首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate winter wheat identification and phenology extraction are essential for field management and agricultural policy making. Here, we present mechanisms of winter wheat discrimination and phenological detection in the Yellow River Delta(YRD) region using moderate resolution imaging spectroradiometer(MODIS) time-series data. The normalized difference vegetation index(NDVI) was obtained by calculating the surface reflectance in red and infrared. We used the Savitzky-Golay filter to smooth time series NDVI curves. We adopted a two-step classification to identify winter wheat. The first step was designed to mask out non-vegetation classes, and the second step aimed to identify winter wheat from other vegetation based on its phenological features. We used the double Gaussian model and the maximum curvature method to extract phenology. Due to the characteristics of the time-series profiles for winter wheat, a double Gaussian function method was selected to fit the temporal profile. A maximum curvature method was performed to extract phenological phases. Phenological phases such as the green-up, heading and harvesting phases were detected when the NDVI curvature exhibited local maximum values. The extracted phenological dates then were validated with records of the ground observations. The spatial patterns of phenological phases were investigated. This study concluded that, for winter wheat, the accuracy of classification is 87.07%, and the accuracy of planting acreage is 90.09%. The phenological result was comparable to the ground observation at the municipal level. The average green-up date for the whole region occurred on March 5, the average heading date occurred on May 9, and the average harvesting date occurred on June 5. The spatial distribution of the phenology for winter wheat showed a significant gradual delay from the southwest to the northeast. This study demonstrates the effectiveness of our proposed method for winter wheat classification and phenology detection.  相似文献   

2.
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain. Water-saving technologies and procedures are thus urgently required. To determine the water-saving potential of using micro-sprinkling irrigation(MSI) for winter wheat production, field experiments were conducted from 2012 to 2015. Compared to traditional flooding irrigation(TFI), micro-sprinkling thrice with 90 mm water(MSI1) and micro-sprinkling four times with 120 mm water(MSI2) increased the water use efficiency by 22.5 and 16.2%, respectively, while reducing evapotranspiration by 17.6 and 10.8%. Regardless of the rainfall pattern, MSI(i.e., MSI1 or MSI2) either stabilized or significantly increased the grain yield, while reducing irrigation water volumes by 20–40%, compared to TFI. Applying the same volumes of irrigation water, MSI(i.e., MSI3, micro-sprinkling five times with 150 mm water) increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%, respectively, compared to TFI. Because MSI could supply irrigation water more frequently in smaller amounts each time, it reduced soil layer compaction, and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer, which is beneficial to photosynthetic production in the critical period. In conclusion, MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40% compared to TFI, and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain.  相似文献   

3.
Drought is a major natural disaster causing crop yield losses, while its occurrence mechanism and spatiotemporal variations in a changing climate are still not clear. Based on a long-term climatic dataset(during 1958–2015) from weather stations in the North China Plain(NCP), the influencing mechanism of various climatic factors on drought risk of winter wheat was quantified by using sensitivity analysis, Mann-Kendall trend test and slope estimation. The results indicated that climatic factors have changed considerably over the past six decades in the growth season of winter wheat. As a result, winter wheat suffered from severe droughts(with 350 mm of water deficit during its growth season), particularly at the jointing–heading and heading–mature stages, which were critical to crop yield formation. There were large spatial and temporal variations in drought risk and climatic change factors at different growth stages of winter wheat. Despite precipitation playing a vital role in determining the spatiotemporal patterns of drought risk, high temperature and low humidity along with other climatic factors at key growth stages of winter wheat aggravated drought risk. Particularly, temperature at nearly 90% weather stations showed a notablely upward trend, which exacerbated water deficit and drought risk of winter wheat. Given the complexity and high uncertainty of climate change, these findings provide important information for adapting crop production to future climate change and accompanied droughts while ensuring food security and agricultural sustainability.  相似文献   

