首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior of the herbicide 2.4.5-T in german soils under arable land and forest Sorption, degradation and movement of trichlorphenoxy acetic acid (2.4.5-T) were investigated in 10 german soils with very different climatic and edaphic conditions in field and laboratory experiments. Under field conditions 50% of the applied herbicide were liminated in 8 to 46 days during summer time (13-18°C mean temperature), but in 40 to 220 days during (and after) winter time (4-7°C in the first weeks). Beside microbial decomposition losses due to volatility were observed. Uptake by plants (Lolium perenne) was lower than 1%. Sometimes 10% of 2.4.5-T moved downward more then 30cm during summer time but more then 50cm during winter time. Translocation in the profile was reduced by high contents of organic matter in the A horizon but not by high clay contents. Correlations between behaviour in the field and laboratory experiments were found so that the first could be predicted by the latter.  相似文献   

2.
长三角区麻栎树干液流的季节变化特征   总被引:1,自引:0,他引:1  
2012-05-2013-04,利用树干液流仪和小气象站对南京东善桥林场的麻栎(Quercus acutissima)树干液流速率及环境因子进行连续观测,研究分析麻栎树干液流的季节变化特征.结果表明:1)春、夏、秋季晴天与阴天的液流速率日变化表现出明显的昼夜变化规律,白天液流速率高于晚上,晴天液流速率高于阴天,而冬季则波动较大;2)春季液流速率平均峰值约为5.69 kg/h,夏、秋、冬季的平均峰值分别约为春季的1.58、1.08、0.012倍;3)春、夏、秋季液流速率峰值与太阳辐射峰值主要存在滞后效应,约1 ~2h,与空气温度、饱和水汽压差、土壤温度的峰值主要存在置前效应,约1 h;4)春、夏、秋季液流速率及日液流量与环境因子的相关系数较高,而冬季的相关系数则较低;5)春、夏、秋季液流速率及其日液流量与环境因子的回归模型决定系数均在0.8左右,而冬季的决定系数较低.  相似文献   

3.
Microbial induced nitrous oxide emissions from an arable soil during winter   总被引:18,自引:0,他引:18  
Nitrous oxide (N2O) release rates were measured from an fertilized and unfertilized plot on silty loam (Gleyic Luvisol) cropped with winter wheat. Rates were estimated using a closed soil cover box technique throughout a continuous investigation period of 12 months. The 12 months of investigation were separated into the cropping period (March to November) and the winter period (December to February). Soil management and all N-applications were made during the cropping period. The application of 220 kg N to the soil induced significantly higher N2O losses throughout the cropping season compared to the unfertilized soil. No significant differences were found during winter, where 70% of the annual N2O emissions were found. The temporal changes of the N2O emission rates on both soils were highly correlated (r=0.96; P≤0.001), and could be attributed to temporal changes in soil temperature (r=0.65; P≤0.01) resulting from freezing and thawing cycles. In order to decide whether the N2O production can be attributed to microbial or non-microbial processes in soil, the time courses of the N2O emissions from a γ-ray sterilized and a non-sterilized soil were compared in a laboratory experiment, where the freezing and thawing cycles were simulated according to field conditions. The results indicated, that microbial processes were responsible for N2O production in thawing and even frozen soils.  相似文献   

4.
A. Wild  A. Mazaheri 《Geoderma》1979,22(2):127-136
The adsorption coefficients of boric acid in a sandy loam and an organic loamy clay measured by batch equilibration were about twice as high as by elution from cylinders of soil aggregates. The latter values gave predicted rates of leaching which agreed with those observed in a field experiment under winter rainfall.Adsorption coefficients of weakly adsorbed solutes are easily measured from elution experiments in the laboratory and appear suitable for field use. They avoid the difficulties of incorporating reaction velocity constants and correcting empirically for the number of adsorption sites, which are required when the coefficients are measured by batch equilibration.  相似文献   

