首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison was made of the holding power of 5.5 and 4.5 mm cortical orthopedic screws inserted into third metacarpal and metatarsal cadaver bones from 3- and 8-year-old horses. The tensile strength of these screws was tested mechanically. In nine comparative trials of these screws, 5.5 mm screws pulled out of bone in five trials at an average of 116.0 kg tensile force and broke in four trials at an average of 1383.2 kg. A 4.5 mm screw pulled out of bone at 834.5 kg in one trial, and screws broke at an average of 849.2 kg in eight trials. The larger 5.5 mm screw required a significantly greater (p = 0.022) pullout force than the mean force at 4.5 mm screw breakage. Fixation failure was due to screw breakage or bone shear, with 5.5 mm screws occasionally creating bone fragmentation during pullout. The average tensile breaking strengths of the 5.5 mm screws (1391.4 kg) and 4.5 mm screws (832.7 kg) determined mechanically were similar to forces at screw breakage during pullout testing in bone. Since the 5.5 mm screws have greater holding power and tensile strength than 4.5 mm screws, the use of the 5.5 mm screw in fracture repair in adult horses is recommended.  相似文献   

2.
The holding power of orthopedic screws in the third metacarpal and metatarsal cadaver bones of foals that were aged from 1 to 14 days was tested. Comparative trials between screws inserted at the same site in contralateral bones from the same foal were performed to compare the holding power of 5.5 mm cortical and 6.5 mm cancellous screws in the metaphysis, and the holding power of 5.5 and 4.5 mm cortical screws in the diaphysis. A MTS servohydraulic tensile testing machine was used to perform screw pullouts at a displacement rate of 19 mm/sec. There was no significant difference between maximum holding power of 5.5 mm cortical screws and 6.5 mm cancellous screws in the metaphysis when expressed as kg per mm of bone width at the screw insertion site (p = 0.097) or as kg per mm of screw thread engaged in the bone (p = 0.17). There was no significant difference in holding power of 5.5 and 6.5 mm screws in the proximal versus distal metaphysis (p = 0.10). The 5.5 mm screws had significantly greater holding power than the 4.5 mm screws in the diaphysis (p = 0.0097). Fixation failure at screw pullout was always due to bone shear. In internal fixation in foal bone, the 5.5 mm screws may be a suitable alternative to 6.5 mm screws in the metaphysis. Use of 5.5 mm rather than 4.5 mm screws is recommended in the diaphysis because of greater holding power.  相似文献   

3.
The torsional monotonic structural material properties of equine metacarpi with or without, either a 5/16 inch or 3/8 inch diameter bicortical lateromedial middiaphyseal hole were assessed to determine the effect of a hole on metacarpal strength. Torsional stiffness was not significantly effected by the presence of a bicortical hole, whereas yield and failure angles, torques and energies of metacarpi with a hole were 51% to 97% of those of intact bones. Significant differences were not apparent for yield and failure mechanical properties between metacarpi with a 5/16 inch diameter hole and metacarpi with a 3/8 inch diameter hole; however, postyield mechanical properties were lower for metacarpi with a 3/8 inch hole. Whereas some metacarpi with a 5/16 inch hole were capable of plastic deformation before failure, metacarpi with a 3/8 inch diameter hole appeared to have sufficient stress concentration to propagate complete fracture on structural yield.  相似文献   

