首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究有机生活垃圾厌氧发酵中菌群的分布变化特征,以有机生活垃圾为生物质资源,进行半干式厌氧发酵试验。采用最大或然数法(most probable number,MPN)分析发酵过程中厌氧菌群时间和空间上的数量变化。结果表明:厌氧菌中产酸菌先于氨化菌达到最大值并占据优势地位,产甲烷菌在启动阶段初期基本没有增殖,第25天左右达到最大值3.2×109个/m L,随后产甲烷菌在整个盛产期数量维持在这一数量级上。厌氧纤维素降解菌菌数呈现缓慢增长的趋势,直到投料的第45天才增加到106个/m L。空间上厌氧产酸菌和甲烷菌的数量均是在基质条件稳定的中部位置和流动性较好的底部位置较多;厌氧氨化菌数量较多的为中部边缘和中部中心位置;厌氧纤维素降解菌主要在底部增殖。初步构建了产酸菌与产甲烷菌时间和空间的动力学模型,模型拟合效果良好,可为厌氧发酵工艺提供参考。该文对有机垃圾制取生物燃气的工艺过程具有理论指导意义。  相似文献   

2.
Nitrate (NO-3) and nitrite (NO2-) leaching threatens groundwater quality.Soil C:N ratio,i.e.,the ratio of soil organic carbon to total nitrogen,affects mineralization,nitrification,and denitrification;however,its mechanism for driving soil NO-3 and NO-2 accumulation and leaching remains unclear.Here,a field investigation in a fluvo-aquic soil and a soil column experiment were performed to explore the relation...  相似文献   

3.
In both managed and natural ecosystems, beneficial plant-associated bacteria play a key role in supporting and/or increasing plant health and growth. Plant growth-promoting bacteria (PGPB) can be applied in agricultural production or for the phytoremediation of pollutants. However, because of their capacity to confer plant beneficial effects, efficient colonization of the plant environment is of utmost importance. The majority of plant-associated bacteria derives from the soil environment. They may migrate to the rhizosphere and subsequently the rhizoplane of their hosts before they are able to show beneficial effects. Some rhizoplane colonizing bacteria can also penetrate plant roots, and some strains may move to aerial plant parts, with a decreasing bacterial density in comparison to rhizosphere or root colonizing populations. A better understanding on colonization processes has been obtained mostly by microscopic visualisation as well as by analysing the characteristics of mutants carrying disfunctional genes potentially involved in colonization. In this review we describe the individual steps of plant colonization and survey the known mechanisms responsible for rhizosphere and endophytic competence. The understanding of colonization processes is important to better predict how bacteria interact with plants and whether they are likely to establish themselves in the plant environment after field application as biofertilisers or biocontrol agents.  相似文献   

4.
冷鲜鸡肉表面四环素和磺胺耐药菌的菌群多样性分析   总被引:1,自引:1,他引:0  
为探索冷鲜鸡肉产品表面的抗生素耐药菌的菌群结构,利用IonS5TMXL测序平台对18个市售冷鲜鸡肉样品表面的可培养四环素耐药菌和磺胺耐药菌进行了研究。结果表明,2类耐药菌中分别注释出59个和58个已明确属名的属,相对丰度最大的3个门均为变形菌门、拟杆菌门和厚壁菌门。共享菌属中不动杆菌属、假单胞菌属、变形杆菌属、柠檬酸杆菌属、香味菌属和漫游球菌属的禽源和人源分离株的多重耐药性已被大量研究所证实;而禽源肉杆菌属等16个菌属的耐药特性还未见报道。各采样点分别鉴定出5~39个特有操作分类单元,分属3~32个属。该研究反映了冷鲜鸡肉表面2类耐药菌的污染状况,为后期冷鲜鸡肉产品表面耐药菌的迁移风险评估和控制技术研究提供参考。  相似文献   

