首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
By illuminating an individual rubidium atom stored in a tight optical tweezer with short resonant light pulses, we created an efficient triggered source of single photons with a well-defined polarization. The measured intensity correlation of the emitted light pulses exhibits almost perfect antibunching. Such a source of high-rate, fully controlled single-photon pulses has many potential applications for quantum information processing.  相似文献   

2.
Optical nonlinearities enable photon-photon interaction and lie at the heart of several proposals for quantum information processing, quantum nondemolition measurements of photons, and optical signal processing. To date, the largest nonlinearities have been realized with single atoms and atomic ensembles. We show that a single quantum dot coupled to a photonic crystal nanocavity can facilitate controlled phase and amplitude modulation between two modes of light at the single-photon level. At larger control powers, we observed phase shifts up to pi/4 and amplitude modulation up to 50%. This was accomplished by varying the photon number in the control beam at a wavelength that was the same as that of the signal, or at a wavelength that was detuned by several quantum dot linewidths from the signal. Our results present a step toward quantum logic devices and quantum nondemolition measurements on a chip.  相似文献   

3.
Benjamin S 《Science (New York, N.Y.)》2000,290(5500):2273-2274
Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.  相似文献   

4.
Two-photon laser scanning fluorescence microscopy   总被引:126,自引:0,他引:126  
Molecular excitation by the simultaneous absorption of two photons provides intrinsic three-dimensional resolution in laser scanning fluorescence microscopy. The excitation of fluorophores having single-photon absorption in the ultraviolet with a stream of strongly focused subpicosecond pulses of red laser light has made possible fluorescence images of living cells and other microscopic objects. The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation. This technique also provides unprecedented capabilities for three-dimensional, spatially resolved photochemistry, particularly photolytic release of caged effector molecules.  相似文献   

5.
O'Brien JL 《Science (New York, N.Y.)》2007,318(5856):1567-1570
In 2001, all-optical quantum computing became feasible with the discovery that scalable quantum computing is possible using only single-photon sources, linear optical elements, and single-photon detectors. Although it was in principle scalable, the massive resource overhead made the scheme practically daunting. However, several simplifications were followed by proof-of-principle demonstrations, and recent approaches based on cluster states or error encoding have dramatically reduced this worrying resource overhead, making an all-optical architecture a serious contender for the ultimate goal of a large-scale quantum computer. Key challenges will be the realization of high-efficiency sources of indistinguishable single photons, low-loss, scalable optical circuits, high-efficiency single-photon detectors, and low-loss interfacing of these components.  相似文献   

6.
The homogeneous linewidths in the photoluminescence excitation spectrum of a single, naturally formed gallium arsenide (GaAs) quantum dot have been measured with high spatial and spectral resolution. The energies and linewidths of the homogeneous spectrum provide a new perspective on the dephasing dynamics of the exciton in a quantum-confined, solid-state system. The origins of the linewidths are discussed in terms of the dynamics of the exciton in zero dimensions, in particular, in terms of lifetime broadening through the emission or absorption of phonons and photons.  相似文献   

7.
A high-brightness source of narrowband, identical-photon pairs   总被引:1,自引:0,他引:1  
We generated narrowband pairs of nearly identical photons at a rate of 5 x 10(4) pairs per second from a laser-cooled atomic ensemble inside an optical cavity. A two-photon interference experiment demonstrated that the photons could be made 90% indistinguishable, a key requirement for quantum information-processing protocols. Used as a conditional single-photon source, the system operated near the fundamental limits on recovery efficiency (57%), Fourier transform-limited bandwidth, and pair-generation-rate-limited suppression of two-photon events (factor of 33 below the Poisson limit). Each photon had a spectral width of 1.1 megahertz, ideal for interacting with atomic ensembles that form the basis of proposed quantum memories and logic.  相似文献   

8.
Picosecond optical excitation was used to coherently control the excitation in a single quantum dot on a time scale that is short compared with the time scale for loss of quantum coherence. The excitonic wave function was manipulated by controlling the optical phase of the two-pulse sequence through timing and polarization. Wave function engineering techniques, developed in atomic and molecular systems, were used to monitor and control a nonstationary quantum mechanical state composed of a superposition of eigenstates. The results extend the concept of coherent control in semiconductors to the limit of a single quantum system in a zero-dimensional quantum dot.  相似文献   

9.
We report on the electron analog of the single-photon gun. On-demand single-electron injection in a quantum conductor was obtained using a quantum dot connected to the conductor via a tunnel barrier. Electron emission was triggered by the application of a potential step that compensated for the dot-charging energy. Depending on the barrier transparency, the quantum emission time ranged from 0.1 to 10 nanoseconds. The single-electron source should prove useful for the use of quantum bits in ballistic conductors. Additionally, periodic sequences of single-electron emission and absorption generate a quantized alternating current.  相似文献   

10.
Kerr rotation measurements on a single electron spin confined in a charge-tunable semiconductor quantum dot demonstrate a means to directly probe the spin off-resonance, thus minimally disturbing the system. Energy-resolved magneto-optical spectra reveal information about the optically oriented spin polarization and the transverse spin lifetime of the electron as a function of the charging of the dot. These results represent progress toward the manipulation and coupling of single spins and photons for quantum information processing.  相似文献   

