首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The respiratory rates of Tawny puffer Takifugu flavidus juvenile were measured at four temperatures (20, 23, 26 and 29 °C) and seven salinities (5, 10, 15, 20, 25, 30 and 35 g L?1). The results showed that both temperature and salinity significantly affected the oxygen consumption of tawny puffer juvenile. The oxygen consumption rate (OCR) increased significantly with an increase in the temperature from 20 to 29 °C. Over the entire experimental temperature range (20–29 °C), the Q10 value was 1.59, and the lowest Q10 value was found between 23 and 26 °C. The optimal temperature for the juvenile lies between 23 °C and 26 °C. The OCR at 25 g L?1 was the highest among all salinity treatments. The OCRs show a parabolic relationship with salinity (5–35 g L?1). From the quadratic relationship, the highest OCR was predicted to occur at 23.56 g L?1. The optimal salinity range for the juvenile is from 23 to 25 g L?1. The results of this study are useful towards facilitating an increase in the production of the species juvenile culture.  相似文献   

2.
The effects of salinity fluctuation on the growth, intermoult period and energy budget of juvenile Litopenaeus vannamei were investigated. Salinity fluctuation regimes were set in different frequencies of 2, 4 and 8 days and different amplitudes of ±2, ±5 and ±10 g L?1 from a control salinity of 20 g L?1. After a 48‐day feeding trial, the intermoult period of shrimp became shorter with increasing amplitude and frequency of salinity fluctuation (P<0.05). Both the frequency and the amplitude of salinity fluctuation had a significant effect on the growth rate of L. vannamei juveniles (P<0.05). At the frequency of 4 days, the highest growth rates occurred at amplitudes of 5–10 g L?1, whereas the growth rate was the lowest at 10 g L?1 when the frequency was reduced to 2 days. Feed intake (FI) and assimilation efficiency (AE) of shrimp were also significantly affected by the salinity fluctuation (P<0.05) and matched the growth rate response. The energy expenditures for growth (G), respiration (R), excretion (U) and exuviae (E) to the energy consumed as food (C) were not affected by salinity fluctuation. However, salinity fluctuation significantly affected the percentage of C as faeces (F), with the lowest value occurring at salinity amplitudes of 5–10 g L?1 and frequencies of 4–8 days. Therefore, salinity fluctuations (every 4 days by ±5–10 g L?1) result in higher growth rates than constant salinity conditions (20 g L?1) through greater FI, enhanced feed assimilation and reduced faecal energy loss.  相似文献   

3.
In this study, we tested the lower salinity tolerance of juvenile shrimps (Litopenaeus vannamei) at a relatively low temperature (20 °C). In the first of two laboratory experiments, we first abruptly transferred shrimps (6.91 ± 0.05 g wet weight, mean ± SE) from the rearing salinity (35 000 mg L?1) to salinities of 5000, 15 000, 25 000, 35 000 (control) and 40 000 mg L?1 at 20 °C. The survival of L. vannamei juvenile was not affected by salinities from 15 000 to 40 000 mg L?1 during the 96‐h exposure periods. Shrimps exposed to 5000 mg L?1 were significantly affected by salinity, with a survival of 12.5% after 96 h. The 24‐, 48‐ and 96‐h lethal salinity for 50% (LS50) were 7020, 8510 and 9540 mg L?1 respectively. In the second experiment, shrimps (5.47 ± 0.09 g wet weight, mean ± SE) were acclimatized to the different salinity levels (5000, 15 000, 25 000, 35 000 and 40 000 mg L?1) and then maintained for 30 days at 20 °C. Results showed that the survival was significantly lower at 5000 mg L?1 than at other salinity levels, but the final wet weight under 5000 mg L?1 treatment was significantly higher than those under other treatments (P<0.05). Feed intake (FI) of shrimp under 5000 mg L?1 was significantly lower than those of shrimp under 150 00–40 000 mg L?1; food conversion efficiency (FCE), however, showed a contrasting change (P<0.05). Furthermore, salinity significantly influenced the oxygen consumption rates, ammonia‐N excretion rates and the O/N ratio of test shrimps (P<0.05). The results obtained in our work provide evidence that L. vannamei juveniles have limited capacity to tolerate salinities <10 000 mg L?1 at a relatively low temperature (20 °C). Results also show that L. vannamei juvenile can recover from the abrupt salinity change between 15 000 and 40 000 mg L?1 within 24 h.  相似文献   

