首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Nutrient (NH4, PO4 and K) leaching from oven dried green leaves of Emblica officinalis Gaerten, Sesbania grandiflora (L.) Pers. and Moringa oleifera Lam.were investigated in laboratory condition. Oven-dried green leaves were immersed in demineralized distilled water for 8 days. Electrical conductivity (EC), Total dissolved solids (TDS) and nutrients (NH4, PO4 and K) of leaching water samples were measured at 0.25, 0.5, 1, 2, 3, 4, 6, 8, 12, 24, 48, 72, 96, 144, and 192 h of intervals. All these species showed an increasing trend for EC and TDS in leachate and comparatively higher EC and TDS were observed in E. officinalis, which is followed, by S. grandiflora and M. oleifera. Significantly high amount (P < 0.05) of NH4 was leached from S. grandiflora and PO4 from M. oleifera. But, both S. grandiflora and M. oleifera leached significantly higher (P < 0.05) K than E. officinalis. Within the first 0.25 h, 100 % and 82 % of NH4 and 68 % and 74 % of K were leached from leaves of S. grandiflora and M. oleifera respectively. S. grandiflora and M. oleifera leached 100 % of PO4 within 6 h. The concentrtions of NH4, PO4 and K in the leachate from E. officinalis, S. grandiflora and M. oleifera were not significantly different (P > 0.05). The green leaves of S. grandiflora and M.oleifera can be a potential source of NH4, PO4 and K for a quick nutrient supplement to the agricultural crops in agroforestry practices.  相似文献   

2.
The Serra do Brigadeiro State Park (PESB) is one of the largest fragments of Brazilian Atlantic Rainforest, and it is relevant for native species conservation. However, monocultures settled around the Park resulted in extensive open areas that facilitate the establishment of alien species on the PESB perimeter, which may threaten native species conservation therein, since biological invasion is the second main cause of global biodiversity loss. In this region, there are also farmers planting agroforestry systems (AFS), characterized by tree-based intercropping, which are structurally more similar to the Atlantic Rainforest reminiscent fragments present in the region and may limit local occurrence of potentially invasive exotic weeds for several reasons, such as the high levels of shade provided by trees, the groundcover that result from loss of tree leaves and the increased competition for belowground resources. This study aimed to test whether AFS limit exotic species establishment when compared to monoculture systems. Accordingly, three coffee monocultures and three agroforestry coffee plantations around the PESB were studied. In each of the six study areas, 30 plots of 1 m2 were established between the lines of coffee plantation, where all species present were surveyed. In both treatments, rarefaction curves were constructed to evaluate native and exotic richness, and diversity of these two categories was estimated through Simpson index inverse (1/D). All 13 sampled exotic species were present in monocultures, but only three of them occurred in AFS. Besides, alien diversity in monocultures (\(1/D\) = 2.173 ± 0.011) was significantly higher than in AFS (\(1/D\) = 1.031 ± 0.001). Such changes in alien plant community between land-use show that AFSs limit invasive species establishment. Therefore, when planted around protected areas, AFS may contribute to the control of biological invasions and to biodiversity conservation.  相似文献   

3.
Uptake and management of agroforestry technologies differs among farms in Rwanda and needs to be documented as a basis for shaping future research and development programs. The objective of this study was to investigate current agroforestry practices, farmers’ preferences, tree management and perspectives for agroforestry technologies. The study consisted of a combination of a formal survey, a participatory tree testing, farmer evaluation and focus group discussions in the Central Plateau (moderate altitude) and the Buberuka (high altitude) agro-ecological zones. A survey and a tree testing exercise with a range of species: (timber species—Eucalyptus urophyla, Grevillea robusta; legume shrubs - Calliandra calothyrsus, Tephrosia vogelii; and fruit species—Persea americana and Citrus sinensis) were carried out in Simbi (Central Plateau) and Kageyo (Buberuka) with farmers from different wealth status who received tree seedlings for planting, managing, and evaluating. Simbi had more tree species farm?1 (4.5) than Kageyo (2.9). Fruit trees occurred most frequently in Simbi. Grevillea robusta, Calliandra calothyrsus and Tephrosia vogelii were mostly established along contours, fruit trees in homefields and Eucalyptus urophyla trees in woodlots. Survival was better on contours for Grevillea robusta (58–100 %) and Calliandra calothyrsus (50–72 %). Tree growth was strongly correlated with the total tree lop biomass in Eucalyptus urophyla (R 2 = 0.69). Grevillea robusta was most preferred in Simbi and Eucalyptus urophyla and Calliandra calothyrsus in Kageyo. The study provided information useful for revising the national agroforestry research and extension agenda and has important implications for other countries in the highlands of Africa.  相似文献   

