首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以k-ε湍流模型封闭Reynolds方程,采用VOF法追踪自由表面及SIMPLE算法求解方程组,对山区公路桥涵的常用消能方式及两种设计方式(波浪式、挑流式)进行了三维数值模拟.结果表明,常用式的消能率最小,底流速值最大,下游回流影响区域比较大;波浪式消能率大于常用式,但下游水流存在顶冲现象,形成了不规则、大区域的横轴漩流;挑流式消能率最大,底流速值最小,下游回流影响区域小于前两种消能方式,流速分布相对均匀,是桥涵比较合理的消能防冲方式.  相似文献   

2.
孔板(洞塞)消能研究综述   总被引:5,自引:0,他引:5  
孔板(洞塞)消能具有消能效率高和空化数大等优点。通过详细总结孔板(洞塞)消能的研究成果,认为如何优化孔板(洞塞)体型来提高消能效果和空化数,减少脉动压力,是个值得继续研究的问题。  相似文献   

3.
多孔孔板水力空化可视化与数值模拟   总被引:1,自引:0,他引:1  
基于自行搭建的多孔孔板空化反应装置,采用高速数码摄影和长工作距离显微成像技术,对多孔孔板中心孔内和孔板末下游进行空化特性试验研究,并分析了入口压力、空化数等参数对孔板水力空化的影响。试验结果显示:随着入口压力升高,孔内空化数不断下降且开始产生空化。孔板内和孔板下游都有空化区存在,且孔内空化对下游空化区影响大。数值模拟结果显示孔内空化与试验相符合,且下游空化区的产生是由孔内空化云脱落至下游漩涡区引起的。  相似文献   

4.
随着跨流域长隧洞引水工程的发展,洞内消能的研究也在进一步深化,南水北调西线一期工程中的阿安引水隧洞采用洞内消能工程。对阿安引水隧洞洞内消能工程的基本结构和尺寸的理论设计进行了水工模型试验研究,根据模型试验将原设计与修改方案的水流流态、流速和压强及消能效果进行对比,确定能使引水隧洞在各级引水流量下能安全可靠地运行的洞内消能工的体形和尺寸。  相似文献   

5.
深埋TBM输水隧洞结构数值模拟   总被引:1,自引:0,他引:1  
在考虑岩石材料弹塑性的基础上,采用ANSYS建立了模拟深埋TBM隧洞结构的三维有限元模型,采用程序的单元生死功能模拟了TBM施工的开挖过程;分析求得了深埋隧洞围岩变形的分布模式,并且进行了开挖后围岩的应力分析和管片衬砌的实际受力数值模拟,分析说明了开挖后围岩的稳定性和衬砌结构的安全性;数值计算得出的一些有意义结论,对深埋隧洞工程的安全设计和施工、运行具有指导意义。  相似文献   

6.
为了保障山区输水管网运行安全,设计导流式输水管网消能装置。装置由上壳体、消能空腔和下壳体组成,设置入口端和出口端,消能空腔内设有均匀间隔的消能板和导流孔。采用Fluent数值模拟和验证试验对试验方法进行验证,设置3种入口流速、3种导流孔径比例和有无导流片开展全因素试验,并对2种导流孔直径进行消能率对比试验。结果表明:在保证过流能力下,入口流速和导流孔径均对消能率起主导作用,入口流速越大,即流量越大,消能率越好。消能率与导流孔径负相关,导流孔径越小越有利于消能。当基础孔径相同时,为同时满足过流能力且确保消能达到较好效果,建议选择导流孔径比例保持不变布置方式。入口流速为1.0 m/s时,局部水头损失占总水头损失的96.3%,所以当计算总水头损失时,可以忽略沿程水头损失。当入口流速小于4.0 m/s时,选择不安装导流片,达到4.0 m/s时,有无导流片消能率基本持平,大于5.0 m/s后,选用安装导流片消能效果更优。  相似文献   

7.
泵站前池流态的数值模拟   总被引:3,自引:0,他引:3  
张贤明  吉庆丰 《灌溉排水》2001,20(1):35-38,42
应用水平方向上是正交贴体坐标系、垂直方向上是笛卡尔坐标系的混合数值网络系统和三维紊流数值模拟的方法,模拟了泵站前池水流流态。计算结果表明,对具有复杂几何边界的泵站前池水流,特别是前池中设置几何尺寸相对较小的底坎、导致墩等情况,方法非常适合,可以较好地模拟出局部区域复杂的水流流态,生成网络的计算工作量小,能非常方便地进行了不同整流方案的计算比较,实用性强。  相似文献   

8.
老炉下水库工程泄洪消能设计   总被引:1,自引:1,他引:0  
根据老炉下水库工程的水流条件、地形地质条件,阐述了该工程的泄洪消能设计方法,具体分析比较了挑流消能和底流消能两种方式。结论认为,采用收缩式窄缝挑坎消能方式与工程的水力及地形地质条件相适应。  相似文献   

9.
基于三维数值模拟的长大隧洞施工通风影响因素研究   总被引:1,自引:0,他引:1  
传统通风设计主要依靠经验,不注重影响通风的实际因素,常常给地下工程施工带来不便。构建长大隧洞三维模型,采用基于流体力学理论的三维数值模拟,对比分析隧洞掘进长度、通风方案、断面尺寸、洞壁粗糙高度等因素对通风流场的影响,为优化地下施工通风设计方案提供理论依据。  相似文献   

