共查询到20条相似文献,搜索用时 32 毫秒
1.
温度和水分对长白山不同海拔梯度土壤有机质分解的影响 总被引:1,自引:0,他引:1
WANG Dan HE Nian-Peng WANG Qing L Yu-Liang WANG Qiu-Feng XU Zhi-Wei ZHU Jian-Xing 《土壤圈》2016,26(3):399-407
Decomposition of soil organic matter(SOM) is of importance for CO_2 exchange between soil and atmosphere and soil temperature and moisture are considered as two important factors controlling SOM decomposition. In this study, soil samples were collected at 5 elevations ranging from 753 to 2 357 m on the Changbai Mountains in Northeast China, and incubated under different temperatures(5, 10, 15, 20, 25, and 30?C) and soil moisture levels(30%, 60%, and 90% of saturated soil moisture) to investigate the effects of both on SOM decomposition and its temperature sensitivity at different elevations. The results showed that incubation temperature(F = 1 425.10, P 0.001), soil moisture(F = 1 327.65, P 0.001), and elevation(F = 1 937.54, P 0.001) all had significant influences on the decomposition rate of SOM. The significant effect of the interaction of incubation temperature and soil moisture on the SOM decomposition rate was observed at all the 5 sampling elevations(P 0.001). A two-factor model that used temperature and moisture as variables fitted the SOM decomposition rate well(P 0.001) and could explain 80%–93% of the variation of SOM decomposition rate at the 5 elevations. Temperature sensitivity of SOM decomposition, expressed as the change of SOM decomposition rate in response to a 10?C increase in temperature(Q_(10)), was significantly different among the different elevations(P 0.01), but no apparent trend with elevation was discernible. In addition, soil moisture and incubation temperature both had great impacts on the Q_(10) value(P 0.01), which increased significantly with increasing soil moisture or incubation temperature. Furthermore, the SOM decomposition rate was significantly related to soil total Gram-positive bacteria(R~2= 0.33, P 0.01) and total Gram-negative bacteria(R~2= 0.58, P 0.001). These findings highlight the importance of soil moisture to SOM decomposition and its Q_(10) value,which needs to be emphasized under warming climate scenarios. 相似文献
2.
The synergistic and antagonistic interactions among biotic components in the rhizosphere play a crucial role in plant defence against soil-borne pathogens. We investigated if the rhizosphere helper bacterium Streptomyces sp. AcH 505 (HB) indirectly protects the plant from the parasitic nematode Pratylenchus penetrans by modifying the rhizosphere microbial community structure and whether these interactions are dependent on the growth stage of oaks. Changes in the abundance of Streptomyces sp. AcH 505 and the phospholipid fatty acid (PLFA) composition of the rhizosphere soil as well as oak shoot and root biomass were assessed. Investigated were the bud resting stage A and the bud swelling stage B with maximal root elongation of oak microcuttings at two successive harvest times. The deleterious effect of P. penetrans on oak biomass was dependent on plant development, being limited to oak microcuttings growing at the stage B. In comparison to control and HB inoculated soils, shoot biomass decreased by about 33% and 41%, and root biomass by about 33 and 48%, respectively. The antagonistic effect of Streptomyces against the nematode was linked to shifts in the rhizosphere microbial community. The Streptomyces AcH505 strain promoted growth of oak microcuttings at bud swelling stage B during maximal root elongation and enhanced the abundance of saprophytic and ectomycorrhizal fungi in the rhizosphere by 158% with respect to controls. Our results highlight the importance of Streptomyces for counteracting the damage of nematodes and promoting plant growth in natural ecosystems such as forests. 相似文献
3.
Summary To evaluate the role of plasmids in soil communities antibiotic-resistant bacteria have been isolated from soil. Among them, 419 l-aminopeptidase positive strains (Gram-negative) and 28 l-aminopeptidase negative strains (Gram-positive) were screened for the presence of plasmids. None of the Gram-negative organisms contained plasmids. Among the Gram-positive bacteria plasmid-harboring strains were detected. 相似文献
4.
