首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relation between diversity of pathogenicity on clubroot-resistant (CR) cultivars of Chinese cabbage (Brassica rapa subsp. pekinensis) bred in Japan and DNA polymorphisms in 17 populations of Plasmodiophora brassicae from cruciferous plants was examined by inoculation tests and random amplified polymorphic DNA (RAPD) analysis using 18 arbitrary primers. Four pathotypes (A–D) were identified after inoculation of six CR cultivars of Chinese cabbage in the 17 populations from cruciferous crops. A relatively high level of genetic diversity was also detected among these populations in the RAPD analysis. Although the four pathotypes could not be clearly differentiated using the RAPD data, most populations of three pathotypes had a consistent location on the dendrogram. All pathotype B (virulent on five cultivars except Utage 70) and D (avirulent on all cultivars) populations, which were common in incompatible interactions with cv. Utage 70, were located in a single subcluster. All five pathotype C populations (virulent only on cv. Utage 70) except for one population grouped in another single subcluster. Because four pathotype A populations (virulent on all six cultivars, races 4 and 9) fell in different subclusters, the populations may be genetically polyphyletic. Populations from cruciferous weed Cardamine flexuosa differed remarkably from those from cruciferous crops in pathogenicity on common cultivars of Chinese cabbage and turnip and C. flexuosa, but they grouped in a single cluster with all race 9 populations from crops. Race 9 populations from crops may thus be closely related to populations from the weed rather than to races 1 and 4 from crops.  相似文献   

2.
Clubroot disease, caused by Plasmodiophora brassicae Woronin, affects various cruciferous crops. Variations in pathogenicity and virulence are present among field populations of P. brassicae. Many races (pathotypes) have been reported in Japan as well as in other countries using various differential systems. Populations can be classified into four pathotypes using two clubroot-resistant (CR) cultivars of Chinese cabbage as differential hosts in Japan. However, it was recently indicated that each population is often heterogenic and composed of multiple genotypes (races or pathotypes). Breakdown in CR cultivars of Chinese cabbage is a problem in some areas of Japan and may contribute to the selective propagation of minor pathogenic genotypes on the CR cultivars. Clubroot has also been recorded on five species of cruciferous weeds in Japan. In particular, clubroot of Cardamine flexuosa is widely distributed in Japan. Some populations of C. flexuosa are often moderately pathogenic on Chinese cabbage and turnip. Therefore, the epidemiological relationship between clubroot of cruciferous crops and that of the weed has been noted but not thoroughly clarified. The relationship between pathogenic and genetic variations has also been examined among populations from cruciferous crops and weeds in Japan. The result implies an interesting genetic relationship among Williams’ races, among pathotypes determined using CR cultivars of Chinese cabbage and among populations from crops and C. flexuosa. This review includes an introduction of the status of studies on pathogenic and genetic diversity in P. brassicae from Japan.  相似文献   

3.
To mitigate the impact and dissemination of clubroot in western Canada, canola (Brassica napus) producers have relied on clubroot resistance traits. However, in 2013 and 2014, new strains of the clubroot pathogen, Plasmodiophora brassicae, emerged that are virulent on most clubroot‐resistant (CR) canola genotypes. Novel strains of the pathogen were inoculated onto two susceptible canola cultivars, one resistant line and six CR cultivars. Although all cultivars/lines showed a susceptible response to inoculation with the new strains of P. brassicae, the severity of disease reaction, root hair infection rates and the amount of P. brassicae DNA present in each canola genotype varied depending on the strain. In addition, the effect of inoculum density on disease severity and gall formation was recorded for one of these new strains on a universally susceptible Chinese cabbage cultivar and one susceptible and 10 resistant canola genotypes. Although root galls were observed at an inoculum density of 103 spores per mL of soil, clear differentiation of susceptible and resistant reactions among canola cultivars/lines was not observed until the inoculum density reached 105 spores mL?1. At a spore density of 106 spores mL?1 and above, all cultivars/lines developed susceptible reactions, although there was some differentiation in the degree of reaction. This study shows the potential to develop a unique disease profile for emergent clubroot pathotypes and shows a useful range of spore densities at which to study new P. brassicae strains.  相似文献   

