首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
祁连山中部高山草甸土壤有机碳矿化及其影响因素研究   总被引:2,自引:0,他引:2  
分析了室内培养土壤温湿度变化对祁连山海拔3500,3600,3700和3800 m处高寒草甸土壤有机碳矿化的影响。结果显示土壤有机碳累积矿化量及其比例为35℃下最高,土壤含水量为30%和40%下比10%和20%下高,0~15 cm土层比15~35 cm土层中高。土壤有机碳矿化速率及其占有机碳含量比例随培养时间延长而递减。土壤有机碳矿化速率及其比例为35℃下最高,土壤含水量为30%和40%下比10%和20%下高,0~15 cm土层比15~35 cm土层中高。一阶动态方程拟合土壤有机碳矿化动态效果较好。5℃下分解率系数和活性有机碳库较低。5℃升高到15℃,Q10为1~6,15℃升高到25℃,Q10为1~2。结果表明祁连山高寒草甸表层土壤有机碳分解受温湿度变化的影响较大。  相似文献   

2.
为探究新疆阿勒泰地区荒漠草地土壤有机碳空间分布特征,采用路线调查和典型样地布设相结合的方法确定104个样地,对0~5 cm、5~10 cm、10~20 cm土层土壤有机碳含量进行测定,同时运用数量生态学和地统计学方法,揭示荒漠土壤有机碳含量及密度空间变异的影响因素.结果表明:0~20 cm荒漠土壤有机碳含量为0.98~11.80 g·kg-1、平均值为3.79 g·kg-1,土壤有机碳密度为257.57~2904.19 g·m-2、平均值为1057.49 g·m-2;随土层深度的增加,土壤有机碳含量(0~5 cm,5~10 cm,10~20 cm)及土壤有机碳密度(0~10 cm,10~20 cm)呈现降低趋势.高值区均主要集中在富蕴县北部地区,低值区主要分布在哈巴河县、布尔津县和福海县南部地区;在0~20 cm土层中,不同荒漠亚类土壤有机碳含量及密度均表现为土质荒漠>砾砂质荒漠>砾石质荒漠>沙质荒漠,且土质荒漠土壤有机碳含量、有机碳密度分别是沙质荒漠土壤的1.74、1.72倍(P<0.05);从冗余分析结果来看,各环境因子对土壤有机碳的实际解释总量为30.93%,其中植被覆盖度、土石比、根部土壤湿度是引起阿勒泰地区荒漠草地土壤有机碳变化的主导因素.总之,研究结果更新与补充了阿勒泰地区荒漠草地土壤有机碳库数据,初步阐明了有机碳变化的主导因素,为荒漠草地管理和可持续利用及碳预算提供资料支撑.  相似文献   

3.
草地生态系统土壤有机碳估算研究综述   总被引:3,自引:0,他引:3  
介绍了草地土壤有机碳的测定方法、评价指标以及草地土壤碳储量的估算方法,从碳的输入、输出和碳素的转化方面阐述了草地土壤碳素转化与积累的特征,总结了国内外关于草地土壤有机碳的研究结果,并对研究结果进行了对比与评价,指出了当前研究中存在的问题和今后工作的努力方向,为草地生态系统土壤有机碳储量的研究提供参考.  相似文献   

4.
黄土高原中部草地土壤有机碳密度特征及碳储量   总被引:4,自引:0,他引:4  
刘伟  程积民  陈芙蓉  高阳 《草地学报》2011,19(3):425-431
对黄土高原水平方向的4种主要草地类型(森林草原、典型草原、高寒草甸草原、荒漠草原),分析其土壤有机碳含量、有机碳密度及其碳储量,以期揭示黄土高原中部不同草地类型土壤有机碳分布特征,初步估算黄土高原中部天然草地土壤有机碳储量。结果表明:各草地类型土壤有机碳含量和土壤碳密度均随深度增加而减少,但类型不同其减少程度不同。高寒草甸草原的土壤有机碳含量减少幅度最大,荒漠草原减幅最小;4种类型草地的土壤有机碳密度排序为:高寒草甸草原>典型草原>森林草原>荒漠草原,对于整个土层而言,草地类型间的土壤有机碳密度变异程度不同,典型草原变异系数最大,高寒草甸草原最小;在水平方向上,黄土高原中部有机碳密度分布很不均匀。黄土高原中部天然草地总面积2.02×107hm2,其1 m深度土壤碳储量为1.06 Pg C。  相似文献   