By a leaching experiment with glass columns packed with submerged paddy soils, the relationships among numbers of total bacteria, total Gram-positive bacteria, culturare aerobic bacteria and a amount of bacterial biomass both in the leachate, and in the subsoil after leaching incubation were studied. The leachate from soil columns was collected every 3 d during the 30-d incubation period. The soil columns were packed with plow layer soil samples with and without rice straw (RS) amendment, and the subsoil column was connected to the plow layer soil column without RS. Numbers of total bacteria, culturable aerobic bacteria, and a amount of bacterial biomass in the leachate decreased with the incubation time. There was no correlation between the number of total bacteria in the leachate and the concentration of total organic carbon in the leachate. Bacteria less than 0.1 µsm3 in size predominated in the leachate, especially in that from the plow layer soil column with RS. Percentages of the number of Gram-positive bacteria in the leachate were very low (less than 7% of the total bacterial number), while the percentage in the subsoil after the leaching experiment was in the range of 21–82%. The sum of the number of bacteria percolated from the plow layer soil column with RS during the 30-d period of incubation and the sum of the amount of biomass C were 39 and 77% less than the corresponding values for the bacteria percolated from the plow layer soil column without RS. Percentages of culturable aerobic bacteria among the total bacteria ranged between 2.8 and 37% in the leachate, while less than 0.6% in the subsoil after the leaching experiment. 相似文献
5.
L. Zelles Q. Y. Bai R. Rackwitz D. Chadwick F. Beese 《Biology and Fertility of Soils》1995,19(2-3):115-123
Several soils subject to different cultivation and management practices were examined by analysis of fatty acid profiles derived from phospholipids and lipopolysaccharides, using an improved sequential method which is capable of measuring ester-linked and non-ester-linked phospholipid fatty acids (EL-PLFA, NEL-PLFA, respectively) and the hydroxy fatty acids in lipopolysaccharides. A good correlation was obtained (r>0.90) between the soil biomass and total EL-PLFA in the soils investigated, which ranged from forest soils to a variety of agricultural soils. Elucidation of the composition of the community structure was an additional task. Eukaryotes can be differentiated from bacteria by the presence of polyunsaturated and -hydroxy fatty acids, both of which were much more abundant in the OF layer of the forest soil than in the remaining samples. A relatively low proportion of monomethyl branched-chain saturated fatty acids was obtained in the forest OF horizon, these being indicators for Gram-positive bacteria and actinomycetes. Various subclasses of proteobacteria produce and mid-chain hydroxy fatty acids, which occur primarily in agricultural soils. The ratios between monounsaturated fatty acids and saturated fatty acids seem to be very useful parameters of soil environmental conditions. In addition, on the basis of the differences in composition of the NEL-PLFA and hydroxy fatty acids of lipopolysaccharides, clear indications for the community structure of various soils were obtained. In the forest soils much more abundant anaerobic micro-organisms and relatively less abundant proteobacteria were present than in the other soils. In the cultivated soils, however, the proportion of Gram-negative bacteria was considerably higher. Furthermore, eukaryotes appeared to be pre-dominant in the soils once used for a manure deposit site. 相似文献
6.
Christiane Kramer 《Soil biology & biochemistry》2006,38(11):3267-3278
In this study we used compound specific 13C and 14C isotopic signatures to determine the degree to which recent plant material and older soil organic matter (SOM) served as carbon substrates for microorganisms in soils. We determined the degree to which plant-derived carbon was used as a substrate by comparison of the 13C content of microbial phospholipid fatty acids (PLFA) from soils of two sites that had undergone a vegetation change from C3 to C4 plants in the past 20-30 years. The importance of much older SOM as a substrate was determined by comparison of the radiocarbon content of PLFA from soils of two sites that had different 14C concentrations of SOM.The 13C shift in PLFA from the two sites that had experienced different vegetation history indicated that 40-90% of the PLFA carbon had been fixed since the vegetation change took place. Thus PLFA were more enriched in 13C from the new C4 vegetation than it was observed for bulk SOM indicating recent plant material as preferentially used substrate for soil microorganisms. The largest 13C shift of PLFA was observed in the soil that had high 14C concentrations of bulk SOM. These results reinforce that organic carbon in this soil for the most part cycles rapidly. The degree to which SOM is incorporated into microbial PLFA was determined by the difference in 14C concentration of PLFA derived from two soils one with high 14C concentrations of bulk SOM and one with low. These results showed that 0-40% of SOM carbon is used as substrate for soil microorganisms. Furthermore a different substrate usage was identified for different microorganisms. Gram-negative bacteria were found to prefer recent plant material as microbial carbon source while Gram-positive bacteria use substantial amounts of SOM carbon. This was indicated by 13C as well as 14C signatures of their PLFA. Our results find evidence to support ‘priming’ in that PLFA indicative of Gram-negative bacteria associated with roots contain both plant- and SOM-derived C. Most interestingly, we find PLFA indicative of archeobacteria (methanothrophs) that may indicate the use of other carbon sources than plant material and SOM to a substantial amount suggesting that inert or slow carbon pools are not essential to explain carbon dynamics in soil. 相似文献
7.