4.
The freshwater mussel Elliptio complanata was provided green algal‐dominated water from a Partitioned Aquaculture System (PAS) over a range of water temperatures (6.1–32.4 °C) and suspended particulate organic carbon (POC) concentrations (<1–32.2 mg C L?1) to determine filtration rates as mg POC kg?1 wet tissue weight h?1. The lowest filtration rates were observed at lowest temperatures and POC concentrations while the highest rates were at intermediate temperatures and the highest POC levels. The predicted filtration rate (PFR) in response to water temperature and POC concentrations was as follows: ln PFR=1.4352+0.1192 POC+0.1399 T?0.0001 T3. Within the experimental conditions, PFRs at any POC concentration increased with increased water temperature to a peak at 22 °C and then decreased. The maximum PFR occurred at 22 °C and 32 mg C L?1 and the minimum PFR at 7 °C and 1 mg C L?1. A model to describe the mussel filtration rate responses to PAS water conditions involves both water temperature and POC concentration.  相似文献   

5.
The effects of salinity on haemolymph osmolality, oxygen consumption and ammonia excretion were investigated in adult kuruma shrimp, Marsupenaeus japonicus (Bate), at salinities of 20, 25, 30 and 35 g L?1. Haemolymph osmolality showed a positive linear relationship (r2=0.9854) with medium osmolality. The isosmotic point calculated from this relationship was 1039 mOsm kg?1, which corresponds to a salinity of approximately 35 g L?1. The slope of the regression equation was very high (0.81), suggesting that M. japonicus adults are poor osmoregulators compared with the adults of other penaeids and to conspecific young. The difference between haemolymph and medium osmolality (DOP) was lowest at 35 g L?1 and highest at 20 g L?1. Thus, the minimum DOP coincided with the isosmotic point of the shrimp. The respiration rate was significantly lower at 30 g L?1 than at the other salinities. Ammonia excretion rates were inversely related with salinity and therefore were minimal at 35 g L?1. The results of this study suggest that the optimum salinity for adult kuruma shrimp is around 30–35 g L?1 and that even minor (e.g. 5 g L?1) deviations from this optimum cause significant physiological changes. Further, the observed increases in oxygen consumption and ammonia excretion during exposure to low salinities, which indicate higher energy expenditure and amino acid catabolism for osmoregulation, respectively, suggest that the growth efficiency of M. japonicus adults may be severely compromised by hypohaline water inflow into the rearing ponds.  相似文献   

6.
The interactive effects of salinity and temperature on development and hatching success of lingcod, Ophiodon elongatus Girard, were studied by incubating eggs at four temperatures (6, 9, 12 and 15°C) and five salinities (15, 20, 25, 30 and 35 g L?1). Hatch did not occur in any of the 15°C treatments. Degree days (°C days) to first hatch was not influenced by temperature or salinity, however, calendar days to first hatch differed significantly for temperature (P<0.0001, 61±1, 44±1 and 35±1 days for 6, 9 and 12°C respectively). Degree days to 50% (427.1±4.2) hatch was not significantly influenced by temperature but was by salinity (P=0.0324). Viable hatch (live with no deformities, 74.1±4.0%) was greatest at 9°C and 25 g L?1 but not significantly different in the range of 20–30 g L?1. Larval length (9.4±0.13 mm) was greatest at 9°C and 20–30 g L?1. Temperature and salinity significantly influenced all categories of deformities with treatments at the upper (12°C and 35 g L?1) and lower limits (6°C and 15 g L?1) producing the greatest deformities. The optimal temperature and salinity for incubating Puget Sound lingcod eggs was found to be 9°C and 20–30 g L?1.  相似文献   

7.
The effects of salinity on plasma osmolality, branchial chloride cell density, feed consumption and conversion and growth performance of yellowtail kingfish (Seriola lalandi) were evaluated. Fish (11.6 ± 0.6 g) were kept for 29 days at 14, 18, 22, 26 (experimental) and 30 g L?1 (control) salinity in independent, pilot‐scale recirculation aquaculture systems. No differences in plasma osmolality or chloride cell numbers in gills were observed, pointing to a strong osmoregulatory capacity in the juveniles. Fish at 14, 18 and 22 g L?1 (7.61 ± 0.19, 7.61 ± 0.01 and 7.61 ± 0.13% day?1, respectively) had higher growth rates than fish at 26 and 30 g L?1 (7.10 ± 0.05 and 6.97 ± 0.06% day?1 respectively). The higher growth rate at lower salinity resulted from increased feed intake; feed conversion was not different. An evaluation of the impact of salinity on growth rate of on‐growing stages (till market size) seems warranted to assess whether the profitable effects of low salinity persist in later stages of this important aquaculture species.  相似文献   