5.
稻田固氮解磷解钾菌筛选及其复合菌剂对土壤培肥作用   总被引:1,自引:0,他引:1  
用固氮、解磷、解钾培养基,分别从稻田土壤中分离获得9个固氮菌株(A1-A9)、7个解磷菌株(B1-B7)和6个解钾菌株(C1-C6)。对各菌株固氮、解磷、解钾能力及水稻促生效果分析表明,最突出菌株分别为A5、B2、C5;各菌株等比例混合组成复合菌剂接入灭菌稻田土壤,30 d后可使土壤总氮、有效磷、速效钾分别增加21.32%、32.17%、45.57%;初步鉴定各菌株分别为固氮菌属(Azotobacter sp.)、假单胞菌属(Pseudomonas sp.)和芽孢杆菌属(Bacillus sp.)。复合菌剂处理稻田土壤,水稻苗高、鲜重、干重及植株全氮、全磷、全钾显著优于对照组,说明筛选菌株可在稻田土壤氮、磷、钾转换及培肥过程中起重要作用。  相似文献   

6.
兼具固氮、解磷功能菌株固氮特性的研究   总被引:1,自引:0,他引:1  
试验研究 9株兼具固N、解P功能菌株在无N、N源充足不同P源条件和混合培养时菌株固N特性结果表明 ,供试菌株在无N培养基上均有固N活性 ,但固N量差异较大 ,菌株“N5 1”固N量最高达 5 5 .4mg/kg ,为固N量最低菌株“K10 2”的 3.1倍。在以Ca3 (PO4) 2 作P源、培养液N素供应充足时“K10 2”和“N17”菌株仍有较高固N能力 ,培养 3d后培养液全N含量增幅达 5 5 .2 % ;“N11”、“N12”和“P14 2”菌株固N量也维持在较高水平 ,全N含量增加30 %左右 ;“K16”菌株培养液全N含量略有增加 ,“N5 1”、“N13 1”和“K3”菌株则导致N的挥发损失。以磷矿粉作P源可使该过程逆转。在Ca3 (PO4) 2 P源培养基上混合培养能有效降低“N5 1”、“N13 1”和“K3”菌株单独培养时所造成的N损失。  相似文献   

7.
[目的]微生物菌肥作为一种绿色环保的生物肥料,可以改善土壤质量,促进作物生长.以水稻根际和根表微生物为对象,探究不同微生物菌肥单施和混施对其群落多样性和功能的影响.[方法]采用盆栽试验,设单施沼泽红假单胞菌(Rhodopseudomonas palustris)、单施枯草芽孢杆菌(Bacillus subtilis)及...  相似文献   

8.
Recent studies suggest an important role of thermophilic bacterial communities of the Phylum Firmicutes on soil C, N and S cycling, and a positive effect on crop productivity through the production of sulfate (SO $ _4^{2 - } $ ) and ammonium (NH $ _4^+ $ ), essential plant nutrients. Copper (Cu) is commonly supplemented to soils as a fungicide in phytosanitary treatments although its consequences to the bacterial communities is frequently overlooked. Herein, we report on the influence of temperature and Cu on the microbial communities, namely those of the Phylum Firmicutes, from a soil collected at an olive orchard in S Portugal. Community fingerprints and band identification through sequencing was combined with measurement of SO $ _4^{2 - } $ and NH $ _4^+ $ production at different supplemented amounts of Cu and at moderate and high temperatures (30°C and 50°C, respectively). Both temperature and Cu induced changes in these communities, selecting for specific bacteria. Temperature induced the dominance of Brevibacillus, and Cu addition to soil caused a reduction of SO $ _4^{2 - } $ release by soil bacteria. Ammonium production during bacterial growth at moderate and high temperatures was not affected by Cu addition. A Cu‐tolerant thermophilic isolate, belonging to the Bacillus genus, showed significant inhibition by high Cu concentrations and a reduction of NH $ _4^+ $ release during growth; genera Brevibacillus and Bacillus have been previously reported as high NH $ _4^+ $ and SO $ _4^{2 - } $ producers of the Firmicutes phylum. Results indicate that Cu treatments select specific tolerant bacterial strains which could influence natural soil fertilization in Cu‐treated orchards.  相似文献   