Whole cell fatty acid (WCFA) compositions of three different structures of ectomycorrhizal (ECM) fungi: sporocarps, pure culture mycelia and ectomycorrhizas were analysed to evaluate the potential use of fatty acid profiles as biomarkers for ECM fungi and ectomycorrhiza-associated bacteria. Sporocarps of Amanita muscaria, Amanita rubescens, Lactarius rufus, Lactarius thejogalus, Leccinum scabrum, Paxillus involutus, Russula foetens, Russula rosea, Russula vesca, Suillus grevillei, Tylopilus felleus, Xerocomus badius, Xerocomus subtomentosus, pure cultures of A. muscaria, P. involutus, X. badius, X. subtomentosus, Suillus bovinus Suillus luteus and seven ectomycorrhizal morphotypes of Norway spruce were examined. Our results revealed species-specific composition of fatty acids of fungal sporocarps and pure culture mycelia. Ectomycorrhizal morphotypes distinguished and identified by morphological and molecular methods (PCR-RLFP and sequencing) created specific fatty acid profiles. The dominating fatty acids in pure cultures and sporocarps were 18:2ω6,9, 18:1ω9 and 16:0, whereas ectomycorrhizas also contained plant and bacterial specific fatty acids. Especially, fatty acids specific to Gram-positive bacteria 15:0 anteiso and 17:0 anteiso were present in relatively high amounts and suggested that these bacteria are dominating in the examined Norway spruce mycorrhizosphere. In conclusion, our results show that fatty acid based methods can be useful in studies of ectomycorrhizal fungi, both as a quick method for differentiation of fungal species and also in studies of mycorrhiza-associated microorganisms in the field. 相似文献
8.
为了改善黄土高原地区煤炭开采引起土壤质量急剧退化的现状,该文以玉米为供试植物,通过日光温室短期盆栽的方式,系统研究解钾细菌C6X和玉米生长对土壤钾素迁移的影响.结果表明:1)玉米生长条件下,解钾细菌在富钾矿物质量分数45%上层土壤(0~20 cm)中对速效钾增量的促进作用最佳.2)解钾细菌和玉米生长协同提高上层土壤钾素固定能力,缓效钾增量在土壤富钾矿物质量分数68%为最大值.3)解钾细菌和玉米生长协同促进土壤钾素上移能力,在富钾矿物质量分数45%水平,土壤上移速效钾呈最大值;同时,解钾细菌促进土壤上移速效钾和玉米钾素积累量二者趋于线性稳定,利于土壤钾肥长期管理.因此,解钾细菌和玉米生长协同促进土壤钾素的释放和固定,并促进土壤钾素上移. 相似文献
9.
Javad Keshavarz Zarjani Nasser Aliasgharzad Shahin Oustan Mostafa Emadi Ali Ahmadi 《Archives of Agronomy and Soil Science》2013,59(12):1713-1723
The ability of a few soil bacteria to transform unavailable forms of potassium (K) to an available form is an important feature in plant growth-promoting bacteria for increasing plant yields of high-K-demand crops. In this research, isolation, screening, and characterization of six isolates of K solubilizing bacteria (KSB) from some Iranian soils were carried out. The ability of all isolates were tested in three treatments including acid-leached soil, biotite, and muscovite by analyzing the soluble K content after 5 days of incubation at 28 ± 2°C. Identification and phylogenetic analyses were also carried out by morphological, biochemical, and 16S rDNA analyses. Among the six efficient isolates, five isolates belonged to Bacillus megaterium (JK3, JK4, JK5, JK6, and JK7), while isolate JK2 belonged to Arthrobacter sp. The soluble K contents in all isolated-treatments were significantly (p < 0.01) higher than the contents in nonbacteria treatment. Herein, isolate JK2 had lower potential for K solubilization (910 mg kg?1) compared with other isolates in acid-leached soils. The six bacterial strains showed higher solubilized K in biotite treatment than other two treatments. Overall, it can be concluded that the isolates belong to B. megaterium are the most efficient KSB under in vitro condition. 相似文献
10.