4.
The biomechanical characteristics of a 4-ring circular multiplanar fixator applied to equine third metacarpal bones with a 5 mm mid-diaphyseal osteotomy gap were studied. Smooth Steinmann pins, either 1/8 inch, 3/16 inch, or 1/4 inch, were driven through pilot holes in the bone in a crossed configuration and full pin fashion and fastened to the fixator rings using cannulated fixation bolts. The third metacarpal bone fixator constructs were tested in three different modes (cranial-caudal four-point bending, axial compression, and torsion). Loads of 2,000 N were applied in bending and axial compression tests and a load of 50 N ± m was applied during testing in torsion. Fixator stiffness was determined by the slope of the load displacement curves. Three constructs for each pin size were tested in each mode. Comparisons between axial stiffness, bending stiffness, and torsional stiffness for each of the three different pin sizes were made using one-way analysis of variance. There was no visually apparent deformation or permanent damage to the fixator frame, and no third metacarpal bone failure in any of the tests. Plastic deformation occurred in the 1/8 inch pins during bending, compression, and torsion testing. The 3/16 inch and 1/4 inch pins elastically deformed in all testing modes. Mean (±SE) axial compressive stiffness for the 1/8 inch, 3/16 inch, and 1/4 inch pin fixator constructs was: 182 ± 16 N/mm, 397 ± 21 N/mm, and 566 ± 8.7 N/mm; bending stiffness was 106 ± 3.3 N/mm, 410 ± 21 N/mm, and 548 ± 12 N/mm; and torsional stiffness was 6.15 ± 0.82 N.m/degree, 7.14 ± 0.0 N±m/degree, and 11.9 ± 1.0 N.m/degree respectively. For statically applied loads our results would indicate that a 4-ring fixator using two 1/4 inch pins per ring may not be stiff enough for repair of an unstable third metacarpal bone fracture in a 450 kg horse.  相似文献   

5.
Objectives— To compare compression pressure (CP) of 6.5 mm Acutrak Plus (AP) and 4.5 mm AO cortical screws (AO) when inserted in simulated lateral condylar fractures of equine 3rd metacarpal (MC3) bones. Study Design— Paired in vitro biomechanical testing. Sample Population— Cadaveric equine MC3 bones (n=12 pair). Methods— Complete lateral condylar osteotomies were created parallel to the midsagittal ridge at 20, 12, and 8 mm axial to the epicondylar fossa on different specimens grouped accordingly. Interfragmentary compression was measured using a pressure sensor placed in the fracture plane before screw placement for fracture fixation. CP was acquired and mean values of CP for each fixation method were compared between the 6.5 mm (AP) and 4.5 mm (AO) for each group using a paired t‐test within each fracture fragment thickness group with statistical significance set at P<.05. Results— AO screw configurations generated significantly greater compressive pressure compared with AP configurations. The ratio of mean CP for AP screws to AO screws at 20, 12, and 8 mm, were 21.6%, 26.2%, and 34.2%, respectively. Conclusion— Mean CP for AP screw fixations are weaker than those for AO screw fixations, most notably with the 20 mm fragments. The 12 and 8 mm groups have comparatively better compression characteristics than the 20 mm group; however, they are still significantly weaker than AO fixations. Clinical Relevance— Given that the primary goals of surgical repair are to achieve rigid fixation, primary bone healing, and good articular alignment, based on these results, it is recommended that caution should be used when choosing the AP screw for repair of lateral condylar fractures, especially complete fractures. Because interfragmentary compression plays a factor in the overall stability of a repair, it is recommended for use only in patients with thin lateral condyle fracture fragments, as the compression tends to decrease with an increase in thickness.  相似文献   

6.
Objective —To determine risk of failure of the Synthes 4.5-mm cannulated screw system instrumentation in equine bone and to compare its application with the Synthes 4.5-mm standard cortex screw system.
Study Design —The maximum insertion torque of the cannulated and standard cortex screw systems were compared with the ultimate torsional strengths of the equipment. Pullout strength and ultimate tensile load of cannulated and standard cortex screws were also determined.
Sample Population—Paired equine cadaver third metacarpal and third carpal bones.
Methods —Maximum insertion torque and ultimate torsional strengths were determined by using an axial-torsional, servohydraulic materials testing system and a hand-held torquometer. Pullout tests were performed by using a servohydraulic materials testing system.
Results —Maximum insertion torque of all cannulated instrumentation was less than ultimate torsional strength at all locations ( P < .05). Maximum insertion torques of cannulated taps and screws were greater than for standard taps and screws in the third carpal bone ( P < .002). Pullout strength of the cannulated screws was less than the standard cortex screws at all sites ( P < .001). Cannulated screws broke before bone failure in all but one bone specimen. Conclusions—The risk of cannulated instrument or screw failure during insertion into bone is theoretically low. The relatively low pullout strength of the cannulated screws implies that the interfragmentary compression achievable is likely to be less than with standard cortex screws. Clinical Relevance—The relatively low pullout strength of the cannulated screw suggests that its risk of failure during fracture repair is greater than with the standard cortex screw.  相似文献   