9.
Soil nitrification rate is very different among soil types, as a result of differences in physical and chemical properties. Little is known about the composition of the nitrifying bacteria community. In this investigation, three soils (fluvo-aquic soil, permeable paddy soil and red earth) from different geo-ecological regions in China were characterized for their nitrification activities and their nitrifying bacteria communities determined either by molecular approaches or by conventional culture methods. A 28-day long-term soil incubation showed that the maximum nitrification potential was found in the fluvo-aquic soil with almost 100% of inorganic N present as NO3-N, while the minimum nitrification potential was in red earth with only a 4.9% conversion rate from ammonium into nitrate. There was no relationship between nitrification potential and numbers of nitrifiers in the soil. The conventional most probable number (MPN) method could enumerate ammonia oxidizers, but failed in enumerating nitrite oxidizers. Therefore, we used an MPN-PCR procedure which gave a convincing nitrite oxidizer count result, instead of MPN-diphylamine. Soils were characterized by denaturing gradient gel electrophoresis (DGGE) of DNA extracted from soils and amplified using a primer specific for the 16S rRNA gene and/or for the amoA gene. The DGGE columns of the three soils differed from each other. There were two similar bands present in DGGE columns of the fluvo-aquic and permeable paddy soils, but no similar band was found in DGGE columns of the red earth. The sequence of amoA indicated that all ammonia oxidizers in these soils were grouped into Nitrosospira clusters 1 and 3, and each soil had a common band similar to the other soils and a special band which differed from the other soils.  相似文献   

10.
为了揭示乳酸菌生物膜抵抗不良环境的作用机制,该研究以2株乳酸片球菌RJ2-1-4、TG1-1-10和2株植物乳杆菌RJ1-1-4、RM1-1-11(菌株均高产生物膜)为研究对象,探究浮游态、被膜态菌株对酸、碱、胆盐、模拟人工胃肠液的耐受能力以及抗氧化能力。结果表明:在极酸条件下,菌株生长受到抑制,但是p H值3.0时,被膜态RM1-1-11生长量显著高于浮游态(P0.05)。随着p H值递增,菌体密度增加,在p H值7.0-9.0时,碱性环境对除TG1-1-10外其他3株菌的生长有一定抑制作用;当胆盐浓度为0~0.03%时,菌株生长有小幅度上升,且被膜态菌株RJ2-1-4、TG1-1-10生长量显著低于浮游态(P0.05);但随着胆盐浓度继续增加,菌株生长受到抑制,除浮游态菌株TG1-1-10外,其余3株菌被膜态菌株生长量均显著高于浮游态;菌株在模拟人工胃肠液中处理3 h后发现,相比于浮游态菌株,被膜态各菌株在胃、肠液中的存活率均有所提高。4株菌对于不同种类自由基均有一定清除能力,清除率从高到低分别为HO·、DPPH·、脂质过氧化、超氧阴离子,其中RJ1-1-4浮游态菌悬液对DPPH·清除率为214.12μg/m L,RJ2-1-4被膜态无细胞提取物、TG1-1-10浮游态无细胞提取物对HO·清除率分别为713.81μg/m L和637.01μg/m L,RJ2-1-4浮游态无细胞提取物对超氧阴离子清除率为93.80μg/m L,RM1-1-11被膜态菌悬液对脂质过氧化物的清除率为122.82μg/m L。结果表明:生物被膜状态下的乳酸菌对于酸、碱、胆盐、模拟人工胃肠液均有一定的保护作用,但是菌株间存在特异性,即使是同一种属也不相同;被膜态菌株的抗氧化能力高于浮游态,但是对于不同种类自由基会有不同的结果。该结果为进一步研究乳酸菌在被膜态下抵抗环境胁迫的作用机制提供依据。  相似文献   