4.
利用华北平原59个农业气象观测站1981—2010年冬小麦生育期资料,分析了该区域冬小麦在气候变暖背景下开花期和成熟期的变化趋势特征。研究结果表明:近30年来,华北平原冬小麦开花期和成熟期均发生了明显变化。相对1980s而言,1990s开花期普遍提前2~5 d,成熟期提前1~6 d左右,2000s开花期则一般提前3~9 d,成熟期提前1~7 d左右。因此,随着年代推进,华北平原冬小麦开花期和成熟期提前趋势在进一步加剧。相对1980s而言,1990s生育期等值线普遍北移,而2000s等值线进一步北移的趋势更加明显。研究发现,3—5月月平均气温升高是开花期和成熟期提前的一个重要影响因素。  相似文献   

5.
To improve efficiency in the use of water resources in water-limited environments such as the North China Plain(NCP), where winter wheat is a major and groundwater-consuming crop, the application of water-saving irrigation strategies must be considered as a method for the sustainable development of water resources. The initial objective of this study was to evaluate and validate the ability of the CERES-Wheat model simulation to predict the winter wheat grain yield, biomass yield and water use efficiency(WUE) responses to different irrigation management methods in the NCP. The results from evaluation and validation analyses were compared to observed data from 8 field experiments, and the results indicated that the model can accurately predict these parameters. The modified CERES-Wheat model was then used to simulate the development and growth of winter wheat under different irrigation treatments ranging from rainfed to four irrigation applications(full irrigation) using historical weather data from crop seasons over 33 years(1981–2014). The data were classified into three types according to seasonal precipitation: 100 mm, 100–140 mm, and 140 mm. Our results showed that the grain and biomass yield, harvest index(HI) and WUE responses to irrigation management were influenced by precipitation among years, whereby yield increased with higher precipitation. Scenario simulation analysis also showed that two irrigation applications of 75 mm each at the jointing stage and anthesis stage(T3) resulted in the highest grain yield and WUE among the irrigation treatments. Meanwhile, productivity in this treatment remained stable through different precipitation levels among years. One irrigation at the jointing stage(T1) improved grain yield compared to the rainfed treatment and resulted in yield values near those of T3, especially when precipitation was higher. These results indicate that T3 is the most suitable irrigation strategy under variable precipitation regimes for stable yield of winter wheat with maximum water savings in the NCP. The application of one irrigation at the jointing stage may also serve as an alternative irrigation strategy for further reducing irrigation for sustainable water resources management in this area.  相似文献   

6.
The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China. Presently, most remote sensing process models use the “biomass×harvest index(HI)” method to simulate regional-scale winter wheat yield. However, spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale. Time-series dry matter partition coefficients(Fr) can dynamically reflect the dry matter partition...  相似文献   

7.
施用生物炭对华北平原冬小麦土壤水分和籽粒产量的影响   总被引:1,自引:0,他引:1  
为探究施用生物炭对华北平原农田土壤水分和冬小麦籽粒产量的影响,于2014—2017年在中国农业大学吴桥实验站设置施用生物炭7 200(BH)、3 600(BM)、1 800(BL)和0kg/hm~2(CK)4个处理。结果表明:与CK处理相比,BH、BM和BL处理3年平均增产分别为1.84%、7.28%和5.03%,并且降低了耗水量,水分利用效率分别提高5.96%~14.86%、9.42%~19.18%和5.96%~13.50%。同时施用生物炭增加了土壤含水量,与CK处理相比,土壤上层0~60cm BM处理增幅最大;中层60~120cm和下层120~200cm均为BL处理增幅最大(P0.05)。综上所述,施用生物炭可以增加土壤含水量和籽粒产量。统计分析表明,当施炭量分别为3 389~3 882和3 500~4 357kg/hm~2,0~60cm土层土壤含水量和籽粒产量均最高,且0~60cm土层土壤含水量与籽粒产量间存在显著的正相关关系(P0.05)。因此,施用生物炭可以增加土壤含水量,降低水分消耗,提高冬小麦籽粒产量和水分利用效率,在本试验条件下以施用3 000~4 500kg/hm~2为宜。  相似文献   