4.
Twenty weeks forage re-growth from 20 multipurpose trees and shrubs (MPTS) species (Albizia ferruginea, Albizia gummifera, Albizia niopoides, Berlinia grandiflora, Bauhimia monandra, Dialium guineense, Dalbergia sissoo, Enterolobium cyclocarpum, Leucaena leucocephala, Lonchocarpus sericeus, Milletia griffoneanus, Milletia thoningii, Napoliana imperialis, Parkia bicolor, Pterocarpus santalinoides, Senna spectabilis, Treculia africana, Terminalia superba, Tetrapluera tetraptera and Xylia xylocarpa) were investigated for their feed value. The MPTS were grown on an ultisol in southeastern Nigeria and were subjected to proximate analyses, nylon bag degradability studies and cluster analysis. Among species, crude protein (CP) ranged from 104 g kg?1 DM in P. bicolor to 205 g kg?1 DM in A. gummifera, neutral detergent fibre (NDF) ranged from 498 g kg?1 DM in L. leucocephala to 771 g kg?1 DM in L. sericeus, acid detergent fibre (ADF) ranged from 303 g kg?1 DM in T. superba to 661 g kg?1 DM in L. sericeus, acid detergent lignin (ADL) ranged from 75 g kg?1 DM in T. superba to 305 g kg?1 DM in L. sericeus. Also, ADF-ash ranged from 0.78 g kg?1 DM in E. cyclocarpum to 15.58 g kg?1 DM in D. guineense. Except E. cyclocarpum and S. spectabilis, the remaining 18 MPTS studied had effective degradabilities (ED) less than 500 g kg?1 DM effective degradability. Eight MPTS (A. ferruginea, A. niopoides, B. monandra, D. sissoo, E. cyclocarpum, L. leucocephala, S. spectabilis, T. superba) were classified as high quality, another eight (A. gummifera, B. grandiflora, L. sericeus, N. imperialis, P. bicolor, P. santalinoides, T. tetraptera and X. xylocarpa) as medium quality while, the remaining four (D. guineensis, M. griffoneanus, M. thoningii, T. africana) fell into the low quality class based on their nutrient composition and ruminal DM degradability. The results indicate that most of the MPTS could be used as good quality feed for small ruminants in Nigeria.  相似文献   

5.
Average population growth in the African Sudanian belt is 3 % per year. This leads to a significant increase in cultivated areas at the expense of fallows and forests. For centuries, rural populations have been practicing agroforestry dominated by Vitellaria paradoxa parklands. We wanted to know whether agroforestry can improve local rainfall recycling as well as forest. We compared transpiration and its seasonal variations between Vitellaria paradoxa, the dominant species in fallows, and Isoberlinia doka, the dominant species in dry forests in the Sudanian belt. The fallow and dry forest we studied are located in northwestern Benin, where average annual rainfall is 1200 mm. Sap flow density (SFD) was measured by transient thermal dissipation, from which tree transpiration was deduced. Transpiration of five trees per species was estimated by taking into account the radial profile of SFD. The effect of the species and of the season on transpiration was tested with a generalized linear mixed model. Over the three-year study period, daily transpiration of the agroforestry trees, V. paradoxa (diameters 8–38 cm) ranged between 4.4 and 26.8 L day?1 while that of the forest trees, I. doka, (diameters 20–38 cm) ranged from 9.8 to 92.6 L day?1. Daily transpiration of V. paradoxa was significantly lower (15 %) in the dry season than in the rainy season, whereas daily transpiration by I. doka was significantly higher (13 %) in the dry season than in the rainy season. Our results indicate that the woody cover of agroforestry systems is less efficient in recycling local rainfall than forest cover, not only due to lower tree density but also to species composition.  相似文献   