5.
宁夏典型天然草地土壤有机碳及其活性组分变化特征   总被引:1,自引:0,他引:1  
为探寻宁夏典型温性天然草地土壤有机碳及活性组分变异及储量特征,以宁夏4种典型的天然草地(温性草甸草原、温性草原、温性草原化荒漠和温性荒漠草原)为研究对象,采用野外调查和室内分析相结合的方法,对宁夏全区49个固定监测点,土壤有机碳及其活性有机碳组分(易氧化有机碳、微生物生物量碳和水溶性有机碳)进行采样和室内分析.结果表明...  相似文献   

6.
为探究祁连山中段不同退化高寒草地土壤细菌群落分布特征,采用Illumina HiSeq PE250高通量测序平台对轻度、中度和重度退化草地土壤细菌群落变化特征进行研究,并对土壤细菌群落与土壤酶活性、土壤理化因子间关系进行分析。结果表明:随着退化程度加剧,植被盖度、高度、地上生物量和多样性指数均明显降低(P<0.05);土壤理化性质和酶活性变化各异且差异显著(P<0.05)。高通量测序共得到257971条有效序列,219017条优质序列和2004个OTUs。细菌群落丰富度指数依次为轻度>中度>重度,多样性指数为轻度>重度>中度,Beta多样性分析表明各样地间差异为轻度>重度>中度。其中,放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、酸杆菌门(Acidobacteria)和变形菌门(Proteobacteria)为3种退化草地土壤的优势菌门,在轻度、中度和重度退化草地土壤中分别占77.25%、84.27%和78.66%;乳球菌属为3种退化草地土壤的优势菌属,在轻度、中度和重度退化草地土壤中分别占14.29%、38.84%和7.39%。冗余分析表明:土壤酶活性和土壤理化性质均对细菌群落的组成具有影响,其中土壤pH是影响土壤细菌群落分布的主要驱动因子。祁连山中段不同退化高寒草地土壤细菌群落的变化主要受土壤理化性质和酶活性的影响。  相似文献   

7.
气候变化对草地生态系统土壤有机碳储量的影响   总被引:1,自引:0,他引:1  
随着全球气候变化和陆地生态系统碳循环研究的发展,草地土壤有机碳库正成为草地生态系统研究的热点。草地土壤有机碳库作为全球碳循环的重要组成部分,其积累和分解的变化直接影响全球的碳平衡。由人类活动引起的温室效应以及由此造成的气候变化对草地生态系统的影响已引起人们的广泛关注,而温度、降水和大气CO2浓度等气候因子对草地土壤碳库也产生重要影响。了解气候变化对草地土壤有机碳库的影响对于准确理解气候变化背景下草地土壤有机碳的演变机制具有重要的指导意义。本研究综述了草地土壤有机碳储量的分布状况以及温度升高、降水和大气CO2浓度增加对草地土壤有机碳影响的国内外研究进展,指出了目前草地土壤有机碳研究存在的问题,提出了今后研究的努力方向和着重点,并对今后草地土壤有机碳研究提出了展望。  相似文献   

8.
祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素   总被引:5,自引:0,他引:5  
为确定祁连山典型生态系统土壤有机碳分解对水热因素变化的响应趋势,在人工气候箱内以正交试验好气培养土壤,应用差异性检验和一阶动态方程方法分析了祁连山青海云杉(Picea crassifolia)林和高寒草甸土壤有机碳矿化及其与温度、湿度、土层和海拔的关系。结果显示:温度对土壤有机碳矿化量、矿化速率及其比例的影响最大,其次是土壤湿度;这些变量在35℃下最高(P<0.01),土壤含水量为10%时最低,不同海拔间差异不显著;土壤有机碳矿化量在0~15cm比15~35cm土层高,但矿化比例差异不显著;土壤有机碳矿化势随温度的升高而增加,土壤含水量为10%时较低,矿化速率系数在35℃下最高(P<0.05);从05℃升到15℃,Q10为1.5~7.5,15℃升到25℃,为1~2,25℃升到35℃,为1.5~3.5。结果说明温度从5℃升高到35℃,土壤含水量在20%~40%,祁连山中部山地森林和高寒草甸土壤有机碳矿化速率将可能增加3~10倍以上。  相似文献   

