首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
BACKGROUND: Trichoderma asperellum SKT-1 is a microbial pesticide of seedborne diseases of rice. To investigate the mechanisms of disease suppression in SKT-1, the ability to induce systemic resistance by SKT-1, or its cell-free culture filtrate (CF), was tested using Arabidopsis thaliana Col-0 plants. RESULTS: Both SKT-1 and its CF elicit an induced systemic resistance against the bacterial leaf speck pathogen Pseudomonas syringae pv. tomato DC3000 in Col-0 plants. Involvement of plant hormones in the induced resistance by SKT-1 and CF was assessed using Arabidopsis genotypes such as the jasmonic acid (JA)-resistant mutant jar1, the ethylene (ET)-resistant mutant etr1, the plant impaired in salicylic acid (SA) signalling transgenic NahG and the mutant npr1 impaired in NPR1 activity. In soil experiments using SKT-1, no significant disease suppression effect was observed in NahG transgenic plants or npr1 mutant plants. Expression levels of SA-inducible genes such as PR-1, PR-2 and PR-5 increased substantially in the leaves of Col-0 plants. Expression levels of JA/ET-induced genes such as PDF1.2a, PR-3, PR-4 and AtVsp1 were also induced, but the levels were not as high as for SA-inducible genes. In a hydroponic experiment using CF from SKT-1, all Arabidopsis genotypes showed an induced systemic resistance by CF and increased expression levels of JA/ET- and SA-inducible genes in leaves of CF-treated plants. CONCLUSION: The SA signalling pathway is important in inducing systemic resistance to colonisation by SKT-1, and both SA and JA/ET signalling pathways combine in the signalling of induced resistance by CF. These results indicate that the response of A. thaliana is different from that found in root treatments with barley grain inoculum and CF from SKT-1. Copyright © 2011 Society of Chemical Industry  相似文献   

3.
Five fungal isolates (Trichoderma, Fusarium, Penicillium, Phoma and a sterile fungus) from zoysiagrass rhizosphere that promote plant growth were tested for their ability to induce systemic resistance in cucumber plants against Colletotrichum orbiculare. Roots of cucumber plants were treated with these fungal isolates using barley grain inocula (BGI), mycelial inocula (MI) or culture filtrate (CF). Most isolate/inoculum form combinations significantly reduced the disease except BGI of Trichoderma. These fungal isolates were also evaluated for induction of systemic resistance against bacterial angular leaf spot and Fusarium wilt by treatment with BGI. Penicillium, Phoma and the sterile fungus significantly reduced the disease incidence of bacterial angular leaf spot. Phoma and sterile fungus protected plants significantly against Fusarium wilt. Roots treated with CFs of these fungal isolates induced lignification at Colletotrichum penetration points indicating the presence of an elicitor in the CFs. The elicitor activity of CFs was evaluated by the chemiluminescence assay using tobacco callus and cucumber fruit disks. The CFs of all isolates elicited conspicuous superoxide generation. The chemiluminescence activity of the CF of Penicillium was extremely high, and its intensity was almost 100-fold higher than that of other isolates. The chemiluminescence activity was not lost following treatment with protease or autoclaving or after removal of lipid. The MW 12,000 dialyzed CF fraction was highly effective in eliciting chemiluminescence activity. Chemiluminescence emission from cucumber fruit disks treated with Penicillium was the same as that obtained from tobacco callus, except that the lipid fraction also showed a high activity. Both the MW 12,000 fraction and the lipid fraction induced lignification in the epidermal tissues of cucumber hypocotyls.  相似文献   

4.
从西藏佩古错湖湖边的土壤中分离到一株对青稞散黑穗病菌具有较强抑制作用的细菌,经鉴定为多粘芽孢杆菌,命名为LN-176。该菌株对多种植物病原真菌、部分革兰氏阳性细菌及革兰氏阴性细菌有较好的拮抗作用。以10%的接种量将该菌接种到初始pH7.0的发酵培养基中,28℃旋转培养,发酵液在84h时抗菌活性达到最高,且具有较好的热稳定性和pH稳定性,对蛋白酶K有一定的耐受性。LN-176菌株的发酵液在260nm和280nm下进行吸光度测定,结果表明发酵液中蛋白质含量明显升高;发酵液经硫酸铵盐析后,取上清液和沉淀物分别做抗菌试验,发现沉淀物对青稞散黑穗病菌有拮抗活性而上清液无活性。  相似文献   