6.
The dynamics of the Atlantic Rainforest loss and recovery are still not fully understood despite its long history of human occupation. In this study, we investigated changes in an Atlantic Rainforest region due to major biophysical and human proximate causes. First, we modeled land-cover and land-use changes from 1962 to 2000, including deforestation and forest regrowth, and thereby simulated future landscape trajectories to assess their possible effects on the conservation of forest species of the Ibiúna Plateau, a region located in Southeastern Brazil within the Atlantic Rainforest biome. We modeled four scenarios (status quo, random, lawenforcement, and land-use intensification) and simulated their resulting landscape trajectories for the year 2019 using DINAMICA. The landscape dynamics in the study region were particularly intense. During the first period of 1962–1981, the rate of forest regrowth (3% year−1) was greater than the rate of deforestation (2% year−1), whereas in the latter period of 1981–2000, increasing urbanization and the spreading of rural establishments resulted in more deforestation (2.9% year−1) than regrowth (1% year−1). These dynamics imprinted a heterogeneous landscape, leading to the predominance of progressively younger secondary forests with increasingly less capacity of hosting sensitive forest species. The influence of proximate causes on the dynamics of deforestation and forest regrowth showed consistent patterns, such as higher forest regrowth rates near rivers, on steep slopes and far from dirt roads, whereas losses in young secondary vegetation and forest were far from rivers, on gentle slopes and near urban areas. Of the modeled scenarios, only the law enforcement scenario may lead to the recovery of a network of interconnected forest patches, suggesting that simply the enforcement of current forest laws, which prohibit deforestation on unsuitable agricultural areas and along river margins and establish a minimum of 20% of forest remnant per rural property, may effectively favor forest species conservation in the short term (two decades) without the need of any forest restoration effort.  相似文献   

7.
The current expansion of the oil palm (Elaeis guineensis Jacq.) in the Brazilian Amazon has mainly occurred within smallholder agricultural and degraded areas. Under the social and environmental scenarios associated with these areas, oil palm-based agroforestry systems represent a potentially sustainable method of expanding the crop. The capacity of such systems to store carbon (C) in the soil is an important ecosystem service that is currently not well understood. Here, we quantified the spatial variation of soil C stocks in young (2.5-year-old) oil palm-based agroforestry systems with contrasting species diversity (high vs. low); both systems were compared with a ~10-year-old forest regrowth site and a 9-year-old traditional agroforestry system. The oil palm-based agroforestry system consisted of series of double rows of oil palm and strips of various herbaceous, shrub, and tree species. The mean (±standard error) soil C stocks at 0–50 cm depth were significantly higher in the low (91.8 ± 3.1 Mg C ha?1) and high (87.6 ± 3.3 Mg C ha?1) species diversity oil palm-based agroforestry systems than in the forest regrowth (71.0 ± 2.4 Mg C ha?1) and traditional agroforestry (68.4 ± 4.9 Mg C ha?1) sites. In general, no clear spatial pattern of soil C stocks could be identified in the oil palm-based agroforestry systems. The significant difference in soil carbon between the oil palm area (under oil palm: 12.7 ± 2.3 Mg C ha?1 and between oil palm: 10.6 ± 0.5 Mg C ha?1) and the strip area (17.0 ± 1.4 Mg C ha?1) at 0–5 cm depth very likely reflects the high input of organic fertilizer in the strip area of the high species diversity oil palm-based agroforestry system treatment. Overall, our results indicate a high level of early net accumulation of soil C in the oil palm-based agroforestry systems (6.6–8.3 Mg C ha?1 year?1) that likely reflects the combination of fire-free land preparation, organic fertilization, and the input of plant residues from pruning and weeding.  相似文献   

8.
Shade trees play an important role within agroforestry systems by influencing radiation and wind regimes as well as nutrient and hydrological cycling. However, there is a lack of quantitative assessments of their functions. One of the reasons is the rare information on structural characteristics of shade tree species. Therefore, the aim of this study is to provide basic information on the structure of frequently used shade tree species for the implementation of models simulating the ecosystem processes in agroforestry systems. The investigation of the shade trees was conducted at two cacao agroforestry sites on Sulawesi, Indonesia. The measurements of the main structural parameters: diameter at breast height, tree height, trunk height, crown length and crown radius were carried out for the shade tree species Aleurites moluccana, Cocos nucifera and Gliricidia sepium. For data collection, the National Forest Inventory Field Manual Template by FAO (2004) was applied. Based on this information allometric functions were derived for the correspondent shade tree species. The best significant relationships were obtained for the height-crown length relationship of the dicotyledonous tree species’ A. moluccana and G. sepium with a coefficient of determination r² = 0.925 and r² = 0.738, respectively, and the height-crown length relationship of the monocotyledonous palm C. nucifera with r² = 0.663. The transferability tests ‘analysis of covariance’ and ‘homogeneity of slopes’ have shown that the obtained allometric functions are also applicable to other cacao agroforestry systems of the region.  相似文献   