11.
Abstract

We investigated the impact of nitrogen (N), phosphorus (P), potassium (K) (NPK) and NPK plus glucose-balanced fertilization compared with N-only fertilization on the soil pH, NH4 +, NO3 ?, ammonia-oxidizing bacterial community, bacterial community and function during microcosm incubation. The NPK and NPK plus glucose treatments resulted in significantly reducing soil acidification and NO3 ? accumulation compared with the N-only fertilization. The terminal restriction fragment size measuring 283 (Nitrosospira) and 54 bp (unidentified) were predominant in the soil ammonia-oxidizing bacterial composition for all treatments. The N-only fertilization did not change the ammonia-oxidizing bacterial community, the bacterial community composition based on terminal restriction fragment length polymorphism analysis, and the bacterial functional diversity based on Biolog EcoPlateTM incubation. The NPK and NPK plus glucose treatments resulted in a shift in the soil ammonia-oxidizing bacterial community and bacterial community composition, and significantly increased the bacterial functional diversity (average well colour development, Richness and Shannon index). Nitrosomonas species were detected in the soil upon NPK and NPK plus glucose treatment on incubation day 9 but not on days 1 and 31. The effect of NPK treatment on the bacterial community composition was transient; a new 116 bp fragment was present on incubation day 9, but the data returned to their original values by day 31. In contrast, treatment with NPK plus glucose resulted in the appearance of a new 116 bp fragment that remained until incubation day 31. These results demonstrated that the balanced fertilization of N, P, K and glucose, plays an important role in regulating ammonia-oxidizing bacterial community quickly, and promoting nitrification functions. The results also showed the importance of balanced fertilization in reducing acidification, improving bacterial community structure and function in latosolic red soil. Therefore, optimizing the ammonia oxidation process by balanced fertilization may be helpful to reduce the loss of soil nitrogen.  相似文献   

12.
 This review summarizes and discusses the current knowledge and the, as yet, unanswered questions on the interactions of Azospirillum spp. in bulk soil (but not in the rhizosphere). It contains sections on the isolation of these bacteria from tropical to temperate soils, and on their short- and long-term persistence in bulk soil. The interactions of these bacteria with soil particles and minerals such as clay, sand and Ca, and the effect of soil pH, soil redox potential, and the cation exchange capacity of the soil on them is demonstrated. Data is presented on the distribution of Azospirillum spp. in soils, on their production of fibrillar material essential for anchoring the cells to soil particles, on the effects of soil irrigation, and of external soil treatments, and on the effect of soil C and C used in bacterial inoculants on the cells. It shows that root exudates possibly govern bacterial motility in the soil. Finally, the effect of pesticide applications, the relationships with other soil microorganisms such as Bdelovibrio spp., Bradyrhizobium spp., and phages, and the potential use of a community-control model of Azospirillum spp. in soil and in the rhizosphere is suggested. Received: 11 November 1998  相似文献   

13.
Chilean volcanic soils contain large amounts of total and organic phosphorus, but P availability is low. Phosphobacteria [phytate-mineralizing bacteria (PMB) and phosphate-solubilizing bacteria (PSB)] were isolated from the rhizosphere of perennial ryegrass (Lolium perenne), white clover (Trifolium repens), wheat (Triticum aestivum), oat (Avena sativa), and yellow lupin (Lupinus luteus) growing in volcanic soil. Six phosphobacteria were selected, based on their capacity to utilize both Na-phytate and Ca-phosphate on agar media (denoted as PMPSB), and characterized. The capacity of selected PMPSB to release inorganic P (Pi) from Na-phytate in broth was also assayed. The results showed that from 300 colonies randomly chosen on Luria–Bertani agar, phosphobacteria represented from 44% to 54% in perennial ryegrass, white clover, oat, and wheat rhizospheres. In contrast, phosphobacteria represented only 17% of colonies chosen from yellow lupin rhizosphere. This study also revealed that pasture plants (perennial ryegrass and white clover) have predominantly PMB in their rhizosphere, whereas PSB dominated in the rhizosphere of crops (oat and wheat). Selected PMPSB were genetically characterized as Pseudomonas, Enterobacter, and Pantoea; all showed the production of phosphoric hydrolases (alkaline phosphatase, acid phosphatase, and naphthol phosphohydrolase). Assays with PMPSB resulted in a higher Pi liberation compared with uninoculated controls and revealed also that the addition of glucose influenced the Pi-liberation capacity of some of the PMPSB assayed.  相似文献   