8.
The metabolic physiological response to body mass, temperature (12–28 °C) and salinity (20–36 g L?1) was examined in this paper. Oxygen consumption rate, which is dependent on environmental conditions, was exponentially related to body mass and varied from 0.045 to 1.11 mg h?1 g?1. Oxygen consumption rate increased as salinity increased from 20 to 36 g L?1, and increased with increasing temperature. The effect of temperature gradient between experimental treatments on oxygen consumption rate was evaluated by calculating Q10 (the Arrehenius relationship for increase with temperature). The Q10 value within the temperature range from 12 to 16 °C was much higher than the value within the temperature range from 16 to 20 °C, 20 to 24 °C and 24 to 28 °C, indicating a reduced temperature dependence of ascidian metabolism at a high temperature.  相似文献   

9.
Four different‐sized (390±3, 140±2, 40±2, 16±1 g) Nile tilapia, Oreochromis niloticus (L.), stocked at the same biomass in timed pulse feeding chambers were provided 27–29°C water dominated by Microcystis (82%) and Scenedesmus (18%) to determine the effect of fish size on filtration rates. The number of Microcystis and Scenedesmus units filtered from the water decreased significantly with increasing tilapia size. The shaping constants and maximum filtration rates for Ivlev's feeding model used to describe the relation between filtration rates and the suspended particulate organic carbon (POC) concentrations were significantly different among the four sizes. Filtration rates of 763, 671, 512 and 300 mg C kg?1 h?1, which correspond to 70%, 82%, 86% and 90% saturation levels, were achieved at POC levels of 30, 32, 32 and 33 mg C L?1 for 16, 40, 140 and 390 g Nile tilapia respectively. Smaller tilapia achieved these rates at lower POC concentrations than larger tilapia.  相似文献   

10.
The sea cucumber Holothuria leucospilota is a good candidate for aquaculture, for large‐scale production of this sea cucumber, it is imperative to know the effects of salinity on its physiological performance. In this study, ingestion, oxygen consumption and ammonium excretion rates of the adult sea cucumber H.leucospilota (16.98 ± 1.14 g, wet weight) at various salinity levels (18, 23, 28, 33 and 38 PSU) were studied in the laboratory. The species were acclimated for 1 week at the desired salinity before testing, and were fed with sediment from their natural habitat during this period. Results showed that the minimum ingestion rate (0.02 ± 0.01 g g?1d?1) at a salinity of 18 PSU was significantly lower than those observed at salinities of 28, 33 and 38 PSU, and there was no significant difference among the values at 23, 28, 33 and 38 PSU. The maximum value of oxygen consumption rate recorded at a salinity of 28 PSU was significantly higher than the minimum at 18 PSU, no significant differences were observed among other treatments. The ammonium excretion rates of H. leucospilota also changed significantly in response to salinity variations, the maximum value observed at a salinity of 28 PSU (0.09 ± 0.03 μM g?1h?1) being nearly five times higher than the minimum value at a salinity of 38 PSU (0.02 ± 0.01 μM g?1h?1). The O:N ratio varied as a function of salinity. Lower O:N ratios (<11.0) at salinities below 23 PSU indicated protein‐dominated catabolism under hyposaline stress; the higher O:N ratio (46.5) at a salinity of 38 PSU indicated carbon‐based metabolism. Results of this study indicated that the sea cucumber H. leucospilota may have a wide tolerance of salinity variation. However, it is not a very suitable species for rearing in hyposaline water. This study provides useful information for improving aquaculture management in tropical and subtropical coastal areas.  相似文献   