8.
目的明确云南玉溪烟区烤烟大田生育期适宜滴灌定额。方法2017年通过田间控水试验,以作物蒸散量(ET0)为基础,设置4个参考需水量水平(50% ET0、60% ET0、80% ET0和100% ET0)和3个设计湿润比(P,0.4、0.5和0.6),共12个滴灌定额处理,考察不同滴灌定额对烤烟生长发育和水肥利用效率的影响。结果参考需水量水平对烤烟株高、茎干物质量以及氮肥和钾肥利用率有显著影响(P<0.05),对除株高以外的农艺性状、叶和全株干物质量以及灌溉水利用率有极显著影响(P<0.01);设计湿润比对烤烟叶干物质量、根冠比和灌溉水利用率有显著影响(P<0.05),对烤烟主要农艺性状、茎和全株干物质量有极显著影响(P<0.01);两者对烤烟叶片和全株干物质量以及灌溉水利用率的影响存在显著交互效应(P<0.05),对烤烟叶片数和株高的影响存在极显著交互效应(P<0.01)。不同灌溉定额处理中,以80% ET0-0.5P处理烤烟成熟期生物量和农艺性状表现较优,氮、磷和钾肥及灌溉水利用率相对较高;与其他处理相比,其成熟期烤烟叶片和全株干物质量分别增加了14.6%~97.5%和4.3%~72.8%,氮肥和磷肥利用率分别提高了9.4%~84.2%和11.3%~178.1%。结论本试验条件下,该区域较为适宜的烤烟大田生育期滴灌灌溉定额为200 mm。  相似文献   

9.
本试验以京郊冬小麦田为研究对象,采用大田试验设置4个处理:CTF(常规整地+常规施肥)、PF(精准施肥)、LL(激光平地)、PF+LL(精准施肥+激光平地),采用静态箱-气相色谱法分析了不同农业措施下的土壤温室气体(CO_2、N_2O、CH_4)排放特征。结果表明:和CTF相比,LL冬小麦产量显著提高7.10%;降雨、灌溉后表层土壤含水率显著提高,冬小麦季土壤CH_4吸收量显著增加22%,土壤CO_2、N_2O累计排放量分别显著增加27.20%、8.81%。PF产量与CTF无显著差异;土壤N_2O排放峰出现在追肥后,PF排放峰值显著较CTF低15.41%,精准施肥至收获期间PF土壤N_2O显著减排15.05%,但整个冬小麦生长季PF土壤CO_2、N_2O累计排放量和CH_4累计吸收量与CTF均无显著差异。和CTF相比,PF+LL小麦产量显著提高8.2%,同时PF+LL土壤具备较好的持水性,雨季及灌溉后表层土壤含水率分别显著提高8.81%、7.63%,冬小麦生长季土壤CO_2累计排放量显著增加33.53%,CH_4吸收量显著增加31.5%,N_2O累计排放量无显著差异,但在精准施肥至收获期间土壤N_2O显著减排10.22%。综上,激光平地技术可显著增产但综合增温潜势较强,精准施肥技术对产量无显著影响,但降低了N_2O排放峰值,减少了精准施肥后的N_2O累计排放量,表现出一定的N_2O减排潜力。  相似文献   

10.
Large-scale crop mapping using remote sensing data is of great significance for agricultural production, food security and the sustainable development of human societies. Winter rapeseed is an important oil crop in China that is mainly distributed in the Yangtze River Valley. Traditional winter rapeseed mapping practices are insufficient since they only use the spectral characteristics during the critical phenological period of winter rapeseed, which are usually limited to a small region and can...  相似文献   