9.
任继周  林慧龙 《草业学报》2013,22(6):280-294
探知全球草地生态系统的土壤有机碳储量是调控全球陆地碳循环过程的必要环节和最大难题之一。本文回顾了草地生态系统土壤有机碳储量的研究进展, 分析了现有的草地土壤有机碳模拟技术——草地土壤有机碳模型的主要技术特征,就模型的基础数据、模型的结构和模型内的函数参数等三方面,讨论了现存草地土壤有机碳模拟技术的缺陷,提出样地清查、遥感分析和模型模拟方法的综合运用将是解决这一问题的根本途径。最后,提出了一种基于草地综合顺序分类系统(comprehensive sequential classification system of grassland, CSCS)的草地土壤有机碳储量分类指数模型的构架。将样地清查、基于CSCS的草地土壤有机碳分类指数模型与遥感的高时空分辨率特征三者耦合起来,分析不同草地类型、气候区划等生态条件下的草地土壤有机碳特征,以求提高草地土壤有机碳估算结果的准确性。此外,草地生态系统土壤的碳汇效应等生态功能与放牧利用不存在绝对对立关系,实现放牧的现代化转型是以对草地土壤有机碳储量精准估算为前提的。  相似文献   

10.
黄土高原云雾山草地土壤有机碳、全氮分布特征   总被引:4,自引:1,他引:4  
2007年11月28日-12月1日对云雾山4类天然草地,以及不同生长年限的人工紫花苜蓿(Medicago stativa L.)草地、沙棘(Hippophae rhamnoides Linn.)灌木、农田进行土壤有机碳、全氮分布分析,以期为该地区的草地生态系统的合理利用和减排温室气体提供科学依据。结果表明:土壤有机碳、全氮含量的排序为:天然草地(人工草地(灌木(农田。对0~40 cm土壤每10 cm土层土壤有机碳、全氮含量测定发现:除9年生人工苜蓿草地在20~30 cm土层的有机碳含量相对10~20 cm无降低外,其他均表现为随土层深度的增加而依次降低。有机碳、全氮含量天然草地10~20,20~30,30~40 cm,以及5年、7年、9年人工草地土层之间差异水平基本达到显著水平。天然草地和人工草地土壤有机质含量与其全氮含量呈极显著线性相关(P<0.01)。人工草地土壤有机碳,全氮含量随种植年限增长而增加,全氮含量增加程度大于有机碳。因此,云雾山天然草地有机碳、全氮含量最高,人工草地随着生长年限的延长也是碳氮积累的过程,农田含量最低,天然草地在碳氮储存方面发挥着更积极的作用。土壤有机碳、全氮在土壤表层(0~10 cm)含量最高,在云雾山地区通过退耕还草,加强植被恢复管理,有利草地生态系统的健康发展。  相似文献   

11.
祁连山东段不同高寒灌丛草地土壤性状特征变化   总被引:1,自引:0,他引:1  
为探讨祁连山东段不同高寒灌丛草地土壤性状的变化,在该区内选取了金露梅(Porentilla fruticosa)、柳(Salix)和杜鹃(Rhododendron)3类高寒灌丛草地,研究了不同高寒灌丛草地土壤物理和化学性状特征变化。结果表明:高寒灌丛草地土壤理化性状差异显著。土壤含水量表现为杜鹃灌丛草地>柳灌丛草地>金露梅灌丛草地;容重表现为金露梅灌丛草地>柳灌丛草地>杜鹃灌丛草地;总孔隙度表现为柳灌丛草地>杜鹃灌丛草地>金露梅灌丛草地;杜鹃灌丛草地土壤有机质含量最高为127.638 g·kg-1,金露梅灌丛草地最低为89.954 g·kg-1;土壤全P、全K和速效N,P,K含量均表现为杜鹃灌丛草地>柳灌丛草地>金露梅灌丛草地,土壤全N含量金露梅灌丛草地最大为2.912 g·kg-1,杜鹃灌丛草地最小为2.586 g·kg-1。相关性分析表明,3类高寒灌丛草地的土壤性状的各个因子之间有显著的相关关系。  相似文献   