11.
Few marine rotifer species (e.g. Encentrum linheii and Synchaeta cecilia) have been cultured successfully besides Brachionus plicatilis and B. rotundiformis, commonly used to rear larvae of many marine fish species. The development of culture techniques for marine rotifers smaller in size than the Brachionus species may be useful for rearing fish species for which the currently used prey are too large. We evaluated the possibility of culturing Colurella dicentra isolated from a Mississippi Gulf Coast estuary. An experiment was conducted to determine the effects of salinity (10–35 g L?1) on its population growth rate. Rotifers were fed Nannochloropsis oculata at a density of 100 000 cells mL?1 for 15 days. Colurella dicentra survived in water with a salinity of 10–47 g L?1. Densities of up to 300 rotifers mL?1 were sometimes attained in cultures. Salinity influenced C. dicentra production (P<0.001). The mean rotifer numbers at 10 g L?1 (22 840±2604 SD), 15 g L?1 (25 980±7071 SD) and 20 g L?1 (19 780±1029 SD) at the end of the experiment were similar (P>0.05), but were higher (P=0.05) than numbers at 25 g L?1 (4240±1783), 30 g L?1 (1300±264 SD) and 35 g L?1 (100±101 SD). The population growth rate (r) of the rotifers was the highest at 15 g L?1 (0.37–0.42 day?1), and the lowest at 35 g L?1 (?0.33–0.06 day?1). This is the first report of C. dicentra in the estuarine waters of the Gulf of Mexico, and also the first time it has been cultured successfully.  相似文献   

12.
Abstract The effect of water oxygen content on growth and food conversion efficiency was evaluated for juvenile spotted wolffish, mean (± SD) initial weight 68.5 (± 17.5) g, reared at oxygen levels of 4.0, 6.0 (hypoxia), 9.6 (normoxia) and 14.5 (hyperoxia) mg L?1 for 11 weeks at 8 °C. Mean weights and total food consumption were significantly higher in the control and hyperoxic groups compared with the hypoxic groups at the end of the experiment. The 9.6 and 14.5 mg L?1 groups exhibited significantly higher overall specific growth rates (0.90 and 0.86% day?1 respectively) compared with the groups on 4.0 and 6.0 mg L?1 (0.46 and 0.71% day?1 respectively). In the hyperoxic group, growth was only limited in the first period and, in the hypoxic groups, growth rates increased throughout the experiment, with the 6.0 mg L?1 group performing equally well compared with the control in the last period. Overall, our findings suggest that the species will adapt to both high and low ambient water oxygen content given a period of adaptation. After the adaptation phase, growth and food conversion efficiency are comparable in the oxygen level range of 6.0–14.5 mg L?1.  相似文献   

13.
More than 250 male and female yellowfin seabream (Acanthopagrus latus) were caught in the creeks near the Mahshar area in the north‐west of Persian Gulf using fishhooks to study the effects of salinity on reproductive indices. The experiments were carried out using three salinity treatments (30 ± 1 g L?1, 35 ± 1 g L?1 and 40 ± 1 g L?1) with three replications. A total of six males and three females were randomly introduced to each tank. The survival rate of the broodstock was estimated at more than 90% at different salinity levels and the maximum rate was observed at 30 g L?1 of the experiment rate. The percentage of buoyant eggs was more than 90% at 40 g L?1 and it was significantly different from other treatments. The average number of eggs per female (312 914 ± 65 085), and the average number of eggs per kilogram of female (649 460 ± 173 574) at 40 g L?1 were more than those in the other treatments but no significant differences were observed (≤ 0.05). The average percentage of fertilized eggs (86.7%) and the average percentage of hatched larvae (67%) at 40 g L?1 treatment was more than those at 30 g L?1 and 35 g L?1 treatments but no significant differences were observed (≤ 0.05). At 40 g L?1 salinity, in all spawning cases, the released eggs were hatched. Overall, the present study has shown that better buoyant eggs of A. latus can be obtained at salinity 40 g L?1. On the other hand, the percentage of fertilized eggs and hatched larvae were not affected by salinity.  相似文献   