Uemeson José Dos Santos Gustavo Pereira Duda Marise Conceição Marques Eduardo Soares de Souza Michel Brossard 《Archives of Agronomy and Soil Science》2019,65(6):755-769
Land use affect soil C and microbial structure, especially in tropical dry areas. The objective of this study was to evaluate the effects of the land use on physical, chemical, and microbiological attributes of soils from Brazilian semiarid. We analyzed soil physical, chemical, total carbon stocks (TCS), water-soluble carbon (WSC), microbial biomass carbon (MBC) and microbial structure of soil from forest, no irrigation maize, succession areas (Anadenanthera falcate and Tabebuia alba) and secondary shrubby vegetation. The use of soil influences C stock. The forest soil showed higher TCS and MBC. The conversion in T. alba reduced in 9% soil total bacteria. The multivariate analysis showed that TCS, MBC and FAMEs contributed to separation of natural forest and other areas in the superficial layer. This study indicates that the conversion of forest into successional areas can decrease by up to 44% TCS and 68% MBC. The present study provided alarming data concerning the impact of land use on quality of soil in a tropical dry region in Northeastern Brazil. Our results provide an alternative tool for the management of deforested dry areas that could serve as guideline for management plan to sustainability for agricultural impacted dry areas. 相似文献
11.
J. P. Wu Z. F. Liu Y. X. Sun L. X. Zhou Y. B. Lin S. L. Fu 《Land Degradation u0026amp; Development》2013,24(4):400-406
Fast‐growing tree species are widely used as pioneers for reforestation. These plantations strongly affect the ecosystem productivity and nutrient cycling, whereas their effect on the soil microbial community is still unclear. In a reforestation chronosequence in subtropical China consisting of Eucalyptus plantation with ages of 1, 2, 4 or 5 years, we examined the response of the soil microbial community and its function. The results showed that soil bulk density and dissolved organic carbon decreased significantly along the chronosequence. Soil pH was highest in the 5‐year‐old plantation. The amount of bacterial phospholipid fatty acids (PLFAs) and arbuscular mycorrhizal fungal PLFAs increased, but the ratio of fungal‐to‐bacterial PLFAs decreased with increasing forest age. The composition of the soil microbial community obviously changed after 5 years' development. Redundancy analysis showed that dissolved organic carbon was the major factor associated with the changes of soil microbial community composition. The short‐rotation Eucalyptus plantation could affect the composition of soil microbial communities through changing soil available carbon when planted in subtropical region at the early developmental stage. We suggest that soil microbial community composition should be taken into consideration in the large‐scale reforestation activities. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
中国北方温带草原土壤微生物对气温变暖与添加氮素的响应特征 总被引:3,自引:0,他引:3
The responses of soil microbes to global warming and nitrogen enrichment can profoundly affect terrestrial ecosystem functions and the ecosystem feedbacks to climate change. However, the interactive effect of warming and nitrogen enrichment on soil microbial community is unclear. In this study, individual and interactive effects of experimental warming and nitrogen addition on the soil microbial community were investigated in a long-term field experiment in a temperate steppe of northern China. The field experiment started in 2006 and soils were sampled in 2010 and analyzed for phospholipid fatty acids to characterize the soil microbial communities. Some soil chemical properties were also determined. Five-year experimental warming significantly increased soil total microbial biomass and the proportion of Gram-negative bacteria in the soils. Long-term nitrogen addition decreased soil microbial biomass at the 0-10 cm soil depth and the relative abundance of arbuscular mycorrhizal fungi in the soils. Little interactive effect on soil microbes was detected when experimental warming and nitrogen addition were combined. Soil microbial biomass positively correlated with soil total C and N, but basically did not relate to the soil C/N ratio and pH. Our results suggest that future global warming or nitrogen enrichment may significantly change the soil microbial communities in the temperate steppes in northern China. 相似文献
13.
植被恢复对改善矿区生态环境至关重要,可促进重构土壤发育,从而调控生物地球化学循环和发挥生态系统功能。本研究为明确露天矿区植物恢复对土壤氮循环微生物类群及功能基因丰度的影响。 采集内蒙古准格尔旗黑岱沟露天矿东排土场苜蓿(GL)、沙棘(BL)、油松(CF)和刺槐(BF)复垦区及对照(CK)共25个表土样品,利用高通量qPCR芯片技术测定土壤氮循环功能基因丰度。 ①不同植被对土壤理化性质、酶活性及氮循环功能基因丰度影响有显著差异(P < 0.05)。BL对土壤有机碳、有效磷累积优于其他植被,BF对土壤铵态氮累积有优势,但土壤全氮和有机碳低于CK。复绿显著地提高土壤过氧化氢酶活性,并降低了土壤β-葡萄糖苷酶、脲酶和亮氨酸氨基肽酶活性。但复绿对土壤氮循环功能基因丰度的影响完全一致:BF > CF > BL > GL > CK。②土壤氮循环功能基因丰度与土壤pH呈显著性正相关(P < 0.01),与土壤硝态氮、总氮、脲酶、亮氨酸氨基肽酶和碱性磷酸酶活性呈显著性负相关(P < 0.05)。③不同植被直接影响土壤过氧化氢酶或硝化功能基因丰度从而操控土壤氮循环功能基因丰度,或通过反硝化功能基因丰度影响土壤过氧化氢酶再间接影响氮循环过程。 露天矿植物恢复影响土壤酶活性和氮循环功能基因丰度而影响土壤氮循环过程,灌丛(沙棘)对该地区土壤质量的改善有着更好的效果。 相似文献
14.