9.
The cultivation of ornamentals to produce woody floral products—the fresh or dried stems that are used for decorative purposes—may be an attractive option for southeastern landowners looking to generate income from small landholdings. Since many shrubs native to the understory of the longleaf pine (Pinus palustris Mill.) ecosystem have market potential, one possibility is the intercropping of select species in the between-row spacing of young longleaf pine plantations. The objective of this study was to evaluate how interspecific competition affects the fate of 15N fertilizer when American beautyberry (Callicarpa americana L.), wax myrtle (Morella cerifera (L.) Small) and inkberry (Ilex glabra (L.) A.Gray) are intercropped with longleaf pine. Nitrogen derived from fertilizer (NDF), utilization of fertilizer N (UFN) and recovery of fertilizer N (RFNsoil) were compared between agroforestry and monoculture (treeless) treatments to assess the effects of competition. Results varied by species, with NDF being higher for C. americana foliage and lower for all M. cerifera tissues in the agroforestry treatment. No effect was observed for I. glabra. UFN was lower for all species in the agroforestry treatment. RFNsoil was higher in the agroforestry treatment for I. glabra, but no treatment effects were observed for C. americana or M. cerifera. Overall, while it is clear that interspecific competition was present in the agroforestry treatment, the inefficiency of fertilizer use suggests that nitrogen was not the most limiting resource. Management interventions, particularly those that address competition for water, will likely be critical to the success of this system.  相似文献   

10.
Agroforestry is an ancient practice widespread throughout Africa. However, the influence of Sahelian agroforestry systems on carbon storage in soil and biomass remains poorly understood. We evaluated the carbon storage potential of three agroforestry systems (fallow, parkland and rangeland) and five tree species (Faidherbia albida, Acacia raddiana, Neocarya macrophylla, Balanites aegyptiaca and Euphorbia balsamifera) growing on three different soils (clay, sandy loam and sandy) in the Niayes zone, Senegal. We calculated tree biomass carbon stocks using allometric equations and measured soil organic carbon (SOC) stocks at four depths (0–20, 20–50, 50–80 and 80–100 cm). F. albida and A. raddiana stored the highest amount of carbon in their biomass. Total biomass carbon stocks were greater in the fallow (40 Mg C ha?1) than in parkland (36 Mg C ha?1) and rangeland (29 Mg C ha?1). More SOC was stored in the clay soil than in the sandy loam and sandy soils. On average across soil texture, SOC stocks were greater in fallow (59 Mg C ha?1) than in rangeland (30 Mg C ha?1) and parkland (15 Mg C ha?1). Overall, the total amount of carbon stored in the soil + plant compartments was the highest in fallow (103 Mg C ha?1) followed by rangeland (68 Mg C ha?1) and parkland (52 Mg C ha?1). We conclude that in the Niayes zones of Senegal, fallow establishment should be encouraged and implemented on degraded lands to increase carbon storage and restore soil fertility.  相似文献   

11.
Nutrient losses during slash-and-burn clearing in tropical forests, coupled with demand by food crops, can deplete nutrients and result in crop abandonment after 1–2 years. Slash-and-mulch technology prevents nutrient losses from burning, while mulch decomposition may serve as a nutrient source. This research investigates the release of nutrients from the mulch and potential uptake of released N by plant biomass after a multi-species agroforestry system was planted in June 2005, following the clearing of a 1 ha of 7-year-old forest with a mulching tractor in Igarapé Açu, Brazil. The study evaluated soil conditions, mulch decomposition, and nutrient concentrations of Manihot esculenta and native vegetation under treatments of P+K fertilization in combination with four native tree species and N-fixing Inga edulis, or with three native tree species without I. edulis. Mulch layer N, Ca and Mg content decreased in response to fertilization, while mulch layer P and K content increased. Nutrient content increased in M. esculenta stems and tubers with fertilization and in the presence of I. edulis, and in competing vegetation with fertilization. Estimated tree N content increased 311 % with fertilization, but by 154 % in the presence of I. edulis. Fertilization with P+K, as well as the presence of I. edulis, increased N stocks in total biomass.  相似文献   