7.
OBJECTIVE: To compare drilling, tapping, and screw-insertion torque, force, and time for the 4.5-mm AO and 6.5-mm Acutrak Plus (AP) bone screws, and to compare the mechanical shear strength and stiffness of a simulated complete lateral condylar fracture of the equine third metacarpal bone (MC3) stabilized with either an AO or AP screw. STUDY DESIGN: In vitro biomechanical assessment of screw-insertion variables, and shear failure tests of a bone-screw-stabilized simulated lateral condylar fracture. SAMPLE POPULATION: Eight pairs of cadaveric equine MC3s METHODS: Metacarpi were placed in a fixture and centered on a biaxial load cell in a materials-testing system to measure torque, compressive force, and time for drilling, tapping, and screw insertion. Standardized simulated lateral condylar fractures were stabilized by either an AO or AP screw and tested in shear until failure. A paired t test was used to assess differences between screws, with significance set at P < .05. RESULTS: Insertion and mechanical shear testing variables were comparable for AO and AP insertion equipment and screws. CONCLUSION: The 6.5-mm tapered AP screw can be inserted in equine third metacarpal condyles and is mechanically comparable with the 4.5-mm AO screw for fixation of a simulated lateral condylar fracture. CLINICAL RELEVANCE: Considering the comparable mechanical behavior, the potential for less-persistent soft-tissue irritation with the headless design, and the ability to achieve interfragmentary compression by inserting the screw in one hole drilled perpendicular to the fracture plane, the 6.5-mm tapered AP screw may be an attractive alternative for repair of incomplete lateral condylar fractures in horses.  相似文献   

8.
9.
Objectives: To compare the monotonic biomechanical properties and fatigue life of a 5.5‐mm‐broad locking compression plate (5.5 LCP) fixation with a 4.5‐mm‐broad locking compression plate (4.5 LCP) fixation to repair osteotomized equine 3rd metacarpal (MC3) bones. Study Design: In vitro biomechanical testing of paired cadaveric equine MC3 with a middiaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. Animal Population: Fifteen pairs of adult equine cadaveric MC3 bones. Methods: Fifteen pairs of equine MC3 were divided into 3 test groups (5 pairs each) for (1) 4‐point bending single cycle to failure testing, (2) 4‐point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An 8‐hole, 5.5 LCP was applied to the dorsal surface of 1 randomly selected bone from each pair and an 8‐hole, 4.5 LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. All plates and screws were applied using standard ASIF techniques. All MC3 bones had middiaphyseal osteotomies. Mean test variable values for each method were compared using a paired t‐test within each group with significance set at P<.05. Results: Mean yield load, yield bending moment, composite rigidity, failure load, and failure bending moment, under 4‐point bending, single cycle to failure, of the 5.5 LCP fixation were significantly greater than those of the 4.5 LCP fixation. Mean cycles to failure in 4‐point bending of the 5.5 LCP fixation (170,535±19,166) was significantly greater than that of the 4.5 LCP fixation (129,629±14,054). Mean yield load, mean composite rigidity, and mean failure load under torsional testing, single cycle to failure was significantly greater for the broad 5.5 LCP fixation compared with the 4.5 LCP fixation. In single cycle to failure under torsion, the mean±SD values for the 5.5 LCP and the 4.5 LCP fixation techniques, respectively, were: yield load, 151.4±19.6 and 97.6±12.1 N m; composite rigidity, 790.3±58.1 and 412.3±28.1 N m/rad; and failure load: 162.1±20.2 and 117.9±14.6 N m. Conclusion: The 5.5 LCP was superior to the 4.5 LCP in resisting static overload forces (palmarodorsal 4‐point bending and torsional) and in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: These in vitro study results may provide information to aid in selection of an LCP for repair of equine long bone fractures.  相似文献   