4.
The soilborne pathogen Plasmodiophora brassicae, causal agent of clubroot of canola (Brassica napus), is difficult to manage due to the longevity of its resting spores, ability to produce large amounts of inoculum, and the lack of effective fungicides. The cropping of clubroot resistant (CR) canola cultivars is one of the few effective strategies for clubroot management. This study evaluated the impact of the cultivation of CR canola on P. brassicae resting spore concentrations in commercial cropping systems in Alberta, Canada. Soil was sampled pre-seeding and post-harvest at multiple georeferenced locations within 17 P. brassicae-infested fields over periods of up to 4 years in length. Resting spore concentrations were measured by quantitative PCR analysis, with a subset of samples also evaluated in greenhouse bioassays with a susceptible host. The cultivation of CR canola in soil with quantifiable levels of P. brassicae DNA resulted in increased inoculum loads. There was a notable lag in the release of inoculum after harvest, and quantifiable P. brassicae inoculum peaked in the year following cultivation of CR canola. Rotations that included a ≥2-year break from P. brassicae hosts resulted in significant declines in soil resting spore concentrations. A strong positive relationship was found between the bioassays and qPCR-based estimates of soil infestation. Results suggest that CR canola should not be used to reduce soil inoculum loads, and crop rotations in P. brassicae infested fields should include breaks of at least 2 years away from B. napus, otherwise the risk of selecting for virulent pathotypes may increase.  相似文献   

5.
Using quantitative PCR, DNA of Plasmodiophora brassicae, the causal agent of clubroot, was detected and quantified on canola, pea and wheat seeds, as well as on potato tubers, all harvested from clubroot‐infested fields in Alberta, Canada. Quantifiable levels of infestation were found on seven of the 46 samples analysed, and ranged from <1·0 × 103 to 3·4 × 104 resting spores per 10 g seeds; the vast majority (80–100%) of resting spores on these samples were viable, as determined by Evan’s blue vital staining. However, the levels of infestation found were generally lower than that required to cause consistent clubroot symptoms in greenhouse plant bioassays. While the occurrence of P. brassicae resting spores on seeds and tubers harvested from clubroot‐infested fields suggests that seedborne dissemination of this pathogen is possible, practices such as commercial seed cleaning may be sufficient to effectively mitigate this risk.  相似文献   

6.
Clubroot, caused by Plasmodiophora brassicae, is a disease limiting the production of Brassica species. Its severity varies according to the density of the pathogen's resting spores and environmental conditions. Although the soil environment (including its physical, chemical and biological characteristics) is determinant in the development of the disease, little is known regarding these characteristics in tropical regions, such as Brazil. The objective of this study was to investigate the relationships between soil attributes, bacterial population composition and clubroot intensity in a tropical mountain agroecosystem. Soil and plant samples were collected from 17 cauliflower-producing localities in Nova Friburgo, Brazil. The physical and chemical attributes, the bacterial population composition, the number of pathogen resting spores in the soil samples, and the clubroot severity were evaluated. Based on bacterial population composition, two distinct groups of soils were identified, which varied in attributes such as organic matter, potential acidity, pH and disease severity. The organic matter level was associated with differences in soil acidity, bacterial population composition and disease intensity, but there was not a cause and effect relationship between bacterial population composition and clubroot severity. Under the conditions of this agroecosystem, soils with increased organic matter presented higher acidity potential (H + Al), which was strongly correlated to clubroot severity. Thus, high acidity potential could be a key factor leading to clubroot development in mountain regions of Brazil.  相似文献   

7.
The differential hosts of Williams (1966) and the European Clubroot Differential (ECD) (Buczacki et al., 1975) have been used commonly to identify populations of Plasmodiophora brassicae, which causes clubroot disease in Brassica crops. However, some of these hosts showed intermediate and fluctuating scores to most populations from Japan. Therefore, these hosts could not be used to provide a clear classification in Japan. We have tried to clarify the genetic diversity in pathogenicity of P. brassicae in Japan using Japanese clubroot-resistant (CR) F1 hybrid (F1) cultivars and lines of Brassica rapa. The responses of some CR F1 cultivars were very clear. Four groups of field populations in Japan were recognized using the CR F1 cultivars. The clear response obtained here may depend largely on the genetic purity of the F1 cultivars. Moreover, it is possible to classify some of these Japanese populations into the same race using the Williams set and ECD 01 to ECD 05. The present differential hosts may be useful in the study of European populations of P. brassicae. The response of the differential hosts suggests that there are several major CR genes in B. rapa. It is suggested that pyramiding CR genes would be useful in breeding CR cultivars that can overcome the breakdown of the present CR cultivars of Chinese cabbage.  相似文献   

