首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fusarium head blight of small-grain cereals, ear rot of maize, seedling blight and foot rot of cereals are important diseases throughout the world. Fusarium graminearum, F. culmorum, F. poae, F. avenaceum and Microdochium nivale (formerly known as F. nivale) predominantly cause Fusarium diseases of small-grain cereals. Maize is predominantly attacked by F. graminearum, F. moniliforme, F. proliferatum and F. subglutinans. These species differ in their climatic distribution and in the optimum climatic conditions required for their persistence. This review deals with the influence of climate on the production and dispersal of inocula, growth, competition, mycotoxin production and pathogenicity. Most species produce inocula, grow best, and are most pathogenic to cereal heads at warm temperatures and under humid conditions. However, the optimal conditions for F. moniliforme and F. proliferatum maize ear rot tend to be hot and dry and M. nivale head blight, seedling blight and foot rot of small-grain cereals tend to occur under cooler conditions. Seedling blight and foot rot caused by other species are favoured by warm dry weather. Between them, these fungi produce four important classes of mycotoxins: trichothecenes, zearalenone, fumonisins and moniliformin. Conditions favourable for in vitro growth are also generally the most favourable for mycotoxin production on cereal grains. These fungi rarely exist in isolation, but occur as a complex with each other and with other Fusaria and other fungal genera. Climatic conditions will influence competition between, and the predominance of, different fungi within this complex.  相似文献   

2.
A large number of Fusarium species are associated with Fusarium head blight of wheat and other small-grain cereals as well as seedling blight and brown foot rot. Different Fusarium species tend to predominate under different environmental conditions and in different regions. In addition to causing disease, these fungi are of particular significance because they produce a number of mycotoxins including the trichothecenes and enniatins that contaminate infected grain. The nature and amount of the mycotoxins that accumulate will alter according to the species or even the particular isolates involved in the infection. It is highly desirable to be able to analyse such complex infections to determine which species and, preferably, which chemotypes are present, in order to understand the factors that affect the pathogenicity of each species and to evaluate the potential risk for contamination of grain with mycotoxins. This paper reports the development of molecular methods, based upon the polymerase chain reaction (PCR), for the detection of mycotoxigenic fungi. Several of the Fusarium species involved are closely related, making the development of specific assays problematic. We describe the development of primers specific to individual species and discuss how this work provides insight into fungal populations and relates to taxonomic studies. In some instances, it is desirable to detect the presence of potential mycotoxin producers rather than individual fungal species. Generic assays have been produced for several genes involved in trichothecene biosynthesis and for enniatin synthetase in order to permit the detection of species able to produce the associated mycotoxins. Additional work is under way to refine assays to enable detection related to the class of trichothecene and chemotype of isolate because of the potential risk posed to human and animal consumers by different trichothecenes.  相似文献   

3.
一种镰刀菌对空心莲子草的致病力与寄主专一性测定   总被引:9,自引:2,他引:9  
从罹病的空心莲子草上分离到一种镰刀菌,人工接种条件下,3叶期的空心莲子草幼苗最易发病,叶部次之.在供试的4个菌株中,以YZ-03菌株的致病力最强,该菌株接种空心莲子草幼苗5d后,接种的植株病情指数已达100,8d后幼苗全部枯死;人工接种叶片和茎秆9d后,叶片的病情指数达90.95,接种茎秆的病情指数达85.19.采用27科61种植物对该镰刀菌进行寄主专一性测定,结果表明,该镰刀菌能使莲子草严重发病,也能侵染藜的幼苗,对包括主要农作物在内的其他59种植物均无致病性.  相似文献   

4.
In 2001 the range of the total Fusarium contamination percentage of infected seeds was between 0% and 44%, while in 2002 the contamination level was 2–25% in naturally infected Finnish samples and 5–14.5% in six samples from northwestern Russia. The most common Fusarium species in barley were F. avenaceum, F. arthrosporioides, F. sporotrichioides and F. culmorum, while in spring wheat the most common Fusarium species were F. avenaceum, F. arthrosporioides, F. culmorum, F. sporotrichioides and F. graminearum. In most cases, molecular identification with species-specific primers corresponded to the morphological analyses and allowed the identification of degenerated and otherwise morphologically difficult cultures. It was even possible to separate most of the F. arthrosporioides isolates from Finland from the closely-related F. avenaceum isolates. In the phylogenetic analysis of combined β-tubulin, IGS and ITS sequences most European F. arthrosporioides formed a separate clade from most isolates of F. avenaceum and from all isolates of F. tricinctum. Most of the species-specific primers also amplified DNA extracted from grain samples. It was, for instance, possible to detect F. avenaceum in all barley samples with contamination levels higher than 1% and in all spring wheat samples with contamination levels higher than 3%. The detection level for F. graminearum was at a contamination level of 3–5% and that for F. culmorum at a contamination level of 1–5%. In addition, the first Finnish F. langsethiae isolate was found by means of species-specific primers.  相似文献   