5.
We observed the presence of reduced sulfur compounds in the buried soil layer of a paddy field on Sado Island, Niigata Prefecture. We sampled the paddy field soil from 0 to 300 cm depth and analyzed the physico-chemical properties of the soil and the numbers of sulfur-oxidizing bacteria and iron-oxidizing bacteria in order to elucidate both the sulfur-oxidizing mechanism and the function of sulfur-oxidizing bacteria in the subsoil. Based on the physico-chemical properties of the soil, layers 4 and 5, which were located below 1 m in depth, were found to be potential acid sulfate soils and to be under semi-anaerobic conditions. However, the concentrations of water-soluble sulfate ions in layers 4 and 5 (88.2 to 444 mg S kg−1) were higher than those in layers 1 and 3 (16.1 and 8.29 mg S kg−1, respectively) and a significant number of sulfur-oxidizing bacteria (102–6 MPN g−1) was detected in layer 4. These results suggested that the oxidation of reduced sulfur compounds by sulfur-oxidizing bacteria had occurred in layer 4. Since no iron-oxidizing bacteria were detected in any layers, and it was reported that sulfur-oxidizing bacteria such as Acidithiobacillus thiooxidans could not oxidize pyrite directly, it was considered that the oxidation of the reduced sulfur compounds in layer 4 occurred through the following processes. At first, reduced sulfur compounds such as pyrite were oxidized chemically by ferric ions to intermediary sulfur compounds such as thiosulfate ions. Subsequently, sulfur-oxidizing bacteria in layer 4 oxidized these intermediary sulfur compounds to sulfate ions. However, it was considered that the oxidation rate of the reduced sulfur compounds in layer 4 was far slower than would occur under aerobic conditions.  相似文献   

6.
DOC concentrations in two streams of different hydrologic order are highly variable with the higher order stream exhibiting approximately a 3 mo response lag. Seasonal variation of SO4 concentration and flux are similar in both streams and do not reflect the seasonal patterns in precipitation. The basins store SO4 from May to November and lose SO4 from December to April. Consequently, SO4 concentrations and flux are maximum during January to March and reach a minimum during July to September. The highly organic lower order stream exhibits relatively stable pH controlled by two competing mechanisms. The pH is dominated by organic acids during the summer and autumn and by mineral acids during the late winter and early spring. In the higher order system, the pH tends to be inversely related to changes in SO4 concentration. These observations suggest that organic systems do respond to acidic deposition but that in some systems mineral acid influence may be restricted to the winter and spring.  相似文献   

7.
Seasonal sulfur dynamic of Salic Fluvisols The seasonal sulfur dynamic of semisubmerged Salic Fluvisols was investigated in Neuwarpeler-Außengroden (Southern North Sea coast) from August 1991 to October 1992. The study was mainly performed by investigating different sulfur species: Total sulfur (HNO3/HCI digestion), sulfide-sulfur (HCI digestion) and sulfate-sulfur were measured, organic sulfur and pyrite-sulfur were calculated. The dominating sulfur fraction was pyrite, followed by organic sulfur, sulfate and sulfide. The sulfide contents did not change remarkably in the course of the year. The sulfate contents were highest in summer and lowest in winter. They were positively correlated with the chloride contents. The total sulfur contents were highest in summer and winter. They show two phases of pyrite formation. The redox potentials show a simultaneous reoxidation in summer.  相似文献   