11.
Proper application of nitrogen(N) fertilizers and irrigation management are important production practices that can reduce nitrate leaching into groundwater and improve the N use efficiency(NUE). A lysimeter/rain shelter facility was used to study effects of the rate of N fertilization, type of N fertilizer, and irrigation level on key aspects of winter wheat production over three growing seasons(response variables were nitrate transport, N leaching, and NUE). Results indicated that nitrate concentration in the soil profile and N leaching increased with the rate of N fertilization. At the end of the third season, nitrate concentration in the top 0–75 cm layer of soil was higher with manure treatment while urea treatments resulted in higher concentrations in the 100–200 cm layer. With normal irrigation, 3.4 to 15.3% of N from applied fertilizer was leached from the soil, yet no leaching occurred under a stress irrigation treatment. The manure treatment experienced less N leaching than the urea treatment in all cases except for the 180 kg N ha-1 rate in 2011–2012(season 3). In terms of grain yield(GY), dry matter(DM) or NUE parameters, values for the manure treatment were lower than for the urea treatment in 2009–2010(season 1), yet were otherwise higher for urea treatment in season 3. GY and crop nitrogen uptake(NU) were elevated when the rate of N fertilizer increased, while the NUE decreased; GY, DM, and NU increased with the amount of irrigation. Data indicated that reduced rates of N fertilization combined with increased manure application and proper irrigation management can lower nitrate levels in the subsoil and reduce potential N leaching into groundwater.  相似文献   

12.
With increasing water shortage resources and extravagant nitrogen application, there is an urgent need to optimize irrigation regimes and nitrogen management for winter wheat(Triticum aestivum L.) in the North China Plain(NCP). A 4-year field experiment was conducted to evaluate the effect of three irrigation levels(W1, irrigation once at jointing stage; W2, irrigation once at jointing and once at heading stage; W3, irrigation once at jointing, once at heading, and once at filling stage; 60 mm each irrigation) and four N fertilizer rates(N0, 0; N1, 100 kg N ha~(-1); N2, 200 kg N ha~(-1); N3, 300 kg N ha~(-1)) on wheat yield, water use efficiency, fertilizer agronomic efficiency, and economic benefits. The results showed that wheat yield under W2 condition was similar to that under W3, and greater than that under W1 at the same nitrogen level. Yield with the N1 treatment was higher than that with the N0 treatment, but not significantly different from that obtained with the N2 and N3 treatments. The W2 N1 treatment resulted in the highest water use and fertilizer agronomic efficiencies. Compared with local traditional practice(W3 N3), the net income and output-input ratio of W2 N1 were greater by 12.3 and 19.5%, respectively. These findings suggest that two irrigation events of 60 mm each coupled with application of 100 kg N ha~(–1) is sufficient to provide a high wheat yield during drought growing seasons in the NCP.  相似文献   

13.
Excessive application of nitrogen (N) fertilizer is the main cause of N loss and poor use efficiency in winter wheat (Triticum aestivum L.) production in the North China Plain (NCP).  Drip fertigation is considered to be an effective method for improving N use efficiency and reducing losses, while the performance of drip fertigation in winter wheat is limited by poor N scheduling.  A two-year field experiment was conducted to evaluate the growth, development and yield of drip-fertigated winter wheat under different split urea (46% N, 240 kg ha–1) applications.  The six treatments consisted of five fertigation N application scheduling programs and one slow-release fertilizer (SRF) application.  The five N scheduling treatments were N0–100 (0% at sowing and 100% at jointing/booting), N25–75 (25% at sowing and 75% at jointing and booting), N50–50 (50% at sowing and 50% at jointing/booting), N75–25 (75% at sowing and 25 at jointing/booting), and N100–0 (100% at sowing and 0% at jointing/booting).  The SRF (43% N, 240 kg ha–1) was only used as fertilizer at sowing.  Split N application significantly (P<0.05) affected wheat grain yield, yield components, aboveground biomass (ABM), water use efficiency (WUE) and nitrogen partial factor productivity (NPFP).  The N50–50 and SRF treatments respectively had the highest yield (8.84 and 8.85 t ha–1), ABM (20.67 and 20.83 t ha–1), WUE (2.28 and 2.17 kg m–3) and NPFP (36.82 and 36.88 kg kg–1).  This work provided substantial evidence that urea-N applied in equal splits between basal and topdressing doses compete economically with the highly expensive SRF for fertilization of winter wheat crops.  Although the single-dose SRF could reduce labor costs involved with the traditional method of manual spreading, the drip fertigation system used in this study with the N50–50 treatment provides an option for farmers to maintain wheat production in the NCP.  相似文献   