12.
Few studies of adaptability and growth of native legume species have been conducted on degraded acid soils. The lack of data for native species has often precluded their use in incentive-supported reforestation and international agroforestry schemes. A species screening trial that included 25 legume species was conducted at three abandoned pasture sites in the Atlantic Lowland of Costa Rica. Most of the leguminous species were of potential multipurpose value: 8% were exotic N2-fixing trees, 60% (some of which were N2-fixers) were indigenous to the region, and 32% (some of which were N2-fixers) were native to other areas of Costa Rica. Survival (including damage indices), growth, tree form and N2-fixing ability were used to evaluate species performance. Survival of the majority of the species after 3 years was high. Pithecellobium idiopodum, Inga edulis, Albizia guachapele, Pithecellobium elegans and Dalbergia retusa had greater than 90% survival at all sites. There were significant differences in growth measures among species. Across sites Acacia mangium, Stryphnodendron microstachyum and Inga edulis produced the greatest stem volume, and A. mangium, I. edulis, P. idiopodum and S. microstachyum had the highest crown volume. Inga edulis, P. idiopodum, I. coruscans and P. macroloba failed to form straight single stems. Acetylene reduction assay at Site 3 showed that I. edulis, A. mangium, A. guichapele, and I. coruscans had the highest nitrogenase activity among the best growing species. This trial indicates that there are native leguminous species with excellent potential for reforestation and agroforestry on acid soils high in aluminum and manganese.  相似文献   

13.
The faeces of large herbivores include viable seeds of many plant species. With dung decomposition, some seeds migrate into the soil and influence seed bank build-up. However, only a few papers report evidence of this process, and only from grasslands. In forest studies, this subject has so far been neglected. Therefore, I ask in this paper whether seeds present in the dung of European bison migrate to the forest soil seed bank and influence its build-up. I sampled soil from underneath European bison dung pats and from surrounding areas (control samples). Samples were divided into shallow (0–5 cm) and deep (5–10 cm) series. Soil seed bank content was studied in the greenhouse for 2 years. The shallow seed bank under dung pats was characterized by the highest species richness (49 species) and seed density (>2,000 m?2). Urtica dioica, Juncus effusus and Carex remota showed a demonstrable increase in seed density in the shallow seed bank underneath dung. Three years after dung deposition, seeds of endozoochoric origin influenced the soil seed bank of coniferous forest. U. dioica, J. effusus, C. remota and other species of deciduous forests and grasslands (Agrostis capillaris, Milium effusum, Polygonum hydropiper, Polygonum mite, Scrophularia nodosa, Stachys sylvatica, Veronica chamaedrys) caused an increase in seed density (by 61 %) and species richness (by 33 %) of the shallow soil seed bank underneath dung in comparison with the control soil seed bank.  相似文献   

14.
A challenge in establishing agroforestry systems is ensuring that farmers are interested in the tree species, and are aware of how to adequately manage these species. This challenge was tackled in the Atlantic Rainforest biome (Brazil), where a participatory trial with agroforestry coffee systems was carried out, followed by a participatory systematisation of the farmers experiences. Our objective was to identify the main tree species used by farmers as well as their criteria for selecting or rejecting tree species. Furthermore, we aimed to present a specific inventory of trees of the Leguminosae family. In order to collect the data, we reviewed the bibliography of the participatory trial, visited and interviewed the farmers and organised workshops with them. The main farmers’ criteria for selecting tree species were compatibility with coffee, amount of biomass, production and the labour needed for tree management. The farmers listed 85 tree species; we recorded 28 tree species of the Leguminosae family. Most trees were either native to the biome or exotic fruit trees. In order to design and manage complex agroforestry systems, family farmers need sufficient knowledge and autonomy, which can be reinforced when a participatory methodology is used for developing on-farm agroforestry systems. In the case presented, the farmers learned how to manage, reclaim and conserve their land. The diversification of production, especially with fruit, contributes to food security and to a low cost/benefit ratio of agroforestry systems. The investigated agroforestry systems showed potential to restore the degraded landscape of the Atlantic Rainforest biome.  相似文献   