14.
Long-term preservation of ammonia-oxidizing bacteria had been achieved until now by using the silica gel-freezing method. Recently, the freeze-drying method for the preservation of microorganisms has been widely used, and has been applied to the preservation of ammonia-oxidizing bacteria. The 10% skim milk-l% pyruvate or glutamate ratio was optimum as a dispersion-medium, and the preservation temperature of the freeze-dried cells was effective at -80°C. This method of preservation was found to be considerably more effective than the silica gel-freezing method.  相似文献   

15.
Summary To evaluate the role of plasmids in soil communities antibiotic-resistant bacteria have been isolated from soil. Among them, 419 l-aminopeptidase positive strains (Gram-negative) and 28 l-aminopeptidase negative strains (Gram-positive) were screened for the presence of plasmids. None of the Gram-negative organisms contained plasmids. Among the Gram-positive bacteria plasmid-harboring strains were detected.  相似文献   

16.
Effects of soil texture on the extraction efficiency of bacteria from soils and on biosynthetic activity of the extracted bacteria were studied. Bacterial extracts were prepared from three soils of different texture by homogenization (ultrasonication and mixing) or by homogenization-centrifugation at different speeds. Bacterial biosynthetic activity was estimated using thymidine and leucine incorporation techniques. In each step of the extraction procedure, a higher extractability of bacteria was obtained in finer soils than in coarse soil. Also cell-specific growth rates of bacteria were higher in the finer soils than in the coarse soil. However, in all soils, the extracted bacteria always had significantly lower cell-specific thymidine and leucine incorporation rates than the bacteria in soil slurries and thus did not represent so well the bacterial growth in the original soils. The total declines in cell-specific incorporation rates caused by the extraction were larger in fine soil (96-98%) than in coarse soil (90%), but bacteria in the coarse soil were more responsive to only minor intervention. The homogenization-centrifugation method eliminated the differences in bacterial biosynthesis found when working with soil slurries. Therefore, we recommend using of soil slurries or, optionally, soil suspensions to compare bacterial biosynthetic activity among soils of different textures.  相似文献   

17.
本研究选用15个RAPD随机引物,对白琼海温泉分离的嗜热菌(HSR001)和海口琼山红城湖分离的假单孢菌(HSP002),以及二者的融合子RH004、RH006、RH009、RH012等共6个样株无性系作了RAPD多态性分析。其中3个引物未扩增出质粒DNA的条带,其余12个引物扩增出了有效的谱带。并对各无性系的指纹图谱中的DNA条带进行了统计,利用Clustal-w对其进行分析建立系统树和相似系数比较。结果表明:6个样株均具有丰富的RAPD多态性,6个菌株可分为2个类群,两亲本为一类,4个融合子为另一个类群。  相似文献   

18.
综述了铁锰氧化菌诱导成矿对重金属环境行为的影响,分别从铁/锰氧化菌与生物成矿、铁/锰氧化菌诱导铁锰氧化物沉淀耦合重金属稳定化以及铁锰氧化物对土壤中重金属的作用方面进行阐述;并从铁/锰氧化菌生物成矿方式、铁/锰氧化菌诱导生物成矿过程对土壤重金属的稳定化机制等方面进一步总结了铁/锰氧化菌在不同重金属生物成矿修复中的应用,以及微生物诱导成矿过程的调控因素,分析胞外聚合物、温度与酸碱度、共存离子和其他因素对成矿过程的影响,以期为微生物诱导成矿修复重金属污染提供理论参考。未来工作可进一步关注生成矿物稳定重金属的长效性,不同微生物菌群组合对成矿效果的调控,以及铁/锰氧化菌在重金属复合污染场地土壤修复中的应用等方面。  相似文献   