14.
Three Pavlova species were evaluated for their nutritional value as diets for growth and survival of the Cortez oyster Crassostrea corteziensis spat during late‐nursery cultivation at a hatchery. Microalgae were provided as monospecific diets (Pavlova salina, P. sp. C50 and P. sp. C53) and in binary combinations of diets 1+2, 1+3 and 2+3 at 80–90 × 103 cells mL?1 for 21 days. Juveniles experienced high survival rates and grew well with all dietary treatments, but binary diets yielded greater survival and growth of spat. From the three binary treatments, Diet 6 (P. sp. C50 and P. sp. C53) promoted significantly (P<0.001) fastest growth of juveniles in shell height (0.19 mm day?1), shell length (0.14 mm day?1), total wet weight (0.04 g day?1) and dry weight of meat biomass (0.024 g day?1). For all shell dimensions, the lowest growth rates occurred with Diets 2 (P. sp. C56 alone) and 3 (P. sp. C50 alone). These results highlight the importance of testing microalgal diets for bivalve spat rather than just relying on published nutritional values.  相似文献   

15.
There is a particular interest in Mexico for the grow-out and breeding in captivity of the native oyster Crassostrea corteziensis. However, there is a lack of knowledge of the effect of temperature and salinity on the feeding physiology that maximizes the growth and eventually achieves the maturation of C. corteziensis. Our aim was to evaluate the filtration and clearance rates, oxygen consumption, ammonium excretion rates, assimilation efficiency, and scope for growth of the oyster C. corteziensis acclimated during 2 weeks to different combinations of temperature (23, 26, 29, and 32 °C) and salinity (20, 30, 40, and 50 psu). Oysters were fed with a standard suspension of the microalga Chaetoceros muelleri as total particulate matter, which was supplied at 4.2 L h?1 into 10 1-L tanks used as experimental chambers. The results showed that filtration and clearance rates increased with increasing temperature and decreased with increasing salinity, with the highest values obtained at 29 °C and 20 psu. Ammonium excretion and, to lesser extent, oxygen consumption matched with the variations in the feeding rate. The values of the scope for growth (SFG) suggested that C. corteziensis is able to grow out in all combinations of temperatures and salinities tested in this work. However, the SFG decreased at higher salinity (50 psu) in both extreme temperatures (23 and 32 °C), with highest value occurring at intermediate temperature and the lowest salinity. The SFG increased with increasing temperature and decreased with increasing salinity, which was explained by the increase in the feeding rates and ammonium excretion, coupled with higher absorption efficiency of the food. We concluded that higher filtrations and scope for growth of oysters occurred at 29 °C in brackish-water (20 psu) rather than in marine-water conditions. The results obtained can be considered highly useful information for aquacultural management of this oyster species, and useful to establish suitable sites to enhance their cultivation and maximize the growth of C. corteziensis.  相似文献   

16.
Individual growth rates, feeding rates (%BWd?1) and food conversions for cuttlefish (S. officinalis) hatchlings and juveniles were determined during this study. A flow‐through system was used. Water temperature reached 30 °C during the hottest part of the day, gradually decreasing to 25 °C during the night; salinity varied between 37 ± 3 ppt and lights were kept on for 14 h day?1. Hatchlings were placed in separate compartments with a water volume of 1.2 L. Juvenile cuttlefish (from 0.5 to 25 g) were placed in bigger baskets, with a water volume of 5.2 L. Water flow was 120 L h?1. The biggest cuttlefish used in these experiments (> 25 g) were gathered in groups of five and placed in circular tanks (water volume of 250–300 L). Thus, results obtained in this case are means and not individual data. During the first 10, 20, 30 and 40 days, mean growth rates (of all individuals sampled by age group) decreased consistently (11.8 ± 4.1, 9.8 ± 1.8, 8.1 ± 2.2 and 7.3 ± 0.7%BW?1 respectively); in similar fashion, mean feeding rates decreased with age group (33.7 ± 13.5, 22.0 ± 7.9, 17.3 ± 3.9 and 16.7%BWd?1 respectively). Mean food conversions varied between 3.6 and 2.5 between the age groups. When grouping results by weight class, similar patterns occur, as growth and feeding rates decrease consistently as cuttlefish grow bigger. Highest mean growth and feeding rates are obtained by hatchlings (< 0.1 g) with 12.4 ± 4.5 and 35.3 ± 15.1%BWd?1, respectively, while the lowest growth and feeding rates were recorded for the largest animals, between 15 and 25 g (3.4 ± 1.1 and 10.8 ± 4.1%BWd?1 respectively). For these weight classes, mean food conversions varied between 2.7 ± 0.9 and 3.8 ± 2.8.  相似文献   