10.
OBJECTIVE: To compare the mechanical properties of two stabilization methods for ostectomized equine third metacarpi (MC3): (1) an interlocking nail system and (2) two dynamic compression plates. Animal or Sample Population-Ten pairs of adult equine forelimbs intact from the midradius distally. METHODS: Ten pairs of equine MC3 were divided into two test groups (five pairs each): caudocranial four-point bending and torsion. Interlocking nails (6 hole, 13-mm diameter, 230-mm length) were placed in one randomly selected bone from each pair. Two dynamic compression plates one dorsally (12 hole, 4.5-mm broad) and one laterally (10 hole, 4.5-mm broad) were attached to the contralateral bone from each pair. All bones had 1 cm mid-diaphyseal ostectomies. Five construct pairs were tested in caudocranial four-point bending to determine stiffness and failure properties. The remaining five construct pairs were tested in torsion to determine torsional stiffness and yield load. Mean values for each fixation method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean (+/-SEM) values for the MC3-interlocking nail composite and the MC3-double plate composite, respectively, in four-point bending were: composite rigidity, 3,454+/-407.6 Nm/rad and 3,831+/-436.5 Nm/rad; yield bending moment, 276.4+/-40.17 Nm and 433.75+/-83.99 Nm; failure bending moment, 526.3+/-105.9 Nm and 636.2+/-27.77 Nm. There was no significant difference in the biomechanical values for bending between the two fixation methods. In torsion, mean (+/-SEM) values for the MC3-interlocking nail composite and the MC3-double plate composite were: composite rigidity, 124.1+/-16.61 Nm/rad and 262.4+/-30.51 Nm/rad; gap stiffness, 222.3+/-47.32 Nm/rad and 1,557+/-320.9 Nm/rad; yield load, 94.77+/-7.822 Nm and 130.66+/-20.27 Nm, respectively. Composite rigidity, gap stiffness, and yield load for double plate fixation were significantly higher compared with interlocking nail fixation in torsion. CONCLUSIONS: No significant differences in biomechanical properties were identified between an interlocking nail and double plating techniques for stabilization of ostectomized equine MC3 in caudocranial four-point bending. Double plating fixation was superior to interlocking nail fixation in torsion.  相似文献   

11.
Objectives— To compare in vitro monotonic biomechanical properties of an axial 3‐hole, 4.5 mm narrow dynamic compression plate (DCP) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion (DCP‐TLS) with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion (3‐TLS) for the equine proximal interphalangeal (PIP) joint arthrodesis. Study Design— Paired in vitro biomechanical testing of 2 methods of stabilizing cadaveric adult equine forelimb PIP joints. Sample Population— Cadaveric adult equine forelimbs (n=15 pairs). Methods— For each forelimb pair, 1 PIP joint was stabilized with an axial 3‐hole narrow DCP (4.5 mm) using 5.5 mm cortical screws in conjunction with 2 abaxial transarticular 5.5 mm cortical screws inserted in lag fashion and 1 with 3 parallel transarticular 5.5 mm cortical screws inserted in lag fashion. Five matching pairs of constructs were tested in single cycle to failure under axial compression, 5 construct pairs were tested for cyclic fatigue under axial compression, and 5 construct pairs were tested in single cycle to failure under torsional loading. Mean values for each fixation method were compared using a paired t‐test within each group with statistical significance set at P<.05. Results— Mean yield load, yield stiffness, and failure load under axial compression and torsion, single cycle to failure, of the DCP‐TLS fixation were significantly greater than those of the 3‐TLS fixation. Mean cycles to failure in axial compression of the DCP‐TLS fixation was significantly greater than that of the 3‐TLS fixation. Conclusion— The DCP‐TLS was superior to the 3‐TLS in resisting the static overload forces and in resisting cyclic fatigue. Clinical Relevance— The results of this in vitro study may provide information to aid in the selection of a treatment modality for arthrodesis of the equine PIP joint.  相似文献   

12.
13.
A 7-month-old, 180-kg, female foal was presented with open diaphyseal fracture of the left third metacarpal bone. The fractured limb was stabilized preoperatively with external coaptation. Open reduction and internal fixation were done using 4.5-mm broad dynamic compression plate, which was applied in a neutralization manner. Postoperatively, external support with padded bandage reinforced with gutter splint made of fiber glass was provided. The incisional infection and the contaminated wound on medial aspect of the metacarpal were managed with regular dressing. Complete radiographic union and functional recovery were noticed by 4 months postoperatively. Open diaphyseal fractures can be managed by proper preoperative fracture stabilization, wound management, and fixation methods using bone plate and external coaptation.  相似文献   