8.
规模化猪场妊娠母猪舍改进湿帘降温系统的环境特性   总被引:2,自引:1,他引:2  
为研究湿帘与地道结合的改进湿帘降温系统对妊娠母猪舍的环境特性,该研究采取现场测试的方法,选取河南地区某规模化母猪场妊娠舍为试验猪舍,对该猪舍夏季和冬季舍内热环境和空气质量环境进行测试和分析,结果表明:1)改进湿帘降温系统夏季对新风的平均降温功率增加了?84.4 kW,提高了25%的降温效果;冬季对新风的平均加热功率增加了121.6 kW且舍内无需供暖,87%以上的节能效果发生在地下风道前半程。2)试验猪舍舍内温湿度、风速分布均匀,且舍内温度波动低于3.7 ℃;综合猪舍母猪体感有效温度和呼吸频率等应激程度指标,母猪冬季处于舒适状态,夏季有轻度热应激状态现象。3)夏季和冬季舍内氨气(NH3)、二氧化碳(CO2)、和粉尘(PM2.5和PM10)的质量浓度分布均匀,且均小于国家标准规定的妊娠舍空气污染物浓度极限水平。综上所述,改进湿帘降温系统不仅降低妊娠母猪舍热环境调控的能耗并维持舍内空气质量环境良好,对建立环境友好型规模化母猪场具有积极意义。  相似文献   

9.
Many regional landfills for municipal solid waste (MSW) and industrial, commercial, institutional (ICI) wastes in cold, dry regions do not produce enough gas to support conventional gas extraction, treatment, and utilization or flaring. Yet, some solution is required to reduce emissions of methane and trace constituents to the atmosphere for the protection of the public and of the global climate. Methane oxidation, as a natural biochemical process, offers an opportunity to reduce methane emissions with a simple, passive alternative cover system. The goal of this article is to develop an effective design of Methane Oxidation Covers to achieve superior methane management performance while still producing equivalent closure conditions to conventional covers in semi-arid, cold climates. specifically, the goal is to reduce methane surface emissions by 50% to 80%, with no significant increase in leachate production compared with conventional covers of clay and topsoil. A field pilot test of an alternative cover system with gas collection, methane oxidation and heat extraction was conducted on an operating MSW/ICI waste landfill in Western Canada from August 2001 to February 2005. The cool, semi-arid region experiences cold winters (down to minus 40?C) for up to 5 months of the year, and annual precipitation rates of 150 mm to 450 mm p.a., of which one third to one half falls as snow. The need to direct gas from large surface areas to gas control zones of minimal area led to the configuration of the system of gas collection trenches connected to a central methane oxidation (MethOx) bed. The need to keep the bed above 5?C in winter required the development of a simple, passive heat transfer system. The maintenance of suitable moisture contents and the restriction of percolation were accomplished by the choice of filter material and the layering of the bed over the gas percolation layer. The test program was conducted in three phases from August 2001 to February 2005. In the first test phase, a methane oxidation bed of yardwaste compost performed well during the summer, but froze from November to April and did not resume oxidation until May. Oxygen was always present at or above 3%(vol.) and the moisture content remained above 25%(vol.) in the lower layer of the bed. The freezing temperature caused the most serious performance reduction. In the next phases of the study, a passive heating system was installed in an accelerated methane oxidation bed. Heat exchange from inside the landfill to the filter raised the bed temperature to 14 to 18?C during the third winter of the test. The moisture contents of 25% to 50% (v/v) in the bed were high, but the percolation rate was only 7.3 mm/a, or about 2% of total precipitation. The methane oxidation performance increased with the heating of the bed, from a 33% emission reduction in an unheated bed, up to 89% in a well heated filter bed. The achievement of high oxidation performance (over 80%), the complete reduction of surface emissions from the test area (to zero), and the low percolation rate through the filter bed (less that 2%) constitute a proof of principle for MethOx covers in cool, semi-arid climates. The possible improvement of the Alternative Cover System's performance by adding vegetation to the filter bed is currently being tested in the ongoing research project.  相似文献   

10.
Abstract. Experiments were set up at two sites to measure nitrogen (N) leaching loss from applications of separated pig/cattle slurry and cattle farmyard manure(FYM), during winters 1990/91–1993/94 (site A) and from broiler litter and FYM, during winters 1990/91–1992/93 (site B). The manures were applied at a target rate of 200 kg ha-1 total N during the autumn and winter to overwinter fallow or top dressed onto winter rye. The total N in leachate was calculated from leachate N concentrations, in samples collected using ceramic cups buried at 90 cm, and an estimate of drainage volume. Nitrogen losses were greatest following manure applications in September, October and November but losses following applications in December or January were not significantly elevated above those from untreated controls. Losses were consistently lower from FYM than from broiler litter or separated slurry. The presence of a cover crop (winter rye) significantly reduced overall N leaching compared with the fallow, but only reduced the manure N leaching losses at one site during one winter when a high proportion of drainage occurred late. The incorporation of a nitrification inhibitor (DCD) with manures applied in October did not significantly reduce the manure N leaching.  相似文献   