19.
We observed the presence of reduced sulfur compounds in the buried soil layer of a paddy field on Sado Island, Niigata Prefecture. We sampled the paddy field soil from 0 to 300 cm depth and analyzed the physico-chemical properties of the soil and the numbers of sulfur-oxidizing bacteria and iron-oxidizing bacteria in order to elucidate both the sulfur-oxidizing mechanism and the function of sulfur-oxidizing bacteria in the subsoil. Based on the physico-chemical properties of the soil, layers 4 and 5, which were located below 1 m in depth, were found to be potential acid sulfate soils and to be under semi-anaerobic conditions. However, the concentrations of water-soluble sulfate ions in layers 4 and 5 (88.2 to 444 mg S kg−1) were higher than those in layers 1 and 3 (16.1 and 8.29 mg S kg−1, respectively) and a significant number of sulfur-oxidizing bacteria (102–6 MPN g−1) was detected in layer 4. These results suggested that the oxidation of reduced sulfur compounds by sulfur-oxidizing bacteria had occurred in layer 4. Since no iron-oxidizing bacteria were detected in any layers, and it was reported that sulfur-oxidizing bacteria such as Acidithiobacillus thiooxidans could not oxidize pyrite directly, it was considered that the oxidation of the reduced sulfur compounds in layer 4 occurred through the following processes. At first, reduced sulfur compounds such as pyrite were oxidized chemically by ferric ions to intermediary sulfur compounds such as thiosulfate ions. Subsequently, sulfur-oxidizing bacteria in layer 4 oxidized these intermediary sulfur compounds to sulfate ions. However, it was considered that the oxidation rate of the reduced sulfur compounds in layer 4 was far slower than would occur under aerobic conditions.  相似文献   

20.
马铃薯内生固氮菌的分离及其促生特性研究   总被引:1,自引:2,他引:1       下载免费PDF全文
内生固氮菌是一类重要的植物促生菌,占据着植物组织内有利于营养供应和微环境适宜的生态位,能更好的发挥促生功能,促生机制包括固氮、解磷、产植物生长素、产ACC脱氨酶、产铁载体及拮抗病害等。本文从连作3年马铃薯根筛选获得8株内生固氮菌,其中短芽孢杆菌属(Brevibacterium)3株,芽孢杆菌属(Bacillus)3株和泛菌属(Pantoea)2株。促生特性研究发现:菌株Brevibacterium sp.GWR4具有较高固氮酶活性[16.206nmol C2H4/(mg蛋白质·h)],与圆褐固氮菌的固氮酶活性具有极显著性差异(P0.01);菌株Pantoea spp.GWR2、GWR3具有极高的产IAA能力,分别为186.07、162.21μg/m L,GWR2兼具产ACC脱氨酶活性[3.74μmol/(mg蛋白质·h)],GWR3兼具溶解无机磷的能力;菌株Brevibacterium sp.GWR5可以拮抗尖孢镰刀菌MLSOF(Fusarium xysporum)和茄病镰刀菌MLS-QB(Fusarium solani),兼具溶解有机磷和产IAA能力;Bacillus spp.GWR7、GWR8兼具固氮和产IAA能力。盆栽试验显示,分别接种Pantoea sp.GWR3,Brevibacterium spp.GWR4、GWR5和Bacillus spp.GWR7、GWR8后小白菜鲜重显著高于未接菌对照处理。可见,这5株菌兼具多种促生特性且对小白菜具有较好的促生效果,有望进一步研究开发成为微生物肥料生产菌种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号