《Communications in Soil Science and Plant Analysis》2012,43(19):2502-2514
Five levels of water stress cycle (control flooded, control saturated, 5, 10, and 15 days of irrigation interval) and three potassium fertilization levels [80 kg, 120 kg, and kg 160 dipotassium oxide (K2O) ha?1] were exposed to investigate the influence of potassium fertilizer for minimizing water stress effect and maximizing productivity of rice. Different phyto-physiological parameters as well as uptake of major nutrient elements [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe)] were examined. It was observed that rice yield, harvest index, and other physiological parameters reduces with increasing duration of water stress while application of additional potassium fertilizer has progressive impact on those parameters. From our observation, 10 days of watering cycle with potassium fertilization at 120 kg K2O ha?1 produces highest grain yield and harvest index. Uptake of major nutrient elements was also enhanced by potassium fertilizer. Therefore, it can be stated that additional potassium fertilizer application could be useful to mitigate water stress effect in rice. 相似文献
15.
微生物菌剂对盐碱土理化和生物性状影响的研究 总被引:4,自引:0,他引:4
采用盆栽试验方法,研究了微生物菌剂对盐碱土壤微生物、养分、盐分及玉米苗期生长的影响。结果表明,施用微生物菌剂后,盐碱土壤中钾细菌和枯草芽孢杆菌数量、土壤有机质含量、速效N、P、K含量状况均明显高于无添加菌剂对照处理,其中以菌剂施用量为0.4g·kg^-1土的效果最明显。施用微生物菌剂后,土壤pH、含盐量均有不同程度地降低,菌剂施用量0.4g·kg^-1土的处理在前中期表现出较好的土壤脱盐效果,而菌剂施用量0.8g·kg^-1土的处理在后期脱盐效果较好。添加微生物菌剂促进玉米苗期株高和叶片数增加,有利于玉米地上部分干物质的积累,以菌剂施用量0.4g·kg^-1土的效果最明显。差异显著性检验表明,菌剂处理玉米株高、干物质重与无添加菌剂对照相比差异均达显著水平,但不同菌剂量处理间差异不明显。综合判定菌剂施用量0.4g·kg^-1土对盐碱土理化和生物性状改良效果较好。 相似文献
16.
土壤中发生的硝化作用是对p H高度敏感的典型过程。本文采用室内恒温培养法,结合定量PCR和高通量测序,研究石灰性紫色土硝化作用以及氨氧化细菌(Ammonia-oxidizing bacteria,AOB)、氨氧化古菌(Ammonia-oxidizing archaea,AOA)、亚硝酸盐氧化细菌(Nitrite-oxidizing bacteria,NOB)的丰度与群落结构对不同氮源的响应。结果表明:不同氮源均刺激土壤硝化作用的发生,CO(NH2)2处理下的净硝化速率最大,约是CK处理的4.76倍,(NH_4)2SO4和NH_4Cl处理下的净硝化速率分别为N 3.88和3.34 mg kg-1d-1。相比于(NH_4)2SO4和CO(NH2)2处理,NH_4Cl处理降低了硝态氮的累积量,抑制了铵态氮的减少量。AOB amo A基因拷贝数在28 d培养过程中变化显著(p0.05),在(NH_4)2SO4和CO(NH2)2处理中呈先增长后降低趋势,在NH_4Cl处理中呈持续增长趋势;而AOA amo A基因拷贝数无显著变化(p0.05)。说明石灰性紫色土硝化作用的主要推动者是AOB,而不是AOA。在28 d培养过程中,亚硝酸盐氧化细菌占总微生物的比例高于氨氧化细菌和古菌,意味着石灰性紫色土中可能存在全程氨氧化微生物(Comammox)。高通量测序的结果表明:石灰性紫色土中AOB的优势种群为亚硝化螺菌Nitrosospira Cluster 3,AOA的优势种群是土壤古菌Group 1.1b,NOB的优势种群是硝化螺菌Nitrospira。 相似文献
17.