11.
Abstract. Nitrate leaching in lysimeters containing a tropical sandy agricultural soil was studied over two summers with maize ( Zea mays L.) and one winter season with wheat ( Triticum aestivum L.). The treatments included two moisture regimes and two nitrogen sources, cattle manure and inorganic fertilizer-N (either ammonium nitrate or ammonium sulphate) applied at 100 kg N/ha in the summers. Neither manure nor fertilizer-N was applied in the intervening winter. Leachate volume from the manured lysimeters was mostly larger than from fertilized ones because of poor growth and less evapotranspiration. The largest seasonal nitrate loads (17–39 kg N/ha) were obtained in the wet summer immediately after installation of the lysimeters. Nitrate loads in winter (3.7–18.6 kg N/ha) were larger than those obtained in fertilized (0.6 and 9.3 kg N/ha) and manured (0.3 and 3.0 kg N/ha) lysimeters for the two moisture regimes in the second summer. The drier conditions in the second summer decreased N-mineralization and leaching of manure.  相似文献   

12.
Temperature and substrate availability are among the key factors controlling microbial metabolism. The relative importance of these two drivers on soil organic matter turnover is, however, hotly debated. In this study, we investigated the effect of temperature changes on the potential enzyme activities involved in C (phenol-oxidase) and N (protease and amidase) cycling by incubating peat soils collected in winter and summer at the two typical temperatures recorded in the field during these two distinct periods (4 and 19 °C, respectively). In addition, to evaluate the effect of substrate limitations, we also compared the respiration rates of the thermally adapted soils with and without plant litter additions. Results showed that both collection season and incubation temperature had a significant effect on the two enzymes involved in N-cycling, with summer and increasing temperatures having detrimental effects on the potential activities of protease and amidase, whereas none of these factors affected phenol-oxidase activity. Furthermore, while adding readily decomposable substrate accelerated decomposition rates, CO2 flux rates were similar for all temperature conditions. Interestingly, the greatest contribution of litter to CO2 emissions occurred in the summer samples incubated at the lower temperature, whereas for the winter samples the stimulating effect on soil respiration was observed under warmer conditions. These findings suggest that the responses of soil microbial communities to temperature and substrate availability seem to strongly depend on the long-term temperature conditions and its interaction with substrate availability.  相似文献   

13.
在河北衡水潮土上进行田间试验,以当地习惯高氮用量(小麦季施N 300 kg/hm2,玉米季施N 240 kg/hm2)为对照,研究冬小麦-夏玉米轮作体系中减少氮肥用量对玉米季植株生长、氮素吸收及根际土壤中无机氮与微生物量氮的影响。结果表明,两季作物氮肥施用量减少25%和40%,对玉米产量、生物量及植株体内氮累积量未产生明显影响,氮肥利用率提高。不同氮肥施用量对根际和非根际土壤铵态氮含量的影响不显著;减少氮肥施用量,对玉米根际土壤硝态氮含量也没有明显影响。在玉米苗期、抽雄期和成熟期,习惯高施氮量处理的非根际土壤硝态氮含量较高,其中抽雄期,非根际土壤硝态氮含量较氮肥减施40%用量处理高出近一倍,但非根际土壤微生物量氮水平含量明显降低。氮肥减施未影响根际土壤微生物量碳、氮含量,反而增加了非根际土壤微生物量碳、氮水平。在高肥力的潮土上,冬小麦/夏玉米轮作体系中适当减施氮肥并未影响玉米根际土壤氮素水平,可保证玉米稳产,实现减氮增效。  相似文献   