14.
Objectives: To compare number of cycles to failure for palmarodorsal 4‐point bending of a modified 5.5 mm broad locking compression plate (M5.5‐LCP) fixation with a 5.5 mm broad LCP (5.5‐LCP) fixation used to repair osteotomized equine third metacarpal (MC3) bones. Study Design: In vitro biomechanical testing. Animal Population: Adult equine cadaveric MC3 bones (n=6 pairs). Methods: An 8‐hole, M5.5‐LCP, obtained by having a 1.0 mm thickness removed from the bone contact portion of the 5.5‐LCP, was applied to the dorsal surface of 1 randomly selected MC3 from each pair, and an 8‐hole, 5.5‐LCP was applied dorsally to the contralateral bone from each pair using a combination of cortical and locking screws. Plates and screws were applied using standard ASIF techniques to MC3 bones with a mid‐diaphyseal osteotomy. MC3 constructs had palmarodorsal 4‐point bending cyclic fatigue testing. Mean cycles to failure for each method were compared using a paired t‐test within each group. Significance was set at P<.05. Results: Mean±SD cycles to failure of the M5.5‐LCP fixation (188,641±17,971) was significantly greater than that of the 5.5‐LCP fixation (166,497±15,539). Conclusion: M5.5‐LCP fixation was superior to 5.5‐LCP fixation of osteotomized equine MC3 bones in resisting cyclic fatigue under palmarodorsal 4‐point bending. Clinical Relevance: This suggests that biological plate fixation is not the ideal choice for osteotomized equine MC3 bones.  相似文献   

15.
Horseshoeing is a common practice, but effects on the hoof wall are poorly understood. Strain gauges were used to document and compare hoof behavior in vitro during flat weight bearing and after artificial heel elevation. Ten front limbs of Thoroughbred race horses, shod with conventional flat shoes, were used. Eight strain gauges were symmetrically distributed around the toe, quarters, and heels. Each limb was mounted to a testing machine (Kratos K5002; Kratos Dynamômetros, Ltda., Cotia-SP-Brazil) and subjected to a load equivalent to 30% of the donor's body weight. Strains (μ) were acquired by means of a computerized system and the results compared using Friedman and Wilcoxon statistical tests. There was greater strain variation when the heels were elevated. Compression predominated during flat weight bearing, with a tendency to horizontal traction after heel elevation. The changes in strain caused by heel elevation were not always symmetrical. Elevation of the heels tensed the toe and the medial quarter horizontally, increased load at the posterior portion of the hoof capsule, and hindered its expansion.  相似文献   

16.
OBJECTIVE: To compare the microstructural damage created in bone by pins with lathe-cut and rolled-on threads, and to determine the peak tip temperature and damage created by positive-profile external fixator pins with either hollow ground (HG) or trocar (T) tips during insertion. STUDY DESIGN: An acute, in vitro biomechanical evaluation. SAMPLE POPULATION: Twenty-seven canine tibiae. METHODS: Lathe-cut thread design with T point (LT-T), rolled-on thread design with T point (RT-T), and rolled-on thread design with HG point (RT-HG) pins were evaluated. Twenty pins of each type were inserted under constant drilling pressure into 12 canine tibiae (12 diaphyseal and 8 metaphyseal sites per pin type). Peak pin tip temperature, drilling energy, end-insertional pin torque, and pullout force were measured for each pin. For the histologic study, five pins of each type were inserted into cortical and cancellous sites in 15 additional tibiae. Entry and exit damage, and thread quality were assessed from 100 micron histologic sections by using computer-interfaced videomicroscopy. RESULTS: T-tipped pins reached higher tip temperature in both diaphyseal and metaphyseal bone compared with HG-tipped pins. RT-T pins had higher pullout strength (diaphyseal) and end-insertional torque compared with other combinations. No differences in drilling energy or insertional bone damage was found between the three pin types (P < .05). CONCLUSIONS: T-tipped pins mechanically outperformed HG-tipped pins. Pin tip and thread design did not significantly influence the degree of insertional bone damage. CLINICAL RELEVANCE: T-tipped pins may provide the best compromise between thermal damage and interface friction for maximizing performance of threaded external fixator pins.  相似文献   