5.
Plants have developed mechanisms to resist secondary infection upon inoculation with a necrotizing pathogen, chemical treatment as well as treatment with some non-pathogenic microorganisms such as rhizosphere bacteria. This phenomenon has been variously described as induced systemic resistance (ISR) or systemic acquired resistance. In the present study, the chemical benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH, acibenzolar-S-methyl), and the rhizobacteriaPseudomonas aeruginosa KMPCH andP. fluorescens WCS417 were tested for their ability to induce resistance toColletotrichum lindemuthianum in susceptible and moderately resistant bean plants (Phaseolus vulgaris L.). BTH induced local and systemic resistance when bean leaves were immersed in 10−3 to 10−7 M BTH 3 days before the challenge inoculation. At a high concentration (10−3 M), BTH induced resistance of the same order as resistance induced by the pathogenC. lindemuthianum, although at this high concentration BTH appeared to be phytotoxic. Soil and seed treatment with 1 mg kg−1 BTH protected beans against anthracnose. BTH-mediated induced resistance was effective in susceptible and moderately resistant plants.P. aeruginosa KMPCH induced resistance in bean againstC. lindemuthianum only in a moderately resistant interaction. KMPCH-567, a salicylic acid mutant of KMPCH, failed to induce resistance, indicating that salicylic acid is important for KMPCH to induce resistance in the bean—C. lindemuthianum system.P.fluorescens WCS417 could induce resistance toC. lindemuthianum in a susceptible and in moderately resistant interactions. http://www.phytoparasitica.org posting Jan. 16, 2002.  相似文献   

6.
BcIEB is a small protein secreted by the phytopathogenic fungus Botrytis cinerea that is recognized as a pathogen-associated molecular pattern (PAMP) by plants. This activity is mapped to a highly conserved region of 35 amino acids, the peptide ieb35. Moreover, it has been shown that the protein and the peptide induce systemic resistance to Bcinerea after their infiltration into tobacco leaves. In this work, the possible use of BcIBE1 or ieb35 as plant protective agents has been tested. Tobacco plants were sprayed, infiltrated, or treated at the seedling stage with the protein or the peptide, and plant susceptibility to pathogens with different lifestyles was then studied at various times after treatment. The results showed that both BcIEB1 and ieb35 caused a similar reduction in the lesion sizes caused by Bcinerea and in colonization by Pseudomonas syringae pv. tabaci (reduced by c. 30% and c. 40%, respectively), independently of the treatment type. In addition, the number of Bcinerea inoculations leading to successful infections was also reduced in plants infiltrated or sprayed with BcIEB1/ieb35. The defence-related genes PR1a, NPR1, and osmotin ap24 were all induced by the protein and the peptide. BcIEB1, and especially ieb35, may be considered as a potential environmentally friendly treatment to increase plant resistance to pathogens.  相似文献   

7.
Pathotype-specific and broad-spectrum resistance to turnip mosaic virus (TuMV) have been identified in the diploid A genome brassica species Brassica rapa. The pathotype-specific resistance is effective against pathotype 1 isolates of TuMV, which are the most common in Europe. It is almost identical in its specificity to that of a mapped resistance gene (TuRB01) present in the A genome of the amphidiploid species Brassica napus. A mutant of a pathotype 1 isolate of TuMV (UK 1M) that is able to overcome TuRB01 also overcame the B. rapa resistance. This, combined with the fact that a single-nucleotide mutation in the cylindrical inclusion gene of TuMV that has been shown to induce a change from avirulence to virulence against TuRB01, had an identical effect on the B. rapa resistance, suggest that the two resistances are conditioned by the same gene. A second source of resistance in B. rapa prevented systemic spread of all TuMV isolates tested. A third source of resistance that appears to provide immunity to, or severely restrict replication of most isolates of TuMV has been characterised. This resistance source also prevented systemic spread of all TuMV isolates tested. Prior to this study, no resistance to pathotype 4 or pathotype 12 isolates of TuMV had ever been identified. For each of these three resistance sources, plant lines that are not segregating for some of the resistance phenotypes and that are presumably homozygous for the genes controlling these phenotypes have been generated. Strategies for further characterising and deploying these resistances in different Brassica species are described.  相似文献   

8.
In Iran, during 2013–16, 16 Gram‐positive corynebacteria‐like strains were recovered from the epiphytic parts of solanaceous vegetables including eggplant, pepper and tomato. The strains were recovered accidentally as a result of monitoring for other bacterial pathogens in solanaceous fields. The strains were phenotypically different from Clavibacter michiganensis strains. Although none of the strains were pathogenic on their host of isolation or on any other solanaceous plants, 12 out of 16 strains were pathogenic on common bean, cowpea, mung bean and soybean. Colonization by strains was observed on maize, zucchini, faba bean, honeydew melon, rapeseed, sugar beet and sunflower plants under greenhouse conditions. In PCR tests, the primer pair CffFOR2/CffREV4, specific for Curtobacterium flaccumfaciens pv. flaccumfaciens, enabled the amplification of the appropriately sized fragment in 12 out of 16 strains, and all 12 strains were pathogenic on dry beans. Phylogenetic analysis, using the gyrB and recA genes, showed all 16 bacterial strains clustered within several pathovars of C. flaccumfaciens. A nonpathogenic yellow‐pigmented strain (Xeu15) was clustered with the type strains of C. flaccumfaciens pv. betae and C. flaccumfaciens pv. oortii. Bacteriocin profiling assays revealed no significant differences among the pathogenic and nonpathogenic strains. Host range and population dynamics of four representative strains on 17 plant species showed population build‐up of the strains only on common bean, cowpea, wheat and red nightshade plants. The results provide important insights into the possible role of nonhost plants as reservoirs of plant pathogenic bacteria, which has important implications in plant disease epidemiology and management.  相似文献   

9.
解淀粉芽孢杆菌LJ1诱导黄瓜抗白粉病的研究   总被引:1,自引:1,他引:0  
解淀粉芽孢杆菌LJ1是从土壤中分离得到的一株对黄瓜白粉病具有较好防效的生防细菌。田间试验发现,用LJ1发酵上清100倍稀释液喷施黄瓜幼苗,在施药后14 d时其对黄瓜白粉病的防效可达83.45%。为研究LJ1防治病害的作用机制,用LJ1发酵上清100倍稀释液喷施黄瓜幼苗,测定黄瓜叶片中的超氧化物歧化酶(SOD)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)等与诱导抗病性相关的酶活性和信号分子水杨酸含量的变化,并检测了苗期根围土壤中真菌的动态。结果显示,经过LJ1发酵液处理后3种酶的活性和水杨酸的含量在不同时间点均有一个骤增的过程,其活性显著高于对照,并且7 d后土壤中的可培养真菌数量急剧减少。说明LJ1发酵液中有诱导黄瓜产生抗病性的物质,并且诱导后分泌的抗性物质对真菌具有广谱性。  相似文献   

10.
The interrelationships among bean productivity, prevalence of pathogens in roots, seeds and soil, and root rot disease were described at the pod maturity stage in 13 commercial fields. The soil population and frequency of pathogens isolated from seeds varied by pathogen species and field location. Fusarium solani was the most prevalent fungus isolated from bean seeds and field soil compared to Rhizoctonia solani, Macrophomina phaseolina and F. oxysporum. Principal component analysis revealed that the first component explaining 32% of the total variance was correlated with the root rot index. PC1 was more strongly linked to root and seed infections in comparison with soil populations of pathogens. Based on a correlation between PC2 (accounting for 23% of the total variance) and the number of seeds per bean plant, charcoal, Fusarium and Rhizoctonia root rots were recognized as more important determinants of seed losses to root rot disease. There were correlations among the major pathogens infecting either roots or seeds of beans. These findings provide useful information for future experimental plans to optimize management strategies for bean root rots.  相似文献   

11.
The present study aimed to evaluate some plant extracts from Plectranthus tenuiflorus, Azadirachta indica, Clerodendrum inerme, Schinus terebinthifolius and Mirabilis jalapa as antiviral materials against Bean common mosaic virus (BCMV) in bean plants. The results showed that all the tested plant extracts were effective in reducing the number of local lesions formed by BCMV. The mixing of P. tenuiflorus extracts with BCMV inoculum achieved the highest reduction in BCMV infection (92%), while the mixing of S. terebinthifolius extracts with BCMV inoculum recorded the lowest reduction in BCMV infection (68%). Seed treatment with 1% (w/v) of P. tenuiflorus showed the highest reduction in disease incidence (93% and 85%) under greenhouse and field conditions, respectively. Spray treatments of P. tenuiflorus and M. jalapa reduced disease incidence to 12% and 17% under greenhouse conditions, whereas under field conditions they reduced disease incidence to 17% and 23%, respectively. Protein analysis revealed different effects of the tested treatments on bean plants indicating different gene(s) expression. This study suggests the possibility of using plant extracts for controlling BCMV infection.  相似文献   

12.
BACKGROUND: Klebsiella oxytoca C1036 (C1036) causes induced systemic resistance (ISR) activity against the soft‐rot pathogen Pectobacterium carotovorum subsp. carotovorum SCC1 (SCC1). However, microbial metabolites from C1036 involved in ISR activity remain unknown. The present study was performed to identify an ISR‐related metabolite produced by C1036. RESULTS: The supernatants of C1036 cultures grown on Luria‐Bertani medium were subjected to solvent extraction, repeated column chromatography and preparative liquid chromatography for isolation of an ISR‐related metabolite. High‐resolution mass spectrometer analysis of the isolated metabolite indicated a C9H15O3N compound with a mass of 185.11. Low‐resolution mass spectrometer analysis of the metabolite showed a molecular ion peak at 185 and its fragment ions at 84 and 56. Nuclear magnetic resonance spectrometer analyses characterised all protons and carbons of the isolated metabolite. Based on the data, the isolated metabolite was determined to be butyl 2‐pyrrolidone‐5‐carboxylate (BPC). BPC at 12 mM significantly suppressed the disease symptoms in ISR bioassays against SCC1. CONCLUSION: This is the first report identifying BPC as an ISR‐related metabolite produced by C1036. C1036 may play a role in promoting plant growth because it produces ISR‐related metabolites against the plant pathogen SCC1. Copyright © 2009 Society of Chemical Industry  相似文献   

13.
Widely used resistant peppers (Capsicum spp.) bearing the Tsw locus triggered the rapid emergence of resistance‐breaking (RB) isolates of Tomato spotted wilt virus (TSWV) around the world. However, although TSWV‐induced diseases have rapidly increased in Yunnan, southwest China, in recent years, no information is available about the diversity of TSWV isolates in this region. In this study, the occurrence of natural TSWV RB variants among isolates collected in Yunnan is reported. Initially, a TSWV isolate from asparagus lettuce (TSWV‐LE) was collected in Yunnan in 2012. Surprisingly, this isolate of TSWV induced systemic necrosis on pepper carrying the Tsw resistance gene. Novel TSWV isolates, collected in 2015, included a tomato isolate (TSWV‐YN18) and a tobacco isolate (TSWV‐YN53) that also overcame Tsw‐mediated resistance. TSWV‐YN18 induced systemic ringspots, whereas TSWV‐YN53 caused systemic chlorotic mottling. Variations in the TSWV nonstructural (NSs) protein are the key determinants associated with Tsw resistance‐breaking isolates. It was found that TSWV‐LE NSs retained the hypersensitive response (HR) induction, whereas TSWV‐YN18 and TSWV‐YN53 NSs were unable to induce HR. However, the NSs of all three RB isolates suppressed RNA silencing. Sequence analysis of the NSs revealed that RB isolates of Yunnan have no amino acid mutation sites common to other previously reported RB isolates. However, two amino acids (F74 and K272) on TSWV‐LE NSs make it distinct from TSWV‐YN18 and TSWV‐YN53. The occurrence of different RB isolates and the failure of Tsw‐mediated resistance control pose serious threats to domestic pepper crops in southwest China.  相似文献   

14.
Common bacterial blight (CBB) in edible beans (Phaseolus vulgaris), incited Xanthomonas campestris pv. phaseoli, reduces bean yields and seed quality. The main objective of this study was to determine resistance to common bacterial blight in bean genotypes. Twenty-two bean genotypes grown in Turkey including common and snap bean cultivars/lines were collected from different parts of Turkey and tested for resistance against to Xanthomonas campestris pv. phaseoli strain MFD-11. All the common and snap bean lines/cultivars tested were moderately susceptible, susceptible or highly susceptible, except AG-7117 which was found resistant to Xanthomonas campestris pv. phaseoli. This is the first report of a resistance source in a common bean line (AG-7117) against Xanthomonas campestris pv. phaseoli.  相似文献   

15.
Chocolate spot is an important disease of faba bean (Vicia faba) caused by the necrotrophic fungus Botrytis fabae. The aims of this work were: i) to compare different methods of screening for resistance; ii) to assess the influence of the age of host tissue and temperature on this pathosystem. To this effect, a collection of 42 faba bean accessions was evaluated in mature plant stage in the field in Cordoba (Southern Spain) and in detached leaflet and whole plant tests under controlled conditions. Field results correlated better with those of the whole plant test than with those of the detached leaflet assay. Integration of results from the field and whole plant experiments resulted in the selection of six accessions of interest as sources of resistance. Influence of leaf age on disease development was found to be genotype dependent. Older leaves were more susceptible than younger ones in 23 accessions, while no difference between leaf ages was detected in the remaining accessions. The effects of plant age and temperature were assessed by a whole plant test on seven accessions at two plant ages (4 and 7 weeks) and three temperatures (13, 20, and 25°C). Results showed that the differential genotypic responses to B. fabae were not significantly influenced by either plant age or temperature, although there was a tendency towards lower susceptibility to chocolate spot in faba bean plants as they become older. Further, a partial high-temperature, young-plant resistance was detected.  相似文献   

16.
Long-term continuous monocropping of faba beans increases the incidence of faba bean wilt, while faba bean–wheat intercropping can effectively control it. This study aimed to understand the underlying mechanism of faba bean–wheat intercropping for the control of Fusarium oxysporum and vanillic acid (VA)-promoted occurrence of faba bean wilt. The occurrence of faba bean wilt was investigated among the monocropped and intercropped plants of faba beans in a field experiment. The contents and types of phenolic acids were examined in the rhizosphere soil. Monocropped and intercropped faba beans were examined under the dual stress of F. oxysporum and different concentrations of VA (0, 50, 100, 200 mg/L) to understand the alleviating mechanism of faba bean–wheat intercropping. Exogenous addition of high concentrations of VA significantly inhibited the growth and reproduction of F. oxysporum, but under the dual stress of F. oxysporum and different concentrations of VA, it significantly inhibited the defence enzymes of faba bean roots, stems, and leaves, and rhizosphere soil enzymes. Interestingly, faba bean–wheat intercropping alleviated VA stress and thereby the incidence and disease index of faba bean Fusarium wilt by improving plant resistance and soil enzyme activity. The dual stress of F. oxysporum and VA promotes the occurrence of Fusarium wilt by damaging the defence system of the faba bean root system and rhizosphere soil environment. However, faba bean–wheat intercropping effectively alleviates the autotoxicity of VA by improving the physiological and biochemical resistance of faba beans and soil enzyme activities, and thus controls the occurrence of Fusarium wilt.  相似文献   

17.
Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Several rhizobacterial strains have been shown to act as plant growth-promoting bacteria through both stimulation of growth and induced systemic resistance (ISR), but it is not clear in how far both mechanisms are connected. Induced resistance is manifested as a reduction of the number of diseased plants or in disease severity upon subsequent infection by a pathogen. Such reduced disease susceptibility can be local or systemic, result from developmental or environmental factors and depend on multiple mechanisms. The spectrum of diseases to which PGPR-elicited ISR confers enhanced resistance overlaps partly with that of pathogen-induced systemic acquired resistance (SAR). Both ISR and SAR represent a state of enhanced basal resistance of the plant that depends on the signalling compounds jasmonic acid and salicylic acid, respectively, and pathogens are differentially sensitive to the resistances activated by each of these signalling pathways. Root-colonizing Pseudomonas bacteria have been shown to alter plant gene expression in roots and leaves to different extents, indicative of recognition of one or more bacterial determinants by specific plant receptors. Conversely, plants can alter root exudation and secrete compounds that interfere with quorum sensing (QS) regulation in the bacteria. Such two-way signalling resembles the interaction of root-nodulating Rhizobia with legumes and between mycorrhizal fungi and roots of the majority of plant species. Although ISR-eliciting rhizobacteria can induce typical early defence-related responses in cell suspensions, in plants they do not necessarily activate defence-related gene expression. Instead, they appear to act through priming of effective resistance mechanisms, as reflected by earlier and stronger defence reactions once infection occurs.  相似文献   

18.
The plant growth‐promoting fungus, Penicillium simplicissimum GP17‐2, was evaluated for its ability to induce resistance against Cucumber mosaic virus (CMV) in Arabidopsis thaliana and tobacco plants. Treatment with barley grain inoculum (BGI) of GP17‐2 significantly enhanced fresh weight, dry weight and leaf number of A. thaliana and tobacco plants 6 weeks after planting. Two weeks after CMV inoculation, all plants treated with BGI of GP17‐2 or its culture filtrate (CF) showed a significant reduction in disease severity compared with non‐treated control plants, which exhibited severe mosaic symptoms by the end of the experiment. The enzyme‐linked immunosorbent assay (ELISA) demonstrated that CMV accumulation was significantly reduced in plants treated with GP17‐2 or its CF relative to control plants. Based on RT‐PCR, plants treated with GP17‐2 (BGI or CF) also exhibited increased expression of regulatory and defence genes involved in the SA and JA/ET signalling pathways. These results suggested that multiple defence pathways in A. thaliana and tobacco were involved in GP17‐2‐mediated resistance to CMV, although neither the transgenic NahG line, nor the npr1, jar1 or ein3 mutants disrupted the response in A. thaliana. This is the first report to demonstrate the induction of systemic resistance against CMV by GP17‐2 or its CF.  相似文献   

19.
Fusarium oxysporum f. sp. fabae is the causal agent of fusarium wilt. Fusaric acid (FA), produced by F. oxysporum, plays an important role in the occurrence of disease, and intercropping is an effective measure for control of disease and for improving host resistance in plants. The objective of this study was to investigate the physiological and biochemical responses, and mechanisms of tissue structure resistance, of intercropped faba beans following exposure to different concentrations of FA. Results demonstrated that intercropping reduced the occurrence of fusarium wilt, and improved faba bean growth and yield. In addition, wheat intercropping significantly reduced red ink absorption of faba bean (33.2%), increased water content (3.1%), and increased activity of the root antioxidant enzymes peroxidase (POD) and catalase (CAT) (26.3% and 2.2.%, respectively). Furthermore, increased lignin content and callose deposition in plant vessels were observed (12.5% and 42.7%, respectively) when subjected to the highest concentration of FA stress (200 mg/L). Intercropping resulted in more intact root cell morphology, increased occurrence of intracellular vacuoles, increased cell wall thickness, and an increase in the number of mitochondria and rough endoplasmic reticulum. Intercropping alleviated the wilting effect of FA on faba bean via enhanced physiological, biochemical, and tissue structure resistance of faba bean root.  相似文献   

20.
The gene gdhA from Escherichia coli, that encodes a NADPH‐dependent glutamate dehydrogenase (GDH), directs a novel pathway in transgenic plants that allows an increase in ammonium assimilation. Glufosinate leads to plant death by the irreversible inhibition of glutamate synthetase (GS) leading to a disruption of subsequent GS‐related processes resulting in elevated ammonium and disruption of photorespiration. Therefore, it was speculated that the gdhA‐transformed plants may exhibit a novel mechanism of resistance to glufosinate by altered activity of the GDH‐directed pathway(s) and subsequently related processes. Studies were conducted in the greenhouse to evaluate the resistance of tobacco plants containing the gdhA gene to glufosinate. Five tobacco genotype lines were investigated including a non‐transformed control line, a positive control line and three transformed lines with levels of increasing GDH activity directed by the gdhA gene. Plants transformed with the gdhA gene expressed up to six times increased level of resistance (GR50) to glufosinate compared with the non‐transformed control, which is 100 times less resistant than plants transformed with the bar gene. The GDH activity among lines was highly correlated (r2 = 0.9903) with the level of herbicide resistance. Thus, the use of the E. coli gdhA gene in plant transformations can provide an additional mechanism for resistance to glufosinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号