14.
 The seasonal responses of soil microbial biomass C to changes in atmospheric temperature, soil moisture and soluble organic C were studied in soils from the karst areas of southwest China. These soils are relatively weathered, leached and impoverished, and have a low input of plant residues. Over 1 year, an inverse relationship between soil microbial biomass C and atmospheric temperature was found. The highest microbial biomass C occurred in winter and the lowest in summer, and ranged from 231–723 μg g–1 dry soil. Although there was no obvious relationship between microbial biomass C and soil moisture, a negative correlation existed between microbial biomass C and soluble organic C. In the ecosystem studied, the marked changes in soil microbial biomass C at above 20  °C were ascribed to fluctuations of soil moisture, which were controlled by climatic factors and geomorphic conditions. The patterns of soluble organic C turnover were similar to those of soluble carbohydrate C, both of which were controlled by soil drying-rewetting cycles. It was concluded that the lowest amounts of soil microbial biomass C, measured in the summer, resulted in increases in soluble organic C due to higher turnover rates of the former at warmer air temperatures. Thus, there was a marked seasonal change in soil microbial biomass C. Received: 1 November 1998  相似文献   

15.
Due to low cost and large abundance, coal continues to be one of the major energy sources for electricity generation in the USA. The dry desulfurization of flue gases during coal combustion produces a by-product that may be potentially useful as a soil amendment. However, the influence of dry flue gas desulfurization (DFGD) by-products on trace element losses with runoff from treated fields has not been well investigated. The objective of this study was to evaluate the effects of land application of a high-Ca, DFGD by-product on trace elements lost in runoff from natural rainfall events. The by-product was applied once on May 18, 2015 at 9 Mg DFGD ha?1 to small plots of a highly weathered Ultisol under managed-grassland land use in northwest Arkansas. Runoff was collected following each runoff-producing precipitation event for 1 year. Seasonal (i.e., summer (May to August), fall (August to November), winter (November to February), and spring (February to May)) runoff, annual runoff, runoff pH, and electrical conductivity did not differ significantly between DFGD treatments. Seasonal flow-weighted mean Ni concentrations and seasonal V loads were significantly greater in runoff when amended versus the unamended control when compared during at least one 3-month season by 44.5 and 86.9% for Ni and V, respectively. Based on the results of this study, it appears that land application of a high-Ca DFGD by-product at rates ≤?9 Mg ha?1 has minimal effects on trace elements in runoff.  相似文献   

16.
In temperate forest soils, N net mineralization has been extensively investigated during the growing season, whereas N cycling during winter was barely addressed. Here, we quantified net ammonification and nitrification during the dormant season by in situ and laboratory incubations in soils of a temperate European beech and a Norway spruce forest. Further, we compared temperature dependency of N net mineralization in in situ field incubations with those from laboratory incubations at controlled temperatures. From November to April, in situ N net mineralization of the organic and upper mineral horizons amounted to 10.9 kg N (ha · 6 months)–1 in the spruce soil and to 44.3 kg N (ha · 6 months)–1 in the beech soil, representing 65% (beech) and 26% (spruce) of the annual above ground litterfall. N net mineralization was largest in the Oi/Oe horizon and lowest in the A and EA horizons. Net nitrification in the beech soil [1.5 kg N (ha · 6 months)–1] was less than in the spruce soil [5.9 kg N (ha · 6 months)–1]. In the range of soil temperatures observed in the field (0–8°C), the temperature dependency of N net mineralization was generally high for both soils and more pronounced in the laboratory incubations than in the in situ incubations. We suggest that homogenization of laboratory samples increased substrate availability and, thus, enhanced the temperature response of N net mineralization. In temperate forest soils, N net mineralization during the dormant season contributes substantially to the annual N cycling, especially in deciduous sites with large amounts of litterfall immediately before the dormant season. High Q10 values of N net mineralization at low temperatures suggest a huge effect of future increasing winter temperature on the N cycle in temperate forests.  相似文献   