18.
滨海盐碱地的特殊环境严重限制了土壤氮素转化和利用。微生物介导的水稻根际氨氧化过程是盐碱稻田土壤氮循环的关键过程,但限于研究盲点和技术不足,海水稻根际效应对滨海盐碱地土壤氨氧化微生物群落结构的影响仍少有报道。据此,本研究以“海稻86”为研究对象,分别设置低盐浓度(2 g·kg–1)和高盐浓度(6 g·kg–1)两组处理进行盆栽试验。结果显示:种植海水稻70 d后,高盐和低盐处理根际土壤的pH分别下降了0.82和0.70个单位,土壤有机质(SOM)含量下降了6.41和4.46 g·kg–1,腐殖质(HU)含量提高了5.76和4.45 g·kg–1,全氮(TN)含量减少0.46和0.37 g·kg–1,表明海水稻可通过降低盐碱地土壤pH,加速有机质分解转化,提高土壤氮循环速率。水稻根际作用可显著提高土壤微生物生物量碳(MBC)、微生物生物量氮(MBN)和微生物呼吸强度,并在种植第55天达到最高,在高盐处理中分别达到850.0 mg·kg–1、72.2 mg·kg–1 相似文献
19.
解磷、钾功能性微生物耐盐效应研究 总被引:1,自引:0,他引:1
围绕设施菜田土壤盐渍化问题,以解磷、钾功能微生物胶质芽孢杆菌和巨大芽孢杆菌为研究对象,探究了盐分胁迫对功能菌活性、解磷钾能力的影响,并阐明了含2种功能菌微生物菌剂在轻度盐渍化设施菜田的作用效应。结果表明,混合功能菌最大耐受盐浓度为10.5%NaCl,最适宜生长盐分浓度为0.5%NaCl,且解磷、钾能力最强,有效磷、钾增幅分别为52.06%,75.41%;此外,轻度盐渍化设施菜田的小区试验结果显示含2种功能菌的菌剂可提高番茄、甜瓜、西瓜果实VC和可溶性糖含量,分别增产104.81%,23.72%,28.96%;土壤中有效磷和速效钾含量分别提高95.12%,22.83%,134.52%和92.71%,6.66%,117.46%,显著增加了土壤菌群数量(P0.05)。综上所述,解磷、钾功能微生物具有耐盐性,可在轻度盐渍化土壤中定殖,并能活化土壤磷、钾,提高蔬菜产量和改善品质。 相似文献
20.
《Land Degradation u0026amp; Development》2018,29(8):2321-2329
Decomposition is one of the most important processes in ecosystem carbon (C) and nutrient cycles and is a major factor controlling ecosystem functions. The functioning of Afromontane ecosystems and their ability to provide ecosystem services are particularly threatened by climate and land‐use change. Our objectives were to assess the effects of climatic conditions (elevation and seasonality) and land‐use intensity on litter decomposition and C stabilization in 10 ecosystems along the unique 3,000‐m elevation gradient of Mt. Kilimanjaro. Tea Bag Index parameters (decomposition‐rate‐constant k and stabilization‐factor S) were used to quantify decomposition of standardized litter substrate. Nine pairs of tea bags (green and rooibos tea) were exposed in each ecosystem during the short‐wet, warm‐dry, long‐wet and cold‐dry season. Decomposition rate increased from k = 0.007 in savanna (SAV; 950‐m elevation), up to a maximum of k = 0.022 in montane cloud forest (2,100 m). This was followed by a 50% decrease in (sub‐)alpine ecosystems (>4,000 m). SAV experienced the strongest seasonal variation, with 23‐times higher S values in dry season compared with wet season. The conversion of SAV to maize monocultures (~1,000 m) and traditional agroforestry to large‐scale coffee plantations (~1,300 m) increased mean k values, and stabilization factors were about one‐third lower. Forests between 1,900 and 2,100 m represent the zone of sufficient moisture and optimal temperature conditions. Seasonal moisture (lower slope) and temperature limitation (alpine zone) decreases litter decomposition. Mt. Kilimanjaro ecosystems are highly sensitive to land‐use change, which accelerates ecosystem cycles and decreases C stabilization. 相似文献