14.
In recent years, the use of fertigation technology with center pivot irrigation systems has increased rapidly in the North China Plain(NCP). The combined effects of water and nitrogen application uniformity on the grain yield, water use efficiency(WUE) and nitrogen use efficiency(NUE) have become a research hotspot. In this study, a two-year field experiment was conducted during the winter wheat growing season in 2016–2018 to evaluate the water application uniformity of a center pivot with two low pressure sprinklers(the R3000 sprinklers were installed in the first span, the corresponding treatment was RS; the D3000 sprinklers were installed in the second span, the corresponding treatment was DS) and a P85 A impact sprinkler as the end gun(the corresponding treatment was EG), and to analyze its effects on grain yield, WUE and NUE. The results showed that the water application uniformity coefficients of R3000, D3000 and P85 A along the radial direction of the pivot(CU_H) were 87.5, 79.5 and 65%, respectively. While the uniformity coefficients along the traveling direction of the pivot(CU_C) were all higher than 85%. The effects of water application uniformity of the R3000 and D3000 sprinklers on grain yield were not significant(P0.05); however, the average grain yield of EG was significantly lower(P0.05) than those of RS and DS, by 9.4 and 11.1% during two growing seasons, respectively. The coefficients of variation(CV) of the grain yield had a negative correlation with the uniformity coefficient. The CV of WUE was more strongly affected by the water application uniformity, compared with the WUE value, among the three treatments. The NUE of RS was higher than those of DS and EG by about 6.1 and 4.8%, respectively, but there were no significant differences in NUE among the three treatments during the two growing seasons. Although the CU_H of the D3000 sprinklers was lower than that of the R3000, it had only limited effects on the grain yield, WUE and NUE. However, the cost of D3000 sprinklers is lower than that of R3000 sprinklers. Therefore, the D3000 sprinklers are recommended for winter wheat irrigation and fertigation in the NCP.  相似文献   

15.
《农业科学学报》2019,18(8):1701-1713
North China Plain(NCP) is the primary winter wheat production region in China, characterized by smallholder farming systems. Whereas the winter wheat average yield of smallholder farmers is currently low, the yield potential and limiting factors driving the current yield gap remain unclear. Therefore, increasing the wheat yield in NCP is essential for the national food security. This study monitored wheat yield, management practices and soil nutrient data in 132 farmers' fields of Xushui County, Baoding City, Hebei Province during 2014–2016. These data were analyzed using variance and path analysis to determine the yield gap and the contribution of yield components(i.e., spikes per hectare, grain number per spike and 1 000-grain weight) to wheat yield. Then, the limiting factors of yield components and the optimizing strategies were identified by a boundary line approach. The results showed that the attainable potential yield for winter wheat was 10 514 kg ha~(–1). The yield gaps varied strongly between three yield groups(i.e., high, middle and low), which were divided by yield level and contained 44 farmers in each group, and amounted to 2 493, 1 636 and 814 kg ha~(–1), respectively. For the three yield components, only spikes per hectare was significantly different(P0.01) among the three yield groups. For all 132 farmers' fields, correlation between yield and spikes per hectare(r=0.51, P0.01), was significantly positive, while correlations with grain number per spike(r=–0.16) and 1 000-grain weight(r=–0.10) were not significant. The path analysis also showed that the spikes per hectare of winter wheat were the most important component to the wheat yield. Boundary line analysis showed that seeding date was the most limiting factor of spikes per hectare with the highest contribution rate(26.7%), followed by basal N input(22.1%) and seeding rate(14.5%), which indicated that management factors in the seeding step were the most important for affecting spikes per hectare. For desired spikes per hectare(6.598×10~6 ha~(–1)),the seeding rate should range from 210–300 kg ha~(–1), seeding date should range from 3th to 8th October, and basal N input should range from 90~(–1)80 kg ha~(–1). Compared to these reasonable ranges of management measures, most of the farmers' practices were not suitable, and both lower and higher levels of management existed. It is concluded that the strategies for optimizing yield components could be achieved by improving wheat seeding quality and optimizing farmers' nutrient management practices in the NCP.  相似文献   