17.
蒸散发(Evapotranspiration,ET)的时空动态对理解水热对植被的影响具有重要作用。利用MODIS MOD16A2和MOD13A3月产品数据及气象数据,通过回归分析和相关分析等方法,研究了锡林郭勒草原不同类型草地近15年(2000—2014年)的ET月季动态及相关因子。结果表明:3—10月的ET均表现出草甸草原典型草原和沙地植被荒漠草原,1—2月和11—12月的ET均表现出草甸草原典型草原和沙地植被荒漠草原。荒漠草原11月ET最大,其余各类草原均在7月达到最大值;各类草原的最小ET均为5月。各类草原3—5月和10月的ET均为下降趋势,而1月、6月、7月和12月的ET均为上升趋势。春季、夏季和秋季的ET均表现出草甸草原典型草原和沙地植被荒漠草原,而冬季的ET表现出草甸草原典型草原和沙地植被荒漠草原。荒漠草原冬季ET最大,其余各类草原的ET均在夏季达到最大值。各类草原春季和秋季的ET均为下降趋势,而夏季和冬季的ET均为上升趋势。Pearson相关分析表明3—10月及春季、夏季和秋季的ET与NDVI和降水量显著正相关,与平均气温显著负相关(p0.05);相反,1—2月、11—12月及冬季的ET与降水量负相关,而与平均气温显著正相关(p0.05)。  相似文献   

18.
Nitrogen mineralization in the field at various soil depths   总被引:3,自引:0,他引:3  
The accumulation of mineral nitrogen was measured in the field in five soil-layers between 0 and 120 cm, in two plots of a long-term experiment contrasting high and low fertilizer inputs. Soil temperature and moisture were also determined. The total quantity of mineral N that accumulated in the 0-120 cm soil layer during 11 weeks in the summer was 138 and 78 kg ha−1, 25% and 45% of which were found below 60cm, in the high and the low fertility plots, respectively. Nitrogen mineralization in the field was predicted by a model which takes account of changes in temperature and moisture content of the soil. The potentially mineralizable N for this model was found from laboratory incubation experiments. The measured amount of mineralized N was 13 to 26% less than the predicted amount.  相似文献   

19.
Soil respiration of a desert soil was measured at the New Mexico State University Ranch in Southern New Mexico. Respiration rates were highest during late July and August after summer rains. Soil respiration data were used to estimate soil organic matter turnover which was 54 yr using summer data and 20 yr using both summer and winter data. The long turnover estimate for summer measurements resulted from temperatures above optimum in June and July. Diurnal soil respiration was also measured after a simulated 2.54 cm rain event. For both wetted and dry soils, temperature controlled the patterns of soil respiration with an optimum of near 41°C. Activation energy values decreased from 84.91 to 39.5 kJ mol?1 when the soil was wetted. A light-dark container method was tested as a possible means of estimating algal uptake of CO2, however, the method was not feasible for desert soils.  相似文献   

20.
准确测算和模拟农田潜热通量对农业生产有着重要意义。该研究基于波文比能量观测系统对苏南地区夏玉米和冬小麦生育期内潜热通量进行连续观测,采用Katerji-Perrier(KP)和Todorovic(TD)两种方法来确定Penman-Monteith(P-M)模型中冠层阻力参数,探究两种冠层阻力参数子模型的估算误差及成因。结果表明:冬小麦生育期内主要气象因子呈现相似变化趋势,净辐射日均值呈现出波动上升趋势。两种冠层阻力参数子模型对冬小麦潜热通量模拟均取得良好的模拟效果,模拟R2不小于0.84,纳什系数不小于0.86,但KP模型精度稍高于TD模型。KP模型对冬小麦和夏玉米潜热通量均有高估,而TD模型高估了夏玉米潜热通量,饱和水汽压差是影响KP和TD两种冠层阻力参数子模型误差的主要因素,且饱和水汽压差越大绝对误差越大。研究为当地农业用水管理提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号