5.
Strategies for the Control of Fusarium Head Blight in Cereals   总被引:1,自引:0,他引:1  
Fusarium head blight (FHB) is a widespread and destructive disease of small grained cereals caused by a number of Fusarium species and Microdochium nivale. In addition to causing significant reductions in grain yield, FHB can result in the reduction of grain quality, either by affecting grain processing qualities or by producing a range of toxic metabolites that have adverse effects on humans and livestock. Control of FHB can be achieved by a number of cultural, biological and chemical strategies along with the exploitation of host plant resistance. In recent years, much of the research undertaken for the control of FHB has been concentrated on understanding and exploiting the genetic resistance of cereal plants to FHB-causing pathogens. Although, a brief overview of genetic resistance is presented, this review seeks to summarise the significance of FHB and review the effectiveness of cultural, biological and chemical control strategies that have been investigated for the control the disease.  相似文献   

6.
Goswami RS  Kistler HC 《Phytopathology》2005,95(12):1397-1404
ABSTRACT Fusarium head blight (FHB), or scab, is a destructive disease of small grains caused by members of the Fusarium graminearum species complex, comprised of at least nine distinct, cryptic species. Members of this complex are known to produce mycotoxins including the trichothecenes deoxynivalenol (DON) along with its acetylated derivatives and nivalenol (NIV). In this study, 31 strains, belonging to eight species of this complex and originating from diverse hosts or substrates, were tested for differences in aggressiveness and mycotoxin production. Large variation among strains, both in terms of their aggressiveness and the ability to produce trichothecenes on a susceptible cultivar of wheat was found; variation appears to be a strain-specific rather than species-specific characteristic. While pathogenicity was not influenced by the type of mycotoxin produced, a significant correlation was observed between the amount of the dominant trichothecene (DON and its acetylated forms or NIV) produced by each strain and its level of aggressiveness on wheat. Some isolates also were tested for their ability to infect rice cv. M201, commonly grown in the United States. While tested strains were capable of infecting rice under greenhouse conditions and causing significant amount of disease, no trichothecenes could be detected from the infected rice florets.  相似文献   

7.
Sudden death syndrome (SDS) of soybean is a fungal disease caused by at least four distinct Fusarium species: F. tucumaniae, F. virguliforme, F. brasiliense, and F. crassistipitatum. All four species are present in Argentina. These fungi are soilborne pathogens that only colonize roots and cause root necrosis. However, damage also reaches the aboveground part of the plant, and foliar chlorosis and necrosis, followed by premature defoliation, can be observed. Although the pathogenicity and phytotoxicity of F. virguliforme has been well characterized, knowledge regarding disease development by other fungal species is scarce. In this study, two plant species, soybean (Glycine max) and Arabidopsis thaliana, and isolates from two fungal species, F. tucumaniae and F. crassistipitatum, were used to comparatively analyse the fungal pathogenicity and the phytotoxicity of volatile organic compounds (VOCs) and cell-free culture filtrates. Fungal inoculation had a significant effect on plant growth, regardless of the plant species. In addition, infected soybean plants showed disease incidence and foliar and root symptoms. Inhibition of A. thaliana growth was not due to VOCs emitted by fungi. Instead, both pathogens were shown to produce toxins that caused typical SDS foliar symptoms in soybean and root length reduction in A. thaliana. As far as we know, this is the first report that demonstrates that F. tucumaniae and F. crassistipitatum affect A. thaliana growth and emit VOCs, and that F. crassistipitatum produces toxins.  相似文献   