8.
Clubroot of oilseed rape (OSR), caused by Plasmodiophora brassicae, is a disease of increasing economic importance worldwide. Previous studies indicated that OSR volunteers, Brassica crops and weeds play a critical role in the predisposition of the disease. To determine the effect of timing of foliar application of the herbicide glyphosate or mechanical destruction of OSR volunteers in reduction of clubroot severity and resting spore production, a series of studies was conducted under controlled conditions with a susceptible OSR cultivar and an isolate of P. brassicae. Plants were inoculated by injecting a spore suspension beside the root hairs at growth stage 11–12 (BBCH scale) and were terminated at 7 (early) or 21 (late) days post‐inoculation (dpi). Under controlled conditions, the first symptoms on roots were observed as early as 7 dpi. The early application of glyphosate as well as early mechanical destruction resulted in significant ( 0.05) reduction in the development of clubroot symptoms, root fresh weight and the number of resting spores?g root. Furthermore, the effect of volunteer management on clubroot severity in the succeeding OSR was studied by inoculating plants with the resting spores obtained from treated clubbed roots. Inoculated OSR exhibited root clubs similar to the initial symptoms after 35 dpi. Plants that were inoculated with spore suspension from early treated roots resulted in significant reductions in clubroot incidence and severity. Conversely, plants inoculated with the spore suspension from the late treated roots displayed levels of clubroot similar to the plants inoculated with the spore solutions of positive controls.  相似文献   

9.
The mechanism of the biofungicide Prestop® (Clonostachys rosea) was investigated for control of clubroot (Plasmodiophora brassicae) on canola. The key product components were partitioned and assessed for their effect on pathogen resting spores, root hair infection (RHI) and disease development using light microscopy, quantitative PCR and different application treatments during infection. The whole product of Prestop was consistently more effective than the C. rosea conidial suspension or product filtrate alone in reducing RHI and clubroot development. This biofungicide showed little effect on germination or viability of resting spores. Two‐application treatments at seeding and 7–14 days after seeding achieved greater clubroot control than a single application of the biofungicide at either seeding or post‐seeding stage. This may indicate the need to maintain a high biofungicide dose in the soil during primary and secondary infection. This biocontrol fungus colonized the rhizosphere and interior of canola roots extensively, and possibly induced plant resistance based on up‐regulation of the genes that are involved in jasmonic acid (BnOPR2), ethylene (BnACO) and phenylpropanoid (BnOPCL, BnCCR) biosynthetic pathways. It is concluded that the biofungicide Prestop suppressed clubroot on canola at least via root colonization and induced systemic resistance (ISR), and the latter may be through the modulation of phenylpropanoid and jasmonic acid/ethylene metabolic pathways elicited by the fungus.  相似文献   

10.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

11.
Clubroot, caused by Plasmodiophora brassicae, is a worldwide disease affecting Brassica. Until now, the detection of genetic factors (QTLs) implicated in clubroot resistance has been based on estimates of disease index. However, as the amount of resting spores released in soil after club disintegration influences clubroot epidemics and resistance‐breaking dynamics, its genetic control may deserve specific attention. In a previous report, it was shown that nitrogen fertilization modulated quantitative partial resistance toward clubroot symptom development in rapeseed. The present work aimed to identify genetic factors involved in the control of resting spore production and to assess their regulation by nitrogen supply. A flow cytometer method was adapted for rapidly estimating resting spore content in a large series of samples. Linkage analysis was conducted to detect QTLs implicated in resting spore production in a Brassica napus doubled haploid progeny from the cross Darmor‐bzh × Yudal. DH lines inoculated with the P. brassicae isolate eH were grown under low‐ and high‐nitrogen supply. Under low‐nitrogen conditions, resting spore production was reduced compared to high‐nitrogen conditions, regardless of genotypes. Genetic architecture controlling resting spore production and clubroot symptom development was similar. Under high‐nitrogen conditions, resting spore production was controlled by one major QTL (C09a) and a few small‐effect QTLs. By contrast, two major QTLs (C02 and C09a) controlled resting spore production under low‐nitrogen conditions. This work highlighted a large see‐saw effect between the relative contribution of the C09a QTL (high effect under high‐nitrogen conditions) and the C02 QTL (high effect under low‐nitrogen conditions), with possible implications in resistance breeding.  相似文献   

12.
The effect of resistance of sugar beet cultivars to beet necrotic yellow vein virus (BNYVV) on virus content of resting spore clusters of the vectorPolymyxa betae was studied in controlled environments and in naturally infested fields. The total number of resting spore clusters formed in roots of a partially resistant and a susceptible cultivar did not differ when assessed 6 and 12 weeks after inoculation with viruliferous resting spores. Transmission experiments showed that in partially resistant plants, having a low virus content in the roots, the population of resting spores formed was less viruliferous than that in susceptible plants with a high virus content. Consequently, growing a resistant cultivar can be expected to delay the build-up of virus inoculum in soil.In a trial field sampled in 1991, the inoculum potential of BNYVV (most probable number of viruliferousP. betae propagules) in soil was lower after growing a partially resistant cultivar than after growing a susceptible one. On the other hand, in four sites sampled in 1990, inoculum potential in soil was hardly increased by growing sugar beet and was not significantly affected by the cultivar grown.  相似文献   