11.
12.
We have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.2 to 0.020 kelvin, as confirmed by the strength of the induced Pauli blockade of the trion absorption. Within the framework of quantum information processing, this corresponds to a spin-state preparation with a fidelity exceeding 99.8%.  相似文献   

13.
Experimental realization of Wheeler's delayed-choice gedanken experiment   总被引:1,自引:0,他引:1  
Wave-particle duality is strikingly illustrated by Wheeler's delayed-choice gedanken experiment, where the configuration of a two-path interferometer is chosen after a single-photon pulse has entered it: Either the interferometer is closed (that is, the two paths are recombined) and the interference is observed, or the interferometer remains open and the path followed by the photon is measured. We report an almost ideal realization of that gedanken experiment with single photons allowing unambiguous which-way measurements. The choice between open and closed configurations, made by a quantum random number generator, is relativistically separated from the entry of the photon into the interferometer.  相似文献   

14.
Although perfect copying of unknown quantum systems is forbidden by the laws of quantum mechanics, approximate cloning is possible. A natural way of realizing quantum cloning of photons is by stimulated emission. In this context, the fundamental quantum limit to the quality of the clones is imposed by the unavoidable presence of spontaneous emission. In our experiment, a single input photon stimulates the emission of additional photons from a source on the basis of parametric down-conversion. This leads to the production of quantum clones with near-optimal fidelity. We also demonstrate universality of the copying procedure by showing that the same fidelity is achieved for arbitrary input states.  相似文献   

15.
Cavity optomechanics studies the coupling between a mechanical oscillator and the electromagnetic field in a cavity. We report on a cavity optomechanical system in which a collective density excitation of a Bose-Einstein condensate serves as the mechanical oscillator coupled to the cavity field. A few photons inside the ultrahigh-finesse cavity trigger strongly driven back-action dynamics, in quantitative agreement with a cavity optomechanical model. We approach the strong coupling regime of cavity optomechanics, where a single excitation of the mechanical oscillator substantially influences the cavity field. The results open up new directions for investigating mechanical oscillators in the quantum regime and the border between classical and quantum physics.  相似文献   

16.
Conditional quantum dynamics, where the quantum state of one system controls the outcome of measurements on another quantum system, is at the heart of quantum information processing. We demonstrate conditional dynamics for two coupled quantum dots, whereby the probability that one quantum dot makes a transition to an optically excited state is controlled by the presence or absence of an optical excitation in the neighboring dot. Interaction between the dots is mediated by the tunnel coupling between optically excited states and can be optically gated by applying a laser field of the right frequency. Our results represent substantial progress toward realization of an optically effected controlled-phase gate between two solid-state qubits.  相似文献   

17.
Single-photon-added coherent states are the result of the most elementary amplification process of classical light fields by a single quantum of excitation. Being intermediate between a single-photon Fock state (fully quantum-mechanical) and a coherent (classical) one, these states offer the opportunity to closely follow the smooth transition between the particle-like and the wavelike behavior of light. We report the experimental generation of single-photon-added coherent states and their complete characterization by quantum tomography. Besides visualizing the evolution of the quantum-to-classical transition, these states allow one to witness the gradual change from the spontaneous to the stimulated regimes of light emission.  相似文献   

18.
Optical emission from individual strained indium arsenide (InAs) islands buried in gallium arsenide (GaAs) was studied. At low excitation power density, the spectra from these quantum dots consist of a single line. At higher excitation power density, additional emission lines appeared at both higher and lower energies, separated from the main line by about 1 millielectron volt. At even higher excitation power density, this set of lines was replaced by a broad emission peaking below the original line. The splittings were an order of magnitude smaller than the lowest single-electron or single-hole excited state energies, indicating that the fine structure results from few-particle interactions in the dot. Calculations of few-particle effects give splittings of the observed magnitude.  相似文献   

19.
Quantum dots are typically formed from large groupings of atoms and thus may be expected to have appreciable many-body behavior under intense optical excitation. Nonetheless, they are known to exhibit discrete energy levels due to quantum confinement effects. We show that, like single-atom or single-molecule two- and three-level quantum systems, single semiconductor quantum dots can also exhibit interference phenomena when driven simultaneously by two optical fields. Probe absorption spectra are obtained that exhibit Autler-Townes splitting when the optical fields drive coupled transitions and complex Mollow-related structure, including gain without population inversion, when they drive the same transition. Our results open the way for the demonstration of numerous quantum level-based applications, such as quantum dot lasers, optical modulators, and quantum logic devices.  相似文献   

20.
A major challenge for a scalable quantum computing architecture is the faithful transfer of information from one node to another. We report on the realization of an atom-photon quantum interface based on an optical cavity, using it to entangle a single atom with a single photon and then to map the quantum state of the atom onto a second single photon. The latter step disentangles the atom from the light and produces an entangled photon pair. Our scheme is intrinsically deterministic and establishes the basic element required to realize a distributed quantum network with individual atoms at rest as quantum memories and single flying photons as quantum messengers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号