17.
Silver catfish, Rhamdia quelen (Quoy & Gaimard, 1824), is an endemic species from Latin America that is raised in cultivation ponds, and consequently may be exposed to low oxygen levels. Therefore, the objective of this study was to verify the lethal concentration (CL50?96 h) of dissolved oxygen levels for silver catfish juveniles. In addition, the effects of different dissolved oxygen levels (1.96±0.08, 3.10±0.10, 4.14±0.09, 5.20±0.07 and 6.16±0.03 mg L?1) on growth and metabolic parameters (glycogen, glucose, protein, lactate levels and catalase activity) were also investigated. CL50?96 h was 0.52 mg L?1 (CI 0.42–0.61 mg L?1) or 6.7% oxygen saturation. After exposure of silver catfish to hypoxia for 30 days, there were no changes in biochemical parameters indicating the use of an anaerobic pathway by the fish. However, the dissolved oxygen levels influenced silver catfish juvenile behaviour, survival and growth, and under the experimental conditions 5.2 mg L?1 (or 65.6% oxygen saturation) is the minimum oxygen level recommended for the growth of this species.  相似文献   

18.
The metabolic responses of different colour strains of Ruditapes philippinarum in terms of oxygen consumption and ammonia excretion to changes in temperature (15–35°C) and salinity (20–40) were investigated. In our range of temperatures (15–35°C), oxygen consumption rate (OCR) increases in cultivated strains (White and Zebra) in opposition to the effect in the wild strain which reach a maximum at 25°C. The highest Q10 coefficients were 2.741 for zebra strain, 4.326 for white strain, and 1.944 for wild at temperatures of 25–30, 30–35 and 20–25°C respectively. In our range of salinity (20–40°C), OCRs of white strain and zebra strain firstly decreased to lowest level at 25 and 30, and then increased to highest level at 35 and 40 respectively. When the salinity is beyond 35, the OCR decreased and the turning point was found in the white strain and wild, but the zebra strain OCR still increased to a highest level (1.906 mg g?1 h?1) at 40 (< 0.05). These results show that the cultivated colour strains of R. philippinarum were different from wild in terms of metabolic responses, and information on its response to different temperature and salinity have implications in the aquaculture industry.  相似文献   

19.
First‐feeding halibut larvae (245‐day degrees; 40 days post hatch), reared at 34 g L?1 salinity and 7°C, were subjected to handling and allowed to recover in a range of salinities (0–34 g L?1) and at 10°C. Survival of the unfed larvae was determined daily for 18 days. Mortality rates approached 0 after 4 days in all treatments and presumed starvation‐induced mortality started at about 11 days post handling. By 20 days post treatments, all larvae had died. Salinities in the range of 10–20 g L?1 produced significantly (anova , P<0.01) higher initial survival (71–95%) than salinities above 20 g L?1 (24–48%) or below 10 g L?1 (0–19%) and this survival pattern changed little in unfed larvae for the first 10 days following the stressor. For example, 24 hour post handling, survival of halibut was improved from 28.7±16.5% (mean±standard error, n=3) at 34.0 g L?1 to 95.2±4.8% at 13 g L?1. A second‐order polynomial regression of 4‐day post‐handling survival data (y=?0.002x 2+0.0603x+0.0699, r2=0.3936) predicted a maximum survival at 15.1 g L?1 salinity. These results have important implications for halibut aquaculture and research when handling of larvae is unavoidable. For practical applications, we recommend reducing salinity of receiving waters to 15–20 g L?1 with a slow (3–4 days) reacclimation to ambient conditions.  相似文献   

20.
We investigated the growth of juvenile common snook (Centropomus undecimalis) reared at 25°C and 28°C and salinities of 0.3, 15, and 32 g L?1. Total length, weight, RNA/DNA, and protein/DNA ratios were determined after 90 days of experiment. Higher growth was observed at 28ºC compared with 25°C, at the same salinity. At 28°C and 15 g L?1 salinity, the weight (25.14 g) of juveniles was twice that of the juveniles reared at the lower temperature. At different salinities, only higher temperature affected growth, with higher weight values obtained at 15 g L?1 in comparison with 0.3 and 32 g L?1. Length was similar at 0.3 and 15 g L?1. The RNA/DNA ratio was greater in juveniles reared at a salinity of 15 g L?1 when compared with 0.3 and 32 g L?1. This study shows that the combination of higher temperature and intermediate salinity promotes better growth of common snook juveniles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号