13.
Knowledge of pathotype diversity and virulence in local populations of Pyrenophora teres is a prerequisite to screening for durable resistance to net blotch. The current study aimed to quantify the virulence level of Moroccan isolates, identify and designate existing pathotypes, and select resistant genotypes. We developed a method for virulence quantification of P. teres isolates based on a conversion of infection responses into frequencies for use in correspondence analysis. Coordinates of the first axis of this analysis had a virulence spectrum and ranked isolates from virulent to avirulent. Mixed model analysis was also devised for virulence quantification. Coordinates of the first dimension of correspondence analysis were linearly correlated to BLUPs (Best Linear Unbiased Predictors) of the mixed model. A genotype by genotype by environment model (GGE) coupled with cluster analysis differentiated P. teres isolates into ten and nine pathotypes for net- and spot-forms respectively. Populations of these two forms were dissimilar in terms of classes of virulence. For P. teres f. maculata, avirulent, moderately virulent and highly virulent isolates represented one-third of the population, whereas 90% of P. teres f. teres population was composed of avirulent to moderately avirulent isolates. Barley differential sets were subsequently reduced to two new sets that simplified pathotyping through a key code based on resistant or susceptible reactions. Dendrograms of cluster analysis based on GGE analysis depicted the stability of a genotype’s reactions across all isolates, and using only resistant cultivars as sources of resistance to control net blotch disease would, based on this analysis, fail to control all pathotypes. Therefore, we propose an alternative breeding strategy to control net blotch effectively.  相似文献   

14.
Clubroot, a disease of Brassicaceae species, is caused by the soilborne pathogen Plasmodiophora brassicae. High soil water content was previously described to favour the motility of zoospores and their penetration into root cells. In this study, the effect of irrigation regimes on clubroot development during the post‐invasive secondary phase of infection was investigated. Three irrigation regimes (low, standard, high) were tested on two Arabidopsis accessions, Col‐0 (susceptible) and Bur‐0, a partially resistant line. In Col‐0, clubroot symptoms and resting spore content were higher under the ‘low irrigation’ regime than the other two regimes, thus enhancing the phenotypic contrast between the two Arabidopsis accessions. Clubroot severity under high and low irrigation regimes was evaluated in near‐isogenic lines derived from a Col‐0 ×  Bur‐0 cross, to assess the effect of soil moisture on the expression of each of four quantitative trait loci (QTL) controlling partial resistance. The presence of the Bur‐0 allele at the QTL PbAt5.2 resulted in reduced severity only under low irrigation, whereas the Bur‐0 allele at QTL PbAt5.1 was associated with partial resistance only under high irrigation. QTL PbAt4 reduced the number of resting spores in infected roots, but was not associated with reduced clubroot symptoms. The results indicated that soil moisture could have consequences for the secondary phase of clubroot development, depending on plant genotype. Future genetic studies may benefit from using combinations of watering conditions during the secondary stage of infection, thus opening up the possibility of identifying genetic factors expressed under specific environmental conditions.  相似文献   

15.
The pathogenesis of clubroot, a disease of cruciferous crops caused by the fungusPlasmodiophora brassicae, starts with infection of the root hairs. This process was studied in 13 accessions ofBrassica oleracea, B. napus and B. rapa with varying levels of plant resitance toP. brassicae. Seedlings were grown in a mineral solution, inoculated with resting spores ofP. brassicae, and the number of plasmodia developing in root hairs was recorded. When compared with the standard susceptible cultivar Septa, both higher and lower resistance to root hair infection was found in the accessions of the differentBrassica species. No complete resistance to root hair infection was found. Over the accessions studied, there was no correlation between the plant resistance estimated from greenhouse tests and the resistance to root hair infection of seedlings. The resistance of all accessions must at least partly be caused by other mechanisms which operate after the root hair plasmodia are formed.  相似文献   