15.
A 26 years old agroforestry plantation consisting of four multipurpose tree species (MPTs) (Michelia oblonga Wall, Parkia roxburghii G. Don, Alnus nepalensis D. Don, and Pinus kesiya Royle ex-Gordon) maintained at ICAR Research Complex, Umiam, Meghalaya, India were compared with a control plot (without tree plantation) for soil fertility status and CO2 efflux. The presence of trees improved all the physico-chemical and microbial biomass parameters studied in this experiment. Relative to control, soils under MPTs showed significant increases of 17 % soil organic carbon, 26 % available nitrogen (AN), 28 % phosphorus (AP), 50 % potassium (AK), 65 % mean weight diameter (MWD) of aggregates, 21 % moisture and 34 % soil microbial biomass carbon (MBC) while reducing the mean bulk density (7 %). However, these parameters significantly differed among the tree species i.e., soils under A. nepalensis and M. oblonga had higher values of these attributes except bulk density, than under other species. Irrespective of treatments, the values of all these attributes were higher in surface soils while bulk density was highest in subsurface (60–75 cm). Cumulative CO2 efflux under MPTs was significantly higher (15 %) and ranged from 1.71 g 100 g?1 (M. oblonga) to 2.01 g 100 g?1 (A. nepalensis) compared to control at 150 days of incubation. In all the treatments, increment in temperature increased the oxidation of soil organic matter, thereby increased the cumulative CO2 efflux from soils. Of the tree species, with increment in temperature, A. nepalensis recorded more CO2 efflux (2.50 g 100 g?1) than other MPTs but the per cent increase was more in control plot. P. kesiya and A. nepalensis recorded highest activation energy (59.1 and 39 kJ mol?1, respectively). Net organic carbon sequestered in soil was highest under A. nepalensis (25.7 g kg?1) followed by M. oblonga (19.3 g kg?1), whereas control showed the lowest values. Amount of net carbon stored in the soil had significant and positive correlation with MBC (r = 0.706**), MWD (r = 0.636*), and AN (r = 0.825**).  相似文献   

16.
Field experiments were conducted during rainy seasons of three consecutive years (2008–2010) to study the effect of green leaf manuring on dry matter partitioning and productivity of lowland rice (Oryza sativa L.). Green leaves of five indigenous agroforestry tree species viz., Erythrina indica, Acacia auriculiformis, Alnus nepalensis, Parkia roxburghii, and Cassia siamea were treated at 10 t ha?1 on fresh weight basis in rice fields and compared with recommended N–P2O5–K2O (80:60:40 kg ha?1) and control treatments. During 2008–2009 year, yield attributes and rice yield were greater in NPK plots as compared to the green-leaf manured ones. However, in the third year, green leaf manuring (except that of Alnus) surpassed even the recommended N–P2O5–K2O treatment in terms of dry matter production and yield; better response was however observed with Erythrina. The soil available N after final harvest increased by ca. 14–20 % in Alnus and Erythrina treated plots as compared to the control. Over all, it could be said that management of plant residues can have long-term implications apart from the desired maintenance of soil organic matter and improving crop yield.  相似文献   

17.
Coffee, Coffea arabica L., which is native to Ethiopia, is the world’s most widely traded tropical agricultural commodity. While much is known about the productivity and management of coffee for coffee beans little attention has been given to the plants overall biomass production and carbon sequestration. The objective of this study was to develop and evaluate allometric equations for estimating the aboveground biomass of C. arabica plants growing in indigenous agroforestry system in the Rift Valley escarpment of south-eastern Ethiopia. Coffee plays an important role in providing income and in sustaining these productive systems. Biomass harvesting of 31 plants with 54 stems was carried out in a 40 km2 area varying in elevation from 1,500 to 1,900 m. The stem accounted for most (56 %) of plant biomass, followed by branches (39 %) and twigs plus foliage (5 %). Plant mean biomass was 22.9 ± 15.8 kg. Power equations using stem diameter measured at either 40 cm (d 40) or at breast height (d, 1.3 m) with and without stem height (h) were evaluated. The square power equation, $ Y \; = \; b_{ 1} d_{ 40}^{ 2} $ , was found to be the best (highest ranked using goodness-of-fit statistics) for predicting total and component biomass. The reliability of the prediction decreased in the order: stem > branches > twigs plus foliage. A cross-validation procedure showed that equation parameterization was stable and coefficients reliable. Our parameterized square power equation for total aboveground biomass was also found to be better than the equations parameterized by Hairiah et al. (Carbon stocks of tropical land use systems as part of the global C balance: effects of forest conversion and options for clean development activities, International Centre for Research in Agroforestry, Bogor, 2001) and Segura et al. (Agroforest Syst 68:143–150, 2006) for C. arabica grown in agroforestry systems, confirming the importance of parameterization of allometric equations with site specific data when possible.  相似文献   

18.
This study evaluates weed dynamics during the first 4 years (2008–2011) of the implementation of an agroforestry system in the municipality of Tomé-açu in the state of Pará, Brazil. The study was conducted in a degraded pasture of Brachiaria humidicola, and treatments (T) included mixed plantations of oil palm with short-cycle leguminous species (T1) with the inclusion of manioc in T2 and forest species and palm trees in T3. In 2008, a floristic survey was conducted in 12 plots of 2 × 2 m per treatment. In 2009, herbicide was applied to one half of the area in each treatment. A total of 19,367 individuals of height <1.5 m were surveyed, of which 51 % were B. humidicola and 21 % were leguminous species that had been planted. Overall, an increase in plant density was observed between 2009 and 2010, followed by a decrease over the following year in areas without herbicide and a tendency for high densities to persist in areas with herbicide. Species richness increased over the study period in all areas (with or without herbicide), which might be related to habitat availability resulting from the reduced density of B. humidicola due to the effects of the herbicide, the leguminous species planted and the development of the agroforestry system. The association of short-cycle leguminous plants with afforestation appears to be an effective method for controlling weeds in the absence of herbicides.  相似文献   

19.
Litter fall from upper storey trees in agroforestry systems contributes to nutrient cycling for the benefit of all components of the system besides serving as mulch. This study examined the seasonal changes in the quantity and quality of leaf litter fall from three sub-tropical fruit trees viz: avocado (Persea americana L.), mango (Mangifera indica L.) and litchi (Litchi chinensis L.) which have potential for use in agroforestry. Leaf litter production was estimated using nylon mesh litter traps erected over five randomly selected trees of each species in a completely randomised design. Litter quality was determined by analysing ash content and polyphenol, carbon, cellulose, lignin and nutrient concentrations over a 2?year period (2007?C2008). Total annual leaf litter production during the study period (dry matter basis) was 8.3, 6.3 and 5.6?t?ha?1?year?1 for litchi, mango and avocado, respectively. In both years, leaf litter fall was greatest during autumn and lowest during winter in all species. There were no significant differences in S, Ca, Mg and Mn concentrations in the leaf litter, but polyphenol, N, P and K concentrations differed significantly (P?<?0.05) between species. It was concluded that litter quality from all three tree species was low and would require appropriate management to improve its quality.  相似文献   

20.
Tree species in agroforestry are important source of inoculum for companion agricultural crops. Agroforestry trees can serve as a source of Arbuscular mycorrhiza (AM) inoculants to intercropped annuals. We studied spore abundance, root colonization of Albizia gummifera (J.F. Gmel.) and Croton macrostachyus (Hochst Ex Del.) trees and their effect on colonization of maize. Soil and root samples were collected from field standing trees from under and outside the canopy of trees and maize crops in the main rainy season. The number of spore count was significantly higher under the canopy of A. gummifera (791/100 g of dry soil) and C. macrostachyus (877/100 g of dry soil) trees than outside the canopy (547 and 588/100 g of dry soil, respectively). The level of root colonization of C. macrostachyus (45 %) was higher than A. gummifera (41 %). Root colonization of maize crops grown under the canopy of A. gummifera and C. macrostachyus trees was significantly higher than outside the canopy (P < 0.001). Maize seedlings grown on non-sterilized soils collected under and outside the canopy of A. gummifera and C. macrostachyus trees recorded higher root colonization, plant height, shoot and root dry weight than grown on sterilized soils (P < 0.001). The percentage of AM colonized roots of Zea mays seedlings was significantly positively correlated with the number of spore counts for field soils. The rhizospheres of indigenous agroforestry perennial species are important source of inoculum for annuals. The integration of perennials and annuals in an agroforestry system enhances the maintenance of soil quality in the tropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号