8.
Fusarium solani f. sp.cucurbitae race 1 causes foot rot in courgette (Cucurbita pepo). The pathogen could be distinguished fromFusarium solani from sweet pepper (Capsicum annuum) both morphologically and in its host range.In inoculation experiments all nine cultivars of the six species of Cucurbitaceae tested were susceptible. Courgette Green became diseased after inoculation with a spore suspension by root dipping or adding the suspension to the soil around the stem base or spraying the whole plant with it.Both wounded and young plants died more quickly than unwounded and older plants. With low inoculum densities the plants were affected more slowly than with high densities and the differences in susceptibility of the Cucurbitaceae tested were more pronounced.From infected courgette seeds the fungus could be reisolated until 6 months after harvest.This is the first record of this pathogen in courgettes in the Netherlands.Samenvatting Fusarium solani f. sp. cucurbitae fysio 1 is de oorzaak van een voetrot in courgette. Het pathogeen is morfologisch en door middel van een waardplantenreeks goed vanF. solani uit paprika te onderscheiden.In inoculatieproeven waren de getoetste Cucurbitaceae in meer of mindere mate gevoelig voorF. solani f. sp.cucurbitae. Bij courgette Green werden zowel gedompelde, als aangegoten, als bespoten planten door het pathogeen aangetast. Zowel verwonde als niet-verwonde planten werden aangetast als ook planten van verschillende leeftijden. Niet-verwonde en ook oudere planten stierven minder snel af dan verwonde en jongere planten. Bij lagere inoculumdichtheden werden de planten minder snel aangetast dan bij hogere dichtheden en waren de verschillen in vatbaarheid voor het pathogeen tussen de getoetste Cucurbitaceae duidelijker.Uit courgette zaad, dat met het pathogeen was besmet, kon de schimmel tot 6 maanden na zaadwinning opnieuw worden geïsoleerd.Dit is de eerste melding van dit pathogeen in courgette in Nederland.  相似文献   

9.
The effect of temperature on the in vitro growth rates and pathogenicity of a European Fusarium collection consisting of isolates of Fusarium graminearum, F. culmorum, F. avenaceum, F. poae and Microdochium nivale was examined. Irrespective of geographic origin, the optimum temperature for the growth of F. graminearum, F. culmorum and F. poae was 25 °C, while that for F. avenaceum and M. nivale was 20 °C. In general, the growth rates of F. graminearum, F. culmorum and F. poae increased between 10 and 25 °C and those of F. avenaceum and M. nivale increased between 10 and 20 °C. Pathogenicity tests were carried out by examining the effect of the five species on the in vitro coleoptile growth rate of wheat seedlings (cv. Falstaff). Irrespective of geographic origin, the temperature at which F. avenaceum, F. culmorum and F. graminearum caused the greatest retardation in coleoptile growth ranges 20–25 °C (>89.3% reduction), whilst for F. poae and M. nivale it was 10–15 °C (>45.6% retardation), relative to uninoculated control seedlings. In general, F. culmorum and F. graminearum were the most pathogenic of the five species, causing at least a 69% reduction in coleoptile growth at 10, 15, 20 and 25 °C. General linear model analysis (GLIM) showed that species accounted for 51.3–63.4% of the variation in isolate growth and from 19.5% to 44.3% of the variation in in vitro pathogenicity. Country of origin contributed from 22.6% to 51.9% to growth rate variation and from 0.73% to 7.61% to pathogenicity variation. The only significant correlation between in vitro growth and pathogenicity was that observed for M. nivale at 15 °C (r = -0.803, P < 0.05).  相似文献   

10.
美蕉又称粉蕉,具有抗逆性强、稳产、果实酸甜可口等优点,是闽南内陆山区农业结构调整中主要发展的作物之一.近年来,华安县美蕉种植面积不断扩大,达1 000 hm2.  相似文献   

11.
12.
从罹病桃蚜虫尸上分离到了一株昆虫病原真菌,命名为JMF-01,本文旨在确定该菌株分类地位并探索其生防潜能。对罹病的桃蚜虫尸进行分离纯化,基于形态学观察和r DNA-ITS、RPB2、IGS序列分析,构建系统发育树对该菌株进行鉴定。采用浸叶浸虫法研究该菌株不同浓度条件下对桃蚜的致病力并进行温室防效测定。结果表明菌株JMF-01在PDA培养基上5 d后菌落直径58~60 mm,分生孢子镰刀形,3~7隔。菌株JMF-01对桃蚜具有较强致病力,处理桃蚜在7 d后累计校正死亡率和LC50达到85%和9.87×105cfu/mL;孢子悬浮液最高浓度的温室防效在14 d时高于70%。该菌株的r DNA-ITS序列(MW404610)与木贼镰刀菌Fusarium equiseti(Gen Bank登录号:JF773657)相似度达100%,位于系统发育树的同一分支;RPB2、IGS序列分别与木贼镰刀菌(GenBank登录号:MK077112,KX583611)的相似度也达到99%以上,聚在系统发育树的同一分支。菌株JMF-01经鉴定为桃蚜的病原真菌木贼镰刀菌...  相似文献   

13.
In 1994, Fusarium wilt of melon cultivars which are resistant to races 0 and 2 of Fusarium oxysporum f. sp. melonis was observed in southern area of the Lake Biwa region, Shiga prefecture. In commercial fields, mature plants of cv. Amus which were grafted onto cv. Enken Daigi 2, and of cv. FR Amus showed yellowing, wilting and finally death before harvesting of fruits. Diseased plants had vascular and root discolorations, and their stem sections yielded typical colonies of F. oxysporum. When the Shiga strains were tested for their pathogenicity to 12 species of cucurbits, they caused wilts only on melon. Using race differential cultivars of melon, the Shiga strains were classified as race 1 of F. oxysporum f. sp. melonis, which has not been reported in Japan. To further characterize their pathogenicity, the strains were used to inoculate 46 additional cultivars of melon, oriental melon and oriental pickling melon. All the race 1 strains were pathogenic to the cultivars tested, and their host range was apparently different from those of strains belonging to other races (races 0, 2 and 1,2y). DNA fingerprinting with a repetitive DNA sequence, FOLR3, differentiated race 1 strains from strains of races 0 and 2, but not from race 1,2y strains. Received 2 July 1999/ Accepted in revised form 30 September 1999  相似文献   

14.
Fusarium head blight (FHB) of cereals is a disease complex. Fusarium graminearum is the major pathogen worldwide, while F. culmorum, F. avenaceum and F. poae are also associated with this disease. In addition to the true Fusarium species, Microdochium nivale may also cause head blight and is particularly prevalent where cooler, wetter conditions prevail. Other species such as F. sporotrichioides, F. equiseti and even F. verticillioides may also be of significance in particular situations. FHB is of particular concern because of the ability of the Fusarium species to produce mycotoxins in the grain that are harmful to human and animal consumers. The predominant mycotoxins within cereals are the trichothecenes, chiefly deoxynivalenol, nivalenol and their acetylated derivatives, along with T-2, HT-2, diacetoxyscirpenol and neosolaniol. This paper reviews the use of molecular techniques to identify the individual causal agents and to quantify their relative amounts within plant tissue. Diagnostic and quantitative polymerase chain reaction assays have been developed to detect and quantify individual fungal species within the disease complex and, where relevant, to differentiate between chemotypes within a single species. Assays to determine the type of toxin produced, or monitor the regulation of toxin production also provide valuable tools for understanding this disease. These techniques are being used to dissect the disease complex into its component parts in order to study interactions between the pathogens and their host and between the pathogens themselves as well as to determine the influence of environmental factors on the disease and the toxins produced by these fungi.  相似文献   

15.
The Fusarium species predominantly found associated with Fusarium head blight (FHB) in wheat and other small-grain cereals all over Europe are F. graminearum, F. avenaceum and F. culmorum. Among the less frequently encountered species are several others which are less pathogenic or opportunistic, but also toxigenic. These include F. poae, F. cerealis F. equiseti F. sporotrichioides F. tricinctum and, to a lesser extent, F. acuminatum F. subglutinans F. solani F. oxysporum F. verticillioides F. semitectum and F. proliferatum. The species profile of FHB is due to several factors, primarily climatic conditions, particularly rain and the temperature at flowering stage, but also agronomic factors, such as soil cultivation, nitrogen fertilization, fungicides, crop rotation, and host genotype. The most frequently encountered Fusarium mycotoxins in FHB in Europe has proved to be deoxynivalenol and zearalenone produced by F. graminearum and F. culmorum with the former more common in southern (warmer) and the latter in northern (colder) European areas. Nivalenol was usually found associated with deoxynivalenol and its derivatives (mono-acetyldeoxynivalenols), together with fusarenone-X, formed by F. graminearum F. cerealis F. culmorum and, in northern areas, by F. poae. Moreover, from central to northern European countries, moniliformin has been consistently reported, as a consequence of the widespread distribution of F. avenaceum whereas the occurrence of T-2 toxin derivatives, such as T-2 toxin and HT-2 toxin, and diacetoxyscirpenol have been recorded in conjunction with sporadic epidemics of F. sporotrichioides and F. poae. Finally, beauvericin and various enniatins have recently been found in Finnish wheat colonized by F.avenaceum and F. poae.  相似文献   

16.
通过田间观察,唐菖蒲出苗后15 d出现枯萎病病株,花苞形成至初花期为发病高峰期。大棚种植和露地种植、茬口、母籽大小与发病有关。播种时用药剂浸泡母籽或处理播种沟,可减轻枯萎病的发生。  相似文献   

17.
Isozyme and RAPD-PCR analyses of Fusarium avenaceum strains from Finland   总被引:4,自引:2,他引:2  
Differences in isozyme and RAPD-PCR polymorphisms amongst 33 isolates of Fusarium avenaceum were compared using native polyacrylamide gel electrophoresis and agarose gel electrophoresis. The isolates were collected from different regions of Finland. Amongst eight enzymes analysed clear isozyme polymorphism was detected in five enzymes which could be grouped into 20 different electrophoretic phenotypes and three main groups at the similarity level of 70% in unweighted pair group method with arithmetic average (UPGMA) analysis. RAPD-PCR analysis differentiated all F. avenaceum strains from each other. The phenotypes resulting from RAPD-PCR analysis were grouped into five main groups by UPGMA analysis at the similarity level of 55%. These main groups had several similarities with the main groups from isozyme analysis. RAPD-PCR patterns of 16 isolates of Fusarium graminearum F. culmorum F. equiseti F. oxysporum and F. redolens were also studied and strains from each Fusarium species formed individual groups in UPGMA and principal components analyses. Thus, the extent of isozyme and RAPD-PCR polymorphisms found in Fusarium strains potentially provides a method for identifying the fungi both at strain and species level.  相似文献   

18.
水花生病原菌——蕉斑镰刀菌菌株的筛选及其致病性测定   总被引:4,自引:0,他引:4  
蕉斑镰刀菌 Fusarium stoveri是从自然界水花生植株上分离的、可致水花生表现萎蔫、地上茎腐烂、叶片上呈现褐色斑或黄化的生防真菌.室内研究表明,蕉斑镰刀菌菌丝生长和产孢的适宜温度范围在25~28℃,多数菌株的最适温度为28℃;菌株间的产孢量有较大差异.在供试菌株中,32-6菌株的产孢量最大;供试的9个蕉斑镰刀菌菌株对水花生均有较强的致病力,但菌株间的致病力有所差异.根据菌株的生长速率、产孢量和致病力等因素,菌株32-6被选为水花生生防菌的优选菌株.采用生产上常见农作物、蔬菜、经济作物及物候上与水花生一致的杂草等42种植物对菌株32-6进行寄主专化性测定,结果表明,蕉斑镰刀菌菌株32-6具有高度的寄主专化性,只对水花生表现出较强的致病性,对其他植物均不致病.  相似文献   

19.
We screened 188 isolates of Fusarium graminearum, which originated from northwest Europe, the USA and Nepal, for genetic diversity using a sequence-characterised amplified region polymorphism (SCAR). On the basis of this analysis, 42 of the 118 isolates were selected for random amplified polymorphic DNA (RAPD) analysis. Three groups were identified, two of which, A and B, contained the isolates from Nepal, and a third, group C, contained the isolates from Europe and the USA. In pathogenicity tests on wheat and maize seedlings, group C isolates were more pathogenic than the group A and B isolates. The isolates were assigned chemotypes based on their ability to produce the trichothecene mycotoxins nivalenol (NIV) and deoxynivalenol (DON). Isolates from group A were equally likely to produce NIV or DON while group B isolates produced predominantly NIV, and group C isolates produced predominantly DON. Within group A, isolates of the two chemotypes were equally pathogenic to wheat but isolates with the NIV chemotype were significantly more pathogenic to maize. The results confirm that distinct genetic groups exist within F. graminearum and demonstrate that these groups have different biological properties, especially with respect to their pathogenicity to two of the most economically important hosts of this pathogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号