16.
为明确绿僵菌在其致死害虫表面生长发育和致病力等相关分子机制,通过显微观察大蜡螟Galleria mellonella虫尸表面罗伯茨绿僵菌Metarhizium robertsii生长和产孢特性,并测定其致病力,分别对虫尸表面和PDA培养基上罗伯茨绿僵菌的菌丝生长阶段和大量产孢阶段进行高通量测序,对虫尸表面罗伯茨绿僵菌产孢及致病力通路相关基因进行系统分析,并采用荧光定量PCR技术对高通量测序结果进行验证。结果表明,PDA培养基上培养5 d后,罗伯茨绿僵菌开始大量产孢,培养14 d时产孢量最高,为4.6×10~7个/cm~2,大蜡螟幼虫注射罗伯茨绿僵菌4 d后,其体表出现菌丝,5.5 d后虫尸表面罗伯茨绿僵菌大量产孢,9 d后产孢量最高,为2.6×10~8个/cm~2。与PDA培养基上罗伯茨绿僵菌对大蜡螟幼虫的半致死时间(7.09 d和4.66 d)相比,体壁侵染法和显微注射法侵染的虫尸表面罗伯茨绿僵菌对大蜡螟幼虫的半致死时间(6.33 d和4.49 d)分别显著缩短和无显著变化。高通量测序结果显示,在菌丝生长阶段和大量产孢时期,虫尸表面罗伯茨绿僵菌中共有810个基因上调表达,452个基因...  相似文献   

17.
A monogenic recessive resistance to Rice yellow mottle virus (RYMV) found in the Oryza sativa indica cultivar Gigante and in a few Oryza glaberrima cultivars provided a higher level of resistance than either a polygenic partial resistance found in some japonica cultivars which delayed symptom expression or transgenic resistances which were partial and temporary. This high resistance was overcome by several isolates, but the percentage of such virulent isolates in the fields was low. There was no relationship between the virulence of an isolate towards the high resistance and its aggressiveness in other cultivars. Isolates with either of the two components of pathogenicity – virulence and aggressiveness – were found in each strain and in all regions of Africa, in both wild and cultivated grass species. There was no loss of fitness of resistance-breaking (RB) isolates as they were not counter-selected, impaired or outperformed after serial passages in susceptible cultivars, even in mixture with avirulent quasi-isogenic wild type isolates. Resistance breaking was highly dependent on the amount of virus inoculated and on the mode of transmission. Implications of these results for the durability of the resistances to RYMV and for the development of integrated disease management strategies are discussed.  相似文献   

18.
四川省根肿菌的分布和生理小种及品种抗性评估   总被引:2,自引:0,他引:2  
为探究四川省根肿菌Plasmodiophora brassicae分布、生理小种及品种抗性,于2014-2016年向各县(区、市)植保站问卷调研了解四川省根肿病分布,并利用Williams体系对采自四川省不同病田的22个根肿菌样进行生理小种鉴定,利用其中18个对9个普通十字花科作物品种进行室内抗性评估。结果表明,根肿病分布于四川省19市(州)89个县(区、市),占总调查数的50%。按照极高、高、中等、低、极低、无分布6个根肿病分布密度等级依次划分为23、7、11、16、32和0个县(区、市),其中11个县(区、市)根肿病病史较长,大部分根肿病极高和高密度分布以及长病史县(区、市)都在地理位置上相对集中。22个根肿菌样共鉴定出2、4、7和11号4个生理小种,其中4号为优势生理小种,占77%。四川省表现出明显生理小种地域分布差异。抗性评估发现供试品种对绝大多数供试菌都表现感病,且73%的供试组合病情指数在75以上。  相似文献   

19.
In two glasshouse and three phytotron experiments, clubroot-susceptible cabbage (Brassica oleracea varcapitata) cv Septa was inoculated with clubroot resting spores at inoculum densities ranging from 0 to 2·107 spores-plant–1. At densities of 105 spores·plant–1 and higher all plants developed clubroot symptoms, except in one glasshouse experiment conducted in winter. The proportion of plants developing symptoms plotted against inoculum density showed a sigmoid curve. Although the shape of the curve was similar in all experiments, the inoculum densities required to induce 50% disease incidence varied from 103 to 105 resting spores·plant–1. The data of all five experiments could be well described by a generalized one-hit model which involves variation between plants with regard to the probability of infection.Abbreviations cv cultivar - ECD European Clubroot Differential set  相似文献   

20.
Clubroot, caused by Plasmodiophora brassicae, has become a serious threat to canola (Brassica napus) production in western Canada. Experiments were conducted to assess the effect of growing resistant and susceptible canola genotypes on P. brassicae soil resting spore populations under greenhouse, mini‐plot and field conditions. One crop of susceptible canola contributed 1·4 × 108 spores mL?1 soil in mini‐plot experiments, and 1 × 1010 spores g?1 gall under field conditions. Repeated cropping of susceptible canola resulted in greater gall mass compared to resistant canola lines. It also resulted in reduced plant height, increased clubroot severity in susceptible canola, and increased numbers of resting spores in the soil mix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号