17.
18.
Background: C-X-C motif ligand 1 (CXCL1) is an important chemokine of epithelial origin in rodents and humans.
Objectives: To assess in vivo and in vitro the regulation of CXCL1 in equine laminitis.
Animals: Twenty adult horses.
Methods: Real-time quantitative polymerase chain reaction (PCR) was used to assess expression of CXCL1 in samples of laminae, liver, skin, and lung from the black walnut extract (BWE) model of laminitis, and in cultured equine epithelial cells (EpCs). Tissue was obtained from control animals (CON, n = 5), and at 1.5 hours (early time point [ETP] group, n = 5), at the onset of leukopenia (developmental time point [DTP] group, n = 5), and at the onset of lameness (LAM group, n = 5) after BWE administration. EpCs were exposed to Toll-like/Nod receptor ligands, oxidative stress agents, and reduced atmospheric oxygen (3%). In situ PCR was used to localize the laminar cell types undergoing CXCL1 mRNA expression.
Results: Increases in laminar CXCL1 mRNA concentrations occurred in the ETP (163-fold [ P = .0001]) and DTP groups (21-fold [ P = .005]). Smaller increases in CXCL1 expression occurred in other tissues and organs. In cultured EpCs, increases ( P < .05) in CXCL1 mRNA concentration occurred after exposure to lipopolysaccharide (LPS [28-fold]), xanthine/xanthine oxidase (3.5-fold), and H2O2 (2-fold). Hypoxia enhanced the LPS-induced increase in CXCL1 mRNA ( P = .007). CXCL1 gene expression was localized to laminar EpCs, endothelial cells, and emigrating leukocytes.
Conclusion and Clinical Importance: These findings indicate that CXCL1 plays an early and possibly initiating role in neutrophil accumulation in the BWE laminitis model, and that laminar keratinocytes are an important source of this chemokine. New therapies using chemokine receptor antagonists may be indicated.  相似文献   

19.
20.
Objective— To compare stiffness and strength of a dynamic condylar screw plate combined with dorsal broad dynamic compression plate (DCS–bDCP) fixation with double broad dynamic compression plate (dbDCP) fixation used to repair oblique distal fractures of adult equine radii. Study Design— Experimental. Sample Population— Adult equine radii (n=10 pair). Methods— An unconstrained three‐dimensional loading–measurement system was used to determine stiffness of a 50 mm long intact, and then DCS–bDCP or dbDCP‐plated osteotomized/ostectomized segment of radii when subjected to a nondestructive sequence of compression, torsion, and lateral‐to‐medial (LM), medial‐to‐lateral (ML), cranial‐to‐caudal (CrCa), and caudal‐to‐cranial (CaCr) bending. Uniform load over the entire length of construct identified its weakest characteristics during torsion and LM and CrCa bending to failure. Results— No difference was observed between osteotomized/ostectomized DCS–bDCP and dbDCP construct stiffness for all 6 loading modes, and strength for all 3 failure loads. Ostectomized DCS–bDCP and dbDCP construct stiffness was significantly lower than osteotomized radii, the latter approaching intact for axial, LM, and CrCa bending. Most frequent failure was bone fracture through exit site of a screw located adjacent to osteotomy/ostectomy. Conclusions— DCS–DCP and dbDCP constructs had comparable strength and stiffness when repairing osteotomies/ostectomies in equine adult radius bone. Fracture reduction increased stiffness that approached intact bone for loads that placed the unplated side in compression. Clinical Relevance— DCS–bDCP and dbDCP constructs are comparable in stiffness and strength when applied to oblique distal diaphyseal osteotomies/ostectomies in equine radius bone. However, the DCS's localized effect on distal epiphyseal structure because of additional bone removal remains to be investigated under in vivo articular loading conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号