16.
基于支持向量回归的关中平原冬小麦估产研究   总被引:1,自引:0,他引:1  
【目的】小麦产量估测为有关部门制定政策和经济计划提供依据,在粮食宏观调控中发挥重要作用。【方法】文章采用支持向量回归方法估测冬小麦产量,以陕西省关中平原的5个市(西安市、宝鸡市、铜川市、渭南市、咸阳市)作为研究区,将2011—2016年研究区内冬小麦4个生育时期(返青期、拔节期、抽穗—灌浆期、乳熟期)的条件植被温度指数、叶面积指数和每年的单产数据作为总样本,划分训练集和试验集。基于MATLAB平台和LIBSVM3.23软件包,建立研究区冬小麦产量回归预测模型,得到产量预测结果并评价模型精度。【结果】回归模型的决定系数为0.88,平均绝对百分比误差为6.12%,均方根误差336.39 kg/hm~2。【结论】支持向量回归模型拟合较为理想,有较高的预测精度和较强的泛化能力。回归时的重要参数有惩罚因子C和核参数σ,其中核参数σ对模型精度影响更大。研究表明用该回归模型进行冬小麦产量预测是可行的,支持向量回归方法在粮食产量预测领域有良好的应用前景。  相似文献   

17.
Water shortage has threatened sustainable development of agriculture globally as well as in the North China Plain(NCP).Irrigation,as the most effective way to increase food production in dry land,may not be readily available in the situation of drought.One of the alternatives is to supply plants with enough nutrients so that they can be more sustainable to the water stress.The objective of this study was to explore effects of irrigation and sulphur(S)application on water consumption,dry matter accumulation(DMA),and grain yield of winter wheat in NCP.Three irrigation regimes including no irrigation(rainfed,I_0)during the whole growth period,once irrigation only at jointing stage(90 mm,I_1),and twice respective irrigation at jointing and anthesis stages(90 mm plus 90 mm,I_2),and two levels of S application including 0(S_0)and 60 kg ha~(–1)(S_(60))were designed in the field experiment in NCP.Results showed that increasing irrigation times significantly increased mean grain yield of wheat by 12.5–23.7%and nitrogen partial factor productivity(NPFP)by 21.2–45.0%in two wheat seasons,but markedly decreased crop water use efficiency(YWUE).Furthermore,S supply 60 kg ha~(–1) significantly increased mean grain yield,YWUE,IWUE and NPFP by 5.6,6.1,23.2,and 5.6%(across two wheat seasons),respectively.However,we also found that role of soil moisture prior to S application was one of important greater factors on improving the absorption and utilization of storage water and nutrients of soil.Thus,water supply is still the most important factor to restrict the growth of wheat in the present case of NCP,supplying 60 kg ha~(–1) S with once irrigation 90 mm at the jointing stage is a relatively appropriate recommended combination to improve grain yield and WUE of wheat when saving water resources is be considered in irrigated wheat farmlands of NCP.  相似文献   

18.
Active canopy sensor (ACS)—based precision nitrogen (N) management (PNM) is a promising strategy to improve crop N use efficiency (NUE). The GreenSeeker (GS) sensor with two fixed bands has been applied to improve winter wheat (Triticum aestivum L.) N management in North China Plain (NCP). The Crop Circle (CC) ACS-470 active sensor is user configurable with three wavebands. The objective of this study was to develop a CC ACS-470 sensor-based PNM strategy for winter wheat in NCP and compare it with GS sensor-based N management strategy, soil Nmin test-based in-season N management strategy and conventional farmer’s practice. Four site-years of field N rate experiments were conducted from 2009 to 2013 to identify optimum CC vegetation indices for estimating early season winter wheat plant N uptake (PNU) and grain yield in Quzhou Experiment Station of China Agricultural University located in Hebei province of NCP. Another nine on-farm experiments were conducted at three different villages in Quzhou County in 2012/2013 to evaluate the performance of the developed N management strategy. The results indicated that the CC ACS-470 sensor could significantly improve estimation of early season PNU (R2 = 0.78) and grain yield (R2 = 0.62) of winter wheat over GS sensor (R2 = 0.60 and 0.33, respectively). All three in-season N management strategies achieved similar grain yield as compared with farmer’s practice. The three PNM strategies all significantly reduced N application rates and increased N partial factor productivity (PFP) by an average of 61–67 %. It is concluded that the CC sensor can improve estimation of early season winter wheat PNU and grain yield as compared to the GS sensor, but the PNM strategies based on these two sensors perform equally well for improving winter wheat NUE in NCP. More studies are needed to further develop and evaluate these active sensor-based PNM strategies under more diverse on-farm conditions.  相似文献   

19.
Fractional vegetation cover (FVC) is an important parameter to measure crop growth. In studies of crop growth monitoring, it is very important to extract FVC quickly and accurately. As the most widely used FVC extraction method, the photographic method has the advantages of simple operation and high extraction accuracy. However, when soil moisture and acquisition times vary, the extraction results are less accurate. To accommodate various conditions of FVC extraction, this study proposes a new FVC extraction method that extracts FVC from a normalized difference vegetation index (NDVI) greyscale image of wheat by using a density peak k-means (DPK-means) algorithm. In this study, Yangfumai 4 (YF4) planted in pots and Yangmai 16 (Y16) planted in the field were used as the research materials. With a hyperspectral imaging camera mounted on a tripod, ground hyperspectral images of winter wheat under different soil conditions (dry and wet) were collected at 1 m above the potted wheat canopy. Unmanned aerial vehicle (UAV) hyperspectral images of winter wheat at various stages were collected at 50 m above the field wheat canopy by a UAV equipped with a hyperspectral camera. The pixel dichotomy method and DPK-means algorithm were used to classify vegetation pixels and non-vegetation pixels in NDVI greyscale images of wheat, and the extraction effects of the two methods were compared and analysed. The results showed that extraction by pixel dichotomy was influenced by the acquisition conditions and its error distribution was relatively scattered, while the extraction effect of the DPK-means algorithm was less affected by the acquisition conditions and its error distribution was concentrated. The absolute values of error were 0.042 and 0.044, the root mean square errors (RMSE) were 0.028 and 0.030, and the fitting accuracy R2 of the FVC was 0.87 and 0.93, under dry and wet soil conditions and under various time conditions, respectively. This study found that the DPK-means algorithm was capable of achieving more accurate results than the pixel dichotomy method in various soil and time conditions and was an accurate and robust method for FVC extraction.  相似文献   

20.
Reducing irrigation water use by improving water use efficiency (WUE) in grain production is critical for the development of sustainable agriculture in the North China Plain (NCP). This article summarizes the research progresses in WUE improvement carried out at the Luancheng station located in the Northern part of NCP for the past three decades. Progresses in four aspects of yield and WUE improvement are presented, including yield and WUE improvement associated with cultivar selection, irrigation management for improving yield and WUE under limited water supply, managing root system for efficient soil water use and reducing soil evaporation by straw mulch. The results showed that annual average increase of 0.014 kg·m-3 for winter wheat and 0.02 kg·m-3 in WUE were observed for the past three decades, and this increase was largely associated with the improvement in harvest index related to cultivar renewal and an increase in chemical fertilizer use and soil fertility. The results also indicated that deficit irrigation for winter wheat could significantly reduce the irrigation water use, whereas the seasonal yield showed a smaller reduction rate and WUE was significantly improved. Straw mulching of summer maize using the straw from winter wheat could reduce seasonal soil evaporation by 30–40 mm. With new cultivars and improved management practices it was possible to further increase grain production without much increase in water use. Future strategies to further improve WUE are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号