12.
杜凯  康宇坤  张德罡  苏军虎 《草地学报》2020,28(5):1412-1420
为明晰不同放牧方式对祁连山高寒草甸有机碳、氮库的影响,本试验以祁连山东缘全年连续放牧(Continuous grazing,CG)、冷季重度放牧(Heavily grazing in cold season,HG)、冷季轻度放牧(Lightly grazing in cold season,LG)、划区轮牧(Rotational grazing,RG)和全年禁牧(Non-grazing,NG)的高寒草甸为研究对象,系统研究地上植物层、凋落物层、土壤层和根系层有机碳、氮库的变化。试验结果表明:HG,LG,RG和NG较CG均能显著(P<0.05)提高地上植物层、凋落物层、根系层和土壤层有机碳、氮储量,但土-草系统总有机碳、氮储量均在RG样地最高,其次是NG样地,再次是LG样地,在CG样地最低。RG较CG样地土-草系统有机碳储量提高了8 748 g C·m-2,氮储量提高了785 g N·m-2。可见,通过改变放牧方式能够有效提高高寒草甸土-草系统有机碳、氮储量,实现碳、氮增汇的目的。综合考虑草地土-草系统有机碳、氮储量及草地资源的有效利用,高寒草甸的最佳放牧方式为划区轮牧。  相似文献   

13.
东祁连山不同高寒草地类型土壤表层碳、氮、磷密度特征   总被引:6,自引:3,他引:3  
在青藏高原东祁连山以杜鹃灌丛、高山柳灌丛、金露梅灌丛、珠芽蓼草甸、禾草草地、沼泽草地和嵩草草地为研究对象,对土壤理化性质和土壤碳、氮、磷密度进行了研究.结果表明:2005年土壤表层碳、氮、磷密度分别介于4.66kg/m2~6.63 kg/m2、 0.31kg/m2~0.59 kg/m2和0.07kg/m2~0.16kg/m2,2006年分别介于5.27kg/m2~6.84kg/m2、0.40kg/m2~0.51 kg/m2和0.10kg/m2~0.20kg/m2;土壤碳、氮和磷密度受植物群落和根系分布特征影响,样地间及土层间差异明显.  相似文献   

14.
祁连山东段不同退化高寒草甸土壤有机碳密度研究   总被引:9,自引:2,他引:7  
于2008年在祁连山东段天祝地区选取轻度、中度和重度3个不同退化程度的高寒草地,以土壤有机碳密度为研究对象,探讨高寒草地在不同退化程度干扰下土壤有机碳密度的变化特征。结果表明:随着高寒草地退化程度的加重,土壤含水量降低,容重和pH值增大;土壤有机质和全氮有相似的变化趋势,中度与轻度或重度退化草地土壤有机质和全氮差异显著(P<0.05);土壤有机碳密度在0-10 cm土层显著高于其他土层(P<0.05),并随着土层加深有显著的垂直变化趋势;不同退化程度草地在0-30 cm土层总土壤有机碳密度表现为中度>轻度>重度退化草地。  相似文献   

15.
为探究祁连山不同退化草地土壤特性的变化规律,在2017和2018年持续对祁连山同一区域不同退化程度草地(轻度退化草地、中度退化草地和重度退化草地)土壤养分、生态化学计量比和土壤环境肥力综合评价系数进行研究。结果表明:2018年,各试验点土壤有机碳、全氮和全磷含量均随着土层深度的增加而减小,且差异显著(P<0.05);各试验点土壤碱解氮和有效磷含量均随退化程度的加剧和土层深度的增加而减小;不同退化草地不同土层中,C/N变化范围为16.00~75.54,C/P变化范围为90.01~182.65,N/P变化范围为1.68~9.33。土壤环境肥力质量评价指数结果表明,整体两年中土壤肥力质量综合排序为:天祝县抓喜秀龙乡(1.00)>肃南县康乐镇(0.89)>肃南县皇城镇(0.84),且综合评价系数都表现为随退化程度的加剧而减小的趋势。综上,祁连山不同程度退化草地土壤已逐步恶化,需重视并采取合理措施保护。  相似文献   

