid levels in pandanus but showed that there are still questions as to how high the levels might be, owing to variation arising from different handling/preparation/analytical techniques. CONCLUSIONS: These carotenoid-rich acceptable foods should be promoted for alleviating VAD in Kiribati and possibly other Pacific contexts where these foods are important. Further research in the Pacific is needed to identify additional indigenous foods with potential health benefits.  相似文献   

15.
This study highlights the changes in lycopene and β-carotene retention in tomato juice subjected to combined pressure-temperature (P-T) treatments ((high-pressure processing (HPP; 500-700 MPa, 30 °C), pressure-assisted thermal processing (PATP; 500-700 MPa, 100 °C), and thermal processing (TP; 0.1 MPa, 100 °C)) for up to 10 min. Processing treatments utilized raw (untreated) and hot break (~93 °C, 60 s) tomato juice as controls. Changes in bioaccessibility of these carotenoids as a result of processing were also studied. Microscopy was applied to better understand processing-induced microscopic changes. TP did not alter the lycopene content of the tomato juice. HPP and PATP treatments resulted in up to 12% increases in lycopene extractability. all-trans-β-Carotene showed significant degradation (p < 0.05) as a function of pressure, temperature, and time. Its retention in processed samples varied between 60 and 95% of levels originally present in the control. Regardless of the processing conditions used, <0.5% lycopene appeared in the form of micelles (<0.5% bioaccessibility). Electron microscopy images showed more prominent lycopene crystals in HPP and PATP processed juice than in thermally processed juice. However, lycopene crystals did appear to be enveloped regardless of the processing conditions used. The processed juice (HPP, PATP, TP) showed significantly higher (p < 0.05) all-trans-β-carotene micellarization as compared to the raw unprocessed juice (control). Interestingly, hot break juice subjected to combined P-T treatments showed 15-30% more all-trans-β-carotene micellarization than the raw juice subjected to combined P-T treatments. This study demonstrates that combined pressure-heat treatments increase lycopene extractability. However, the in vitro bioaccessibility of carotenoids was not significantly different among the treatments (TP, PATP, HPP) investigated.  相似文献   

16.
Yellow and white maize kernels, masas, tortillas, and nejayote solids were analyzed in terms of lutein, zeaxanthin, cryptoxanthin, β‐carotene, and lipophilic antioxidant (AOX) capacity. The germplasm analyzed included two normal yellow maize, two high‐carotenoid genotypes, and one white for comparison purposes. In general, the yellow maize required 34% more lime‐cooking time compared with the white counterpart. Lime‐cooking significantly changed the extractability of carotenoids in masa and tortillas. No carotenoids were detected in the steepwater or nejayote. The lipophilic AOX activity increased 280‐fold from kernel to masa, but only 70% was retained in the baked tortillas. When masa was baked into tortillas, less than 10% of the carotenoids were retained because of the high temperatures used during baking. Interestingly, tortillas made with the maize kernels with the highest carotenoid content did not have the highest amount of these phytochemicals. Therefore, maize varieties should be evaluated based on the carotenoid content in finished food products instead of the amounts originally found in raw kernels.  相似文献   

17.
果胶已经被证实可以影响脂类的消化,脂溶性的类胡萝卜素在消化阶段需要被脂滴包裹才能进入小肠形成胶束,因此果胶对类胡萝卜素的消化利用也会存在潜在影响。该文综述了近年来果胶对脂类和类胡萝卜素消化利用影响研究进展,主要分为果胶对消化液黏度的影响、对消化酶的影响、与钙离子的相互作用、与胆盐的结合作用以及对脂滴的包裹作用这5个方面。该文为后续分析如何提高果蔬中类胡萝卜素生物利用度提供理论依据。  相似文献   

18.
Among various factors influencing β-carotene (Bc) bioavailability, information on interactions between carotenoids or other micronutrients such as flavonoids during a meal that contains different plant-derived foods is quite limited. Because orange-fleshed sweet potato (OFSP) is an important Bc-rich staple food, a source of vitamin A in developing countries, this study focused on the effect of citrus fruit juice carotenoids and flavonoids on Bc bioaccessibility from OFSP. In vitro digestion coupled with the Caco-2 cell culture model was used to evaluate the bioaccessibility and cellular uptake of Bc from OFSP in the presence of pink grapefruit (pGF) or white grapefruit (wGF) juices. The addition of grapefruit juices significantly decreased the bioaccessibility, by up to 30%, but not the cellular uptake of Bc from boiled OFSP. Lycopene, but more probably naringin, present in grapefruit juices was suspected to be responsible for the inhibitory effect of the citrus juices on Bc bioaccessibility. This inhibition was apparently due in part to competition for incorporation between Bc and naringin into mixed micelles during in vitro digestion. In contrast, Bc uptake from dietary micelles was not impaired by naringin.  相似文献   

19.
Pulp from "slightly ripe", "moderately ripe", or "fully ripe" mangoes was digested in vitro in the absence and presence of processed chicken as a source of exogenous fat and protein to examine the impact of stage of ripening of mango on micellarization during digestion and intestinal cell uptake (i.e., bioaccessibility) of beta-carotene. The quantity of beta-carotene transferred to the micelle fraction during simulated digestion significantly increased as the fruit ripened and when chicken was mixed with mango before digestion. Qualitative and quantitative changes that occur in pectin from mango pulp during the ripening process influenced the efficiency of micellarization of beta-carotene. Finally, the uptake of beta-carotene in micelles generated during simulated digestion by Caco-2 human intestinal cells confirmed the bioaccessibility of the provitamin A carotenoid in mango.  相似文献   

20.
The major and minor carotenoids from six fruits, buriti (Mauritia vinifera), mamey (Mammea americana), marimari (Geoffrola striata), peach palm (Bactrys gasipaes), physalis (Physalis angulata), and tucuma (Astrocaryum aculeatum), all native to the Amazonia region, were determined by high-performance liquid chromatography-photodiode array detector-mass spectrometry detector (HPLC-PDA-MS/MS), fulfilling the recommended criteria for identification. A total of 60 different carotenoids were separated on a C30 column, all-trans-beta-carotene being the major carotenoid found in all fruits. The presence of apo-10'-beta-carotenol, found in mamey, was not previously reported in foods. In addition, this is the first time that the identification of beta-zeacarotene in natural sources is supported by MS data. The total carotenoid content ranged from 38 microg/g in marimari to 514 microg/g in buriti. All fruits analyzed can be considered good sources of provitamin A, especially buriti, with 7280 RE/100 g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号