10.
为了研究孔板流量计在测量流量快速变化时的特性,以孔板流量计瞬时孔流系数C为研究对象,采用计算流体动力学(CFD)方法,基于Realizable分离涡模拟(DES)描述瞬时湍流流动,模拟研究了流量直线加速过程瞬时C和内流场随时间的演变结果.为了对比分析,将加速过程离散为不同流量下的稳态点,采用Realizable k-ε模拟各个稳态点的孔流系数和流场结构.稳态孔流系数C0的模拟结果与ISO试验回归曲线相比,误差在3%以内.将加速过程和稳态假设下模拟的孔流系数结果进行对比,结果表明:加速过程瞬时C从0逐渐增加至稳定值,而稳态C0基本保持在0.6附近.进一步将孔流系数与内流场和压力场分布的演化结合起来分析,得出以下结论:加速流动的漩涡滞后于稳定状态,加速前期压能没有在短距离内全部转换为动能,是导致C与C0产生偏差的内流原因.研究内容可为瞬时流量的测量提供参考基础.  相似文献   

11.
阶梯溢流坝水流数值模拟及消能分析   总被引:5,自引:0,他引:5  
利用k-ε紊流模型模拟了带有曲线自由表面的阶梯溢流坝和非阶梯溢流坝的紊流流场,采用流体体积分数法(VOF法)来确定自由表面。通过数值模拟,得到了2种溢流坝水流的较为合理的速度场,比较了二者的消能效果。模拟结果表明,阶梯溢流坝消能效果更好,阶梯溢流坝的消能率比非阶梯溢流坝的消能率高约17%。  相似文献   

12.
溢洪道是广泛应用于水利枢纽工程中的一种泄水建筑物。若泄洪消能问题处理不好,不仅会冲刷下游河床,还会影响枢纽工程中其他建筑物的正常运行。阐述溢洪道的水流特性和泄洪消能的形式,介绍与分析国内外对泄洪消能问题的研究现状,以期为溢洪道泄洪消能的进一步研究提供参考。  相似文献   

13.
对某水电站的尾水隧洞及下游调压室过渡过程中的非恒定流流态进行三维数值模拟,着重观测调压室内涌浪波动及调压室内底板压差变化过程。采用3种湍流模型对下游调压室及尾水隧洞进行了模拟,将调压室涌浪波动过程与调压室底板压差变化过程的三维计算结果与物理模型实验、一维数值计算的相应结果予以对比分析,阐明了不同湍流模型对过渡过程模拟的影响。结合三维模拟能捕捉流场内部流态的优势,探讨了涌浪波动过程中调压室水面波动过程及水流流态。  相似文献   

14.
王艳 《湖南农机》2015,(3):131-132,134
随着各种坝型设计理论的不断完善和施工工艺水平的提高,也出现了很多新型消能工,并能够结合当地情况综合利用消能工。  相似文献   

15.
尾水调压室是具有长有压尾水管道水电站的重要水工建筑物,其布置形式主要为阻抗式,选择合理的阻抗孔口尺寸对于充分发挥调压室水力性能具有重要的意义。根据调压室规范给定的阻抗式调压室阻抗孔尺寸的选择准则,采用特征线法结合FORTRAN语言编写程序,模拟并分析了不同尾水隧洞长度对尾水调压室阻抗孔尺寸选择的影响。结果表明:在一定范围内,尾水调压室下游的有压管线长度越长,隧洞水压力会有所增加,尾水调压室水位波动也会加强,而尾水进口到尾水调压室的距离影响不大。当尾水道总长度一定时,尾调越接近下库,所需阻抗孔尺寸越大。结论对工程实际具有一定指导意义。  相似文献   

16.
提出一种管道孔板消能装置,利用孔板扭转形成阶梯螺旋孔口使水流强制扭转,因水流在短距离内瞬间作较大角度的扭转而形成强度较大的螺旋流,其消能降压比率较高,并可在较大范围内进行调节,是一种农业节水灌溉管道系统消能降压装置,可用于农业节水灌溉供水系统和其他类似需要消能降压的管道系统.  相似文献   

17.
基于标准k-ε湍流模型,采用SIMPLEC算法,在贴体坐标系下,通过求解时均化的Navier-Stokes方程,对离心泵蜗壳内部三维不可压湍流场进行了数值模拟。得到了离心泵蜗壳内速度、速度矩、压力等参数的分布,分析了蜗壳内部流动的特征。研究结果表明:蜗壳对称面上流动比较均匀,随着半径的减小,周向速度分量和径向速度分量逐渐增加,且径向速度分量增加得较快;各径向截面上,速度分布的对称性好,幅角>160°后,径向截面上出现二次流现象;速度矩沿径向的分布随半径增大略有提高,沿蜗壳幅角方向的分布不等于常数,但其平均值基本不变;蜗壳内压力分布较为均匀,只是在隔舌附近有较大的压力梯度;流量沿蜗壳包角的分布基本遵循线性规律。  相似文献   

18.
本研究基于雷诺时均N-S方程,采用k~ε湍流模型,对标准离心泵叶轮内部湍流进行了数值模拟。采用质量加权平均湍流动能及湍流耗散率的方法,分析发现湍流动能和湍流耗散率沿半径的分布有十分相似的规律;除0.6Qd设计工况,湍流动能和湍流耗散率分布呈现出先增加,随后减小,最后增加的现象;0.6Qd设计工况下,湍流动能和湍流耗散率最大,流体能量损失最为严重,因此从效率方面考虑,应避免泵在小流量工况下运行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号