16.
科学评价灌丛草地自然恢复演替特征,以期为灌丛草地的生态修复和可持续利用提供理论依据。采用“空间代替时间”的方法,研究了东祁连山小叶金露梅+杯腺柳灌丛植被碳储量和土壤理化性质对自然恢复演替的响应。结果表明,随着小叶金露梅+杯腺柳灌丛恢复演替期的延长(约20年),灌丛群落碳储量增加1.2~3.8倍;丛间土壤呼吸速率增大1.1~2.0倍,丛内保持不变;丛间和丛内土壤含水量减小1.0~1.5倍,容重增大1.0~2.0倍;丛间和丛内土壤有机质、速效氮和速效磷含量均呈先增后减的单峰曲线,其含量先增加2.0%~48.7%,后减少4.4%~32.0%,全磷和全钾含量增加3.0%~76.0%,其他养分含量变化各异。随着灌丛草地植被的恢复演替,草地碳储量增加,但土壤理化性质受负面影响。故建议积极探寻实现草地生态系统高效、平衡和持续发展的途径,使灌木和草本植物协调共生、和谐生长,稳定生态系统平衡,提高草牧业生产能力和增加农牧民经济收入。  相似文献   

17.
本文以典型的衡阳市紫色土丘陵坡地不同植被恢复阶段为研究对象,采用空间代替时间序列的方法,选用立地条件基本相似的草本阶段(Grassplot,GT)、灌草阶段(Frutex and grassplot,FG)、灌丛阶段(Frutex,FX)和乔灌阶段(Arbor and frutex,AF),通过调查取样和实验分析,对不同恢复阶段0~40 cm土层土壤水溶性有机碳,E280E250/E365E240/SOC及其影响因素进行了研究。结果表明:随着植被恢复的进行,土壤水溶性有机碳含量显著增加(P<0.05);土壤水溶性有机碳含量与土壤容重、重组有机碳呈极显著负相关(P<0.01),与土壤有机碳、全氮、碱解氮、速效磷、土壤微生物生物量碳、轻组有机碳呈显著或极显著正相关(P<0.05或P<0.01),与全磷、速效钾、pH值相关性不明显(P>0.05)。综上所述,土壤水溶有机碳与土壤肥力关系密切,可作为评价土壤肥力性状的生物学指标。  相似文献   

18.
在内蒙古锡林河流域典型草原设置119个样地,确定群系序列,应用单因素方差分析法和最小差异法来对比分析不同群系0~30cm土壤有机碳储量的差异,并分析了表层土壤有机碳储量和植被群系类型、物种多样性、功能多样性、群落权重均值、地上生物量的关系。结果显示:(1)通过Canoco 5.0软件对119个样方进行PCA排序,结果确定出5个群系:羊草、大针茅、克氏针茅、苔草+委陵菜、冷蒿+冰草群系;(2)5个群系表层土壤有机碳密度变化范围为1.84~2.74 kg/m^2,平均值为2.41±0.84 kg/m^2,其大小关系为:羊草群系>大针茅群系>克氏针茅群系>苔草+委陵菜群系>冷蒿+冰草群系,其中冷蒿+冰草群系显著低于其他群系;(3)典型草原表层土壤有机碳储量与植被群系类型、地上生物量及叶面积呈显著正相关,其中植被群系类型是最主要的影响因素。  相似文献   

19.
研究草地土壤有机碳的时空分布及影响因素有利于推动区域生态系统碳汇管理,对实现“双碳”目标有重要意义。以张掖草地为研究对象,运用CENTURY模型模拟张掖草地土壤有机碳密度,采用结构方程模型分析各环境因子对草地土壤有机碳的作用路径及强度。结果表明:1970—2022年土壤总有机碳密度呈增长趋势,与缓性及惰性土壤有机碳的变化趋势较为一致;有机碳密度呈现东南高,西北低的空间分布格局;总有机碳密度的高值区主要是肃南县的东南部与民乐县,高台、临泽、甘州区相对较低;海拔、年降水量对土壤总有机碳密度存在正效应,而年均温度、土壤含水量、pH值是负效应。年均温度的直接效应最大,海拔通过影响降水、温度和pH值等间接影响土壤有机碳密度,降水量对土壤有机碳密度不仅有直接影响,还会通过影响土壤含水量、pH值等间接